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Influence of the interaction between quasiparticles on parametric resonance
in Bose-Einstein quasicondensates
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We perform a simulation of the experiment [J. C. Jaskula et al., Phys. Rev. Lett. 109, 220401 (2012)] where
the temporal modification of the effective one-dimensional interaction constant was used to create pairs of
atoms with opposite velocities. The simulations clearly demonstrate the huge impact of the interaction between
quasiparticles due to finite temperature on the pair production process, explaining the relatively small atomic
pair production and the absence of number squeezing in the experiment.
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I. INTRODUCTION

The generation of nonclassical states in atomic ensembles
is a rapidly developing direction in trapped ion and cold
neutral atomic physics [1]. Such states can be used to increase
the sensitivity of precision measurements beyond the standard
classical limit [2]. A hundred times decrease of measurement
noise beyond the classical limit was recently reported in cold
thermal atoms [3]. One of the possible states that is particle
entangled, and can be used to increase the sensitivity of preci-
sion measurements, is a so-called twin-Fock state |n, n〉 [4,5].
Such a state can be created in experiments generating atomic
pairs with well-defined momenta in quasi-one-dimensional
(1D) systems. This was done by modulation of the effective
one-dimensional atomic interaction parameter [6], or a mod-
ulation instability present in a one-dimensional lattice [7],
or else by the decay of an excited state [8]. The theoretical
analysis for these situations was performed using the Bogoli-
ubov approximation [9–11]. In this case, the Hamiltonian is
quadratic in field operators. It has the term responsible for
the creation of atomic pairs but neglects higher-order terms
in the field operators, which describe the interaction between
quasiparticles. As the process of pair creation starts, the
atoms, according to the Bogoliubov description, are created
in pairs with well-defined momenta. Therefore, one expects
the violation of Cauchy-Schwartz inequality, which is a clear
signature of entanglement [12]. Such a violation was observed
in two of the above-mentioned experiments [7,8]. However,
it was not seen in the experiment described in Ref. [6]. This
suggests that the interaction between quasiparticles, neglected
in the Bogoliubov approximation, can influence pair produc-
tion. We performed such an analysis for a three-dimensional
homogeneous system in the case of pair creation caused by
temporal modulation of the interaction parameter [13]. There,
it was found that indeed the interaction between quasiparticles
may drastically change the pair creation process. The paramet-
ric process is described by a single parameter δ responsible
for the strength of the amplification, while the interaction
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between quasiparticles is described by a quasiparticle de-
cay constant γ . When δ > γ , the pair production process
is roughly given by exp [2(δ − γ )t], leading always to a
huge number of pairs produced if t is large enough. On the
other hand, if γ > δ, the number of pairs produced tends
to a constant for t → ∞. Additionally, we have found that,
depending on the parameters of the system, the Cauchy-
Schwartz inequality may or may not be violated.

In the present paper we perform a numerical simulation of
the experiment [6] using the classical field method [14]. The
obtained results agree with the experimental measurements
showing a relatively small pair production and the lack of
a Cauchy-Schwartz equality violation. To get a deeper un-
derstanding of the obtained results we perform a numerical
simulation of the homogeneous analog of the experimental
system. There, we additionally perform an analysis based on
the Bogoliubov method. For temperatures much smaller than
in the experiment, the classical field method results agree with
the Bogoliubov method predictions, showing a huge number
of pairs produced. But when the temperature tends to the
experimental value, the production process practically stops
with a relatively small number of atomic pairs produced,
which is in agreement with the experiment. To check if the
condition derived in Ref. [13] applies to the one-dimensional
case, we numerically compute γ as well as the number of
atomic pairs produced as a function of temperature. We find
that the number of pairs produced tends to a constant if γ

is approximately equal to δ, which validates the suggested
condition.

The paper is organized as follows. In Sec. II we describe
the system of interest. There, we introduce the classical field
method as an approximate method of description. In Sec. III,
using the Bogoliubov approximation to the classical field
method, we construct an initial thermal state of the system.
In Sec. IV we simulate the pair creation process for both
homogeneous and inhomogeneous systems. We conclude in
Sec. V.

