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Collisionless dynamics in two-dimensional bosonic gases
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We study the dynamics of dilute and ultracold bosonic gases in a quasi-two-dimensional (quasi-2D) configu-
ration and in the collisionless regime. We adopt the 2D Landau-Vlasov equation to describe a three-dimensional
gas under very strong harmonic confinement along one direction. We use this effective equation to investigate
the speed of sound in quasi-2D bosonic gases, i.e., the sound propagation around a Bose-Einstein distribution
in collisionless 2D gases. We derive coupled algebraic equations for the real and imaginary parts of the sound
velocity, which are then solved also taking into account the equation of state of the 2D bosonic system. Above
the Berezinskii-Kosterlitz-Thouless critical temperature we find that there is rapid growth of the imaginary
component of the sound velocity, which implies a strong Landau damping. Quite remarkably, our theoretical
results are in good agreement with very recent experimental data obtained with a uniform 2D Bose gas of 87Rb
atoms.
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I. INTRODUCTION

The Boltzmann-Vlasov equation is the most relevant tool
to investigate the kinetics of three-dimensional (3D) quantum
gases made of out-of-condensate atoms [1–6]. In the colli-
sionless regime this equation reduces to the Landau-Vlasov
equation, where the collisional integral is neglected but the
mean-field interaction potential is still present and supports
collective modes [7–9]. In the case of fermionic gases the
speed of sound in this collisionless regime is the well-known
zero-sound velocity of fermions around the Fermi-Dirac dis-
tribution [9,10].

In two-dimensional (2D) uniform systems the Mermin-
Wagner-Hohenberg theorem [11,12] precludes Bose-Einstein
condensation at finite temperature, but quasicondensation and
superfluidity are possible below the Berezinskii-Kosterlitz-
Thouless critical temperature Tc [13,14]. Very recently, the
speed of sound in a uniform quasi-2D Bose gas made of 87Rb
atoms was measured [15,16]. These experimental results are
in agreement with theoretical predictions [17] based on the
two-fluid hydrodynamics of Landau-Khalatnikov only well
below Tc.

The authors of [15,16] explain the discrepancy above Tc

by suggesting that the experimental conditions are such that
in this case collisions are not efficient enough to ensure the
local thermodynamic equilibrium required by hydrodynamics
and therefore the dynamics is collisionless.

In this paper we suppose that also below Tc, where the
superfluid component is present, the dynamics of the normal
component is collisionless and therefore the dynamics of the
whole fluid is not collisional. To substantiate this hypothesis
we investigate the collisionless regime by using an effective
2D Landau-Vlasov equation. We study the speed of sound
around a spatially uniform Bose-Einstein distribution. We
derive algebraic formulas for the real and imaginary parts
of the speed of sound as a function of both temperature and

interaction strength. Quite remarkably, our theoretical results
for the real part of the sound velocity are in good agreement
with the experimental data of Refs. [15,16]. Moreover, we
find that the imaginary part of the sound velocity is negligible
below the critical temperature Tc, while it becomes sizable
close to and above Tc, again in agreement with the recent
experiment [16].

II. KINETIC APPROACH FOR THE 2D BOSE GAS

Let us begin by considering a dilute and ultracold three-
dimensional (3D) gas made of N identical bosonic atoms
of mass m, whose mutual interaction is modeled through
a zero-range pseudopotential where g = 4πh̄2as/m is the
3D interaction strength and as is the 3D s-wave scattering
length. We assume that the bosonic system is under external
confinement given by the trapping potential

Uext(r, z) = U (r) + 1
2mω2

zz
2, (1)

which is the sum of a generic potential U (r) in the x-y
plane, with r = (x, y) being the 2D position, and a harmonic
confinement along the z axis.