II. THEORETICAL MODEL

We consider the system described in Ref. [6].
There, we have N = 105 helium atoms of temperature
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T = 200 nK put in a harmonic trapping potential
V (r) = 1

2m[ω2
r (y2 + z2) + ω2

xx
2] with ωr = 1500 × 2π Hz

and ωx = 7 × 2π Hz. The atoms interact via a contact
potential characterized by the parameter g3d = 4πh̄2a

m
, where

a = 7.51 nm is the metastable helium scattering length. In the
experiment the laser intensity oscillates in time, which causes
oscillations of the trapping frequencies. When oscillation
ends, the trapping potential is turned off, the atoms freely
expand, and finally fall on the detector. The measurement of a
time of arrival and a position of the atom detected allows for
a reconstruction of the atomic velocity correlation functions.

Let us now introduce the theoretical model of the above
experimental scenario. Assume first we deal with the system
which is trapped in the y and z directions and is uniform
in x. Such a system was analyzed in Ref. [15]. There, the
author finds that low-energy excitations are given by the
one-dimensional model with the effective interaction constant
given by

g = g3d

∫
dydz n2

3d (y, z)

[
∫

dydz n3d (y, z)]2
, (1)

where n3d (y, z) is the solution of the stationary Gross-
Pitaevskii equation(

− h̄2

2m
� + V⊥ + g3dn3d (y, z) − μ3d

)√
n3d (y, z) = 0,

with V⊥(y, z) = 1
2mω2

r (y2 + z2). The fact that the low-energy
excitations are given by a one-dimensional model seems
intuitive. It seems impossible to excite the system in the
transverse direction (y or z) as long as the energy of excitation
is much smaller than the characteristic excitation energy in the
transverse direction roughly equal to h̄ωr . Thus the excited
modes of the system have the form ϕ0(y, z) exp(ikx), where

ϕ0(y, z) =
√

n3d (y, z)∫
dydz n3d (y, z)

.

As the excitations of the system are now limited to the above
class, the three-dimensional field operator ψ̂ (r) becomes
equal to ϕ0(y, z)ψ̂ (x). where ψ̂ (x) is the one-dimensional
field operator. Then, the contact interaction equal to

g3dψ̂
†(r)ψ̂†(r)ψ̂ (r)ψ̂ (r)

= g3d |ϕ0(y, z)|4ψ̂†(x)ψ̂†(x)ψ̂ (x)ψ̂ (x)

can be integrated over the y and z coordinates. It results
in a one-dimensional interaction with the constant given by
Eq. (1). The above can be generalized to the nonuniform
system with g(x) equal to

g(x) = g3d

∫
dydz n2

3d (r)

[
∫

dydz n3d (r)]2
, (2)

where n3d (r) is given by the solution of(
− h̄2

2m
� + V (r) + g3dn3d (r) − μ3d

)√
n3d (r) = 0, (3)

with the normalization condition
∫

dr n3d (r) = N . The above
is valid as long as we consider excitations with an energy
much smaller than the characteristic excitation energy in the
transverse direction [16].

FIG. 1. Effective 1D-interaction parameter.

The function g(x) obtained using Eq. (2) is plotted in
Fig. 1. One can clearly see the position dependence of the
interaction parameter. As we shall see later, oscillation of the
trapping frequencies causes the effective interaction constant
to be time dependent, g(x, t ). We further approximate the
description of the system by relying on the classical field
method [14]. This approximation is allowable if the system
is weakly interacting, i.e., if γ � 1, where

γ = mg

h̄2n
, (4)

and n being the one-dimensional particle density. For our
system we can approximate n(x) � ∫

dydz n3d (r), which
gives n(0) � 1.8 × 108 atoms/m and γ � mg(0)

h̄2n(0)
� 2.5 ×

10−5 which justifies the use of the classical field approx-
imation. In this method we substitute creation and annihi-
lation operators of highly populated modes with c-numbers
âν → αν . To perform this approximation we approximate the
continuous space by the finite lattice. The Hamiltonian of the
system takes the form