An effective 2D configuration can be realized when the
harmonic confinement along the z axis is tight enough. In
order to effectively constrain atoms on a plane, the energy
h̄ωz of longitudinal confinement must be much larger than
the planar average kinetic energy (p2

x + p2
y )/(2m), with p =

(px, py ) being the planar linear momentum, a condition actual
experiments can provide quite easily. The 3D system is then
forced to occupy the longitudinal ground state along the
confining axis, and one finds [18] that the planar distribu-
tion f (r, p) of atoms in the four-dimensional single-particle
phase space [(r, p) = (x, y, px, py )] satisfies the effective 2D
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Landau-Vlasov equation [9,10]:[
∂

∂t
+ p

m
· ∇r − ∇r(U + Umf) · ∇p

]
f (r, p, t ) = 0, (2)

where

Umf(r, t ) = g2D

∫
d2p

(2πh̄)2
f (r, p, t ) (3)

is the self-consistent Hartree-Fock dynamical mean-field term
[6,19,20] and the memory of the original 3D character of the
system is encoded in the renormalized 2D coupling constant

g2D =
√

8πh̄2

m

(
as

az

)
, (4)

with az = √
h̄/(mωz) being the characteristic length of the

axial harmonic confinement.

III. COLLECTIVE DYNAMICS IN COLLISIONLESS 2D
BOSE GAS

The calculation of transport quantities requires the solution
of Eq. (2). In the following we prove that a collisionless
dynamical description based on Eq. (2) recovers experimental
data obtained in a homogeneous configuration of area L2,
realized by implementing a box potential on the x-y plane
[15,16]. Thus, we set U (r) = 0 and also

f (r, p, t ) = f0(p) + δf (r, p, t ), (5)

where f0(p) is a stationary and isotropic distribution and
δf (r, p, t ) is a very small perturbation around it. It follows
that the linearized Landau-Vlasov equation for δf (r, p, t )
reads [

∂

∂t
+ p

m
· ∇r

]
δf (r, p, t )

= g2D

∫
d2p′

(2πh̄)2
∇rδf (r, p′, t ) · ∇pf0(p). (6)

Performing the Fourier transform of this equation accord-
ing to δ̂f (k, p, ω) = ∫

dt
∫

d2rδf (r, p, t ) exp[i(k · r − ωt )],
with k being a 2D wave vector and ω being the angular
frequency, one finds an implicit formula for the dispersion
relation [9], given by

1 − g2D

∫
d2p

(2πh̄)2

k · ∇pf0(p)

p · k/m − ω
= 0. (7)

Note that this equation is nothing other than the condition to
find the pole of the dynamic response function of the system
within the random-phase approximation [10]. Equation (6) is
also called linearized Boltzmann transport equation without
the collisional term. In Ref. [21] it was solved numerically by
preparing the system at equilibrium in the presence of a weak
stationary potential generating a sinusoidal density modula-
tion of a given wavelength. Then the potential was suddenly
removed to generate a damped time-dependent oscillation and
hence the speed of sound.

On the contrary, here we directly solve Eq. (7) by a fully
analytical approach.

In Eq. (7) there is a singularity on the integration path for
ω = p · k/m. In order to attach a meaning to the integral, we

must interpret ω as a complex quantity, i.e., ω = ωR + iωI ,
where ωI > 0 in order to avoid an exponential growth of the
perturbation [9].

Equation (7) can be further simplified by assuming, with-
out loss of generality, that k ‖ êx , i.e., k = (k, 0). In this way
one finds

1 − g2D

∫
dpx

(2πh̄)

∂f̃0(px )

∂px

1
px

m
− c

= 0, (8)

where c = ω/k and f̃0(px ) = ∫
f0(px, py )dpy/(2πh̄).

Clearly, from Eq. (8) one can extract the speed c of sound
in our collisionless regime. This velocity is, in general,
a complex number such that c = ω/k = cR + icI , with
cR = ωR/k and cI = ωI/k.

In the limit of a weakly damped wave, i.e., cI � cR , an
elegant formulation is provided for the real and imaginary
parts of c [18]. In particular, one finds two coupled equations
for the real part cR and the imaginary part cI of the speed of
sound. The equation derived from the real part of Eq. (8) reads

1 − g2DP
∫

dpx

(2πh̄)

[
∂f̃0(px )/∂px

px/m − cR

]
− πcI

∂φ(c)

∂c

∣∣∣∣
cR

= 0,

(9)

where we denote φ(c) = mg2D

(2πh̄)
∂f̃0

∂px
|px=mc and P means the

principal value.
The equation derived from the imaginary part of Eq. (8) is

instead given by

cI =
π

∂f̃0(px )
∂px

∣∣
px=mcR

∂
∂cR

{
P

∫
dpx

(2πh̄)

[
∂f̃0(px )/∂px

px/m−cR

]} . (10)

IV. SOUND VELOCITY FOR THE 2D BOSE GAS

In order to describe the behavior of the quasi-2D uniform
Bose gas below or just above the critical temperature, we
choose the Bose-Einstein distribution function

f0(p) = 1

L2

1

e
β

(
p2

2m
+g2Dn−μ

)
− 1

(11)

as the thermal equilibrium distribution of 2D weakly inter-
acting bosonic atoms with uniform 2D number density n =
N/L2, where β ≡ (kBT )−1, kB is the Boltzmann constant,
and T is the absolute temperature. Here μ is the 2D chemical
potential of the interacting system. Clearly, the Hartree inter-
action term g2Dn can be formally removed by introducing a
shifted chemical potential μ̃ = μ − g2Dn.

The equation of state, relating the shifted chemical poten-
tial μ̃ to the number density n = N/L2, is simply derived
from the normalization condition

N =
∫

d2rd2p
(2πh̄)2

f0(p), (12)

resulting in

μ̃ = kBT ln (1 − e−TB/T ), (13)

where kBTB = 2πh̄2n/m is the temperature of the Bose de-
generacy and, clearly, μ̃ < 0.
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The analytical computation of the dispersion relation
can be simplified for temperatures T � TB and, at the
same time, c2

R � kBT /m. Within this range of parame-
ters one is allowed to write f0(p)L2 � kBT /[p2/(2m) −

μ̃], from which L2f̃0(px ) = kBT /(h̄
√

(p2
x/m) − 2μ̃). Con-

sequently, the coupled equations (9) and (10) for the real
and imaginary parts of the zero-sound velocity respectively
read

1 + g̃2DkBT

2π

⎡
⎣ 2

mc2
R − 2μ̃

+
√

mc2
R(

mc2
R − 2μ̃

)3/2 ln

⎛
⎝

√
mc2

R − 2μ̃ −
√

mc2
R√

mc2
R − 2μ̃ +

√
mc2

R

⎞
⎠

⎤
⎦ + g̃2DkBT cI

mc2
R + μ̃

√
m

(
mc2

R − 2μ̃
)5/2 = 0, (14)

cI = −
cR

√
m

(
mc2

R−2μ̃

)3/2

6 cR(
mc2

R−2μ̃

)2 + 2
(
mc2

R+μ̃

)
√

m

(
mc2

R−2μ̃

)5/2 ln
(√

mc2
R−2μ̃−

√
mc2

R√
mc2

R−2μ̃+
√

mc2
R

) . (15)

By inserting Eq. (15) in Eq. (14) we get an equation for
cR . This equation can be easily solved numerically, and
taking into account Eq. (13), one finds the real part cR of
the zero-sound velocity as a function of temperature T and
adimensional interaction strength g̃2D .

In Fig. 1 we compare the solution of Eq. (14) with the
experimental data reported in Ref. [16]. The agreement be-
tween our results and the experimental points is excellent in
the low-temperature regime and still good close to the super-
fluid threshold given by the Berezinskii-Kosterlitz-Thouless
critical temperature Tc. The velocity cR does not display any
discontinuity at the critical temperature Tc. This feature marks
a crucial difference with respect to first-sound and second-
sound velocities calculated within the superfluid Landau-
Khalatnikov model, which intrinsically relies upon a colli-
sional dynamics of the normal component [22,23]. Despite the
similar behaviors exhibited far below Tc by the second-sound
velocity c2 [17] and our collisionless velocity cR , the former

0 0.2 0.4 0.6 0.8 1 1.2 1.4
T / T

c

0

0.25

0.5

0.75

1

c R
 / 

c B

FIG. 1. Sound velocity cR in units of cB = √
g2Dn/m as a func-

tion of the scaled temperature T/Tc for g̃2D � 0.16. The solid black
line represents our prediction based on Eqs. (14) and (15), while the
blue dots are the experimental data of Ref. [16]. The red dashed line
is obtained by using Eq. (14) with cI = 0. On the basis of universal
relations [20], for g̃2D the Berezinskii-Kosterlitz-Thouless critical
temperature is Tc = 0.13 TB .

is related to the superfluid density, and consequently, it jumps
to zero at Tc [17].

The dashed line in Fig. 1 is obtained by using Eq. (14) with
cI = 0. Comparing the dashed line with the solid line, which
is instead derived solving the coupled equations (14) and (15),
one clearly sees the increasingly relevant role played by the
imaginary part cI (the so-called Landau damping) above Tc.

In Fig. 2 we report the absolute value of cI as predicted
by Eq. (15), where cR is simply the solution of Eq. (14).
We remark that Eqs. (9) and (10) are derived by assuming
a weakly damped perturbation, i.e., cI � cR . From Fig. 2
it appears clear that our approximation scheme is surely
reliable for low temperatures, where Landau damping plays
a negligible role, but also in the proximity of the transition
temperature Tc. Quite remarkably, the rapid growth of cI /cR

with the temperature T above Tc is in agreement with the large
damping of sound oscillations found in Ref. [16]. A large
value of cI /cR also signals the breaking of our theoretical
scheme, also if the theoretical results reproduce the experi-
mental data.
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FIG. 2. Imaginary part cI of the sound velocity in units of cB =√
g2Dn/m as a function of the scaled temperature T/Tc for g̃2D �

0.16. The solid black line is obtained from Eq. (15), where cR was
derived by solving Eq. (14). Inset: Ratio between the imaginary and
the real parts of c as a function of the temperature.
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V. CONCLUSIONS

We have analyzed the sound propagation in collision-
less bosonic gases assuming a 2D configuration. By solving
the linearized 2D Landau-Vlasov equation in the degenerate
regime, where bosonic statistical effects play a relevant role,
we have derived an integral equation for the speed of sound
as a function of temperature and interaction strength. From
this integral equation we have obtained two coupled algebraic
equations for the real and imaginary parts of the sound veloc-
ity. We have also compared our theoretical results with exper-
imental data of a recent experiment [15,16], where the 87Rb
atoms of the bosonic cloud are expected to be in the col-
lisionless regime. This expectation is fully confirmed: the
agreement between our theory and the experiment is very
encouraging. Our theoretical analysis strongly suggests that
the density perturbation used in the experiment of Ref. [16]
has excited the “bosonic zero sound,” i.e., the sound of a
collisionless bosonic fluid. For a superfluid system, a density

perturbation can be used to excite the second sound only
if the system is weakly interacting and collisional [17]. By
increasing the interaction strength g2D the 2D bosonic system
enters in the collisional regime where the Landau-Vlasov
equation (2) loses its validity. The collisional regime is, in
fact, correctly described by the two-fluid model of Landau-
Khalatnikov, which reduces to the usual hydrodynamics above
the critical temperature Tc.

Note added. Recently, a theoretical preprint on the same
topic appeared [21]. The conclusions of Ref. [21], based
on the stochastic Gross-Pitaevskii equation and dynamic re-
sponse function, are similar to ours.
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