Ĥ =
∑

x

�x �̂†(x)

(
− h̄2

2m
�d + V (x)

)
�̂(x)

+
∑

x

�x
g(x, t )

2
�̂†(x)�̂†(x)�̂(x)�̂(x), (5)

where the sum is over discrete points x = j

M
L, j = 1, . . . , M ,

with L being the length of the system and �x = L
M

. Ad-
ditionally, �d is a finite matrix approximation of the one-
dimensional Laplacian that we shall specify later on. We
consider the harmonic external potential V (x) = 1

2mω2x2

and, as mentioned above, the time- and position-dependent
interaction parameter g(x, t ). The commutation relation takes
the form [�(x),�†(y)] = δx,y

�x
and leads to the Heisenberg

equation of motion,

ih̄∂t�̂(x, t ) =
(

− h̄2

2m
�d + V (x)

)
�̂(x, t )

+ g(x, t )�̂†(x, t )�̂(x, t )�̂(x, t ). (6)

In the classical field approximation the field operator �̂(x, t )
turns into the classical field ψ (x, t ). Then (6) becomes the
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well-known Gross-Pitaevskii (GP) equation

ih̄∂tψ (x, t ) =
(

− h̄2

2m
�d + V (x)

)
ψ (x, t )

+ g(x, t )|ψ (x, t )|2ψ (x, t ). (7)

We now deal with realizations of the classical field ψ (x, t ).
For each time t the field ψ (x, t ) now becomes a point in
the space of one-dimensional functions. The quantum state
is now represented by a probability distribution P [ψ (x, t )]
defined on this functional space. The quantum averages are
now substituted by averages over this probability distribution.
Initially, the system is in thermal equilibrium. Since it is iso-
lated, one should use the microcanonical ensemble to describe
the state of the system, thus P [ψ (x, 0)] is the microcanonical
ensemble probability distribution. Having P [ψ (x, 0)], we can
calculate the mean value of any observables in t = 0. For
t > 0 we proceed in the following way. We draw a single
random ψ (x, 0) from P [ψ (x, 0)] which gives us a single
realization of ψ (x, 0). Then, each realization is evolved using
(7) to the final time. The observables are then calculated
as the averages over the realizations. One of the parameters
of control in the microcanonical ensemble is the energy of
the system. However, in the experiment the temperature is
the measured parameter. Thus we need to generate single
realizations ψ (x, 0) for a given temperature. This seems to be
a complicated task and we have chosen another, approximate
way of obtaining the initial state with the desired temperature
which we describe in the following section.

III. TEMPERATURE DIAGNOSTICS AND INITIAL-STATE
PREPARATION

For low enough temperatures the weakly interacting one-
dimensional gas enters the quasicondensate regime, where it
is described as a system of weakly interacting Bogoliubov
quasiparticles [17]. There, the classical field (in the quantum
description, the field operator) is represented as

ψ (x, 0) =
√

n(x) + δn(x)eiφ(x), (8)

where

δn(x) =
√

n(x)
∑

ν

f −
ν (x)αν + c.c., (9)

φ(x) = 1√
4n(x)

∑
ν

−if +
ν (x)αν + c.c. (10)

In the above, αν , h̄ων , and f ±
ν are mode amplitudes, energies,

and mode functions, respectively, obtained via the solution of
Bogoliubov–de Gennes equations

[H0(x) − h̄ων]uν (x) − g(x)n(x)vν (x) = 0, (11)

[H0(x) + h̄ων]vν (x) − g(x)n(x)uν (x) = 0, (12)

where f ±
ν = uν ± vν are normalized by the condition∑

x

�x
[
f +

ν (x)
]∗

f −
ν ′ (x) = δν,ν ′ . (13)

Here, n(x) is given by the solution of the stationary GP
equation

H0(x)
√

n(x) = 0, (14)

with the normalization condition
∑

x �x n(x) = N , where

H0 = − h̄2

2m
�d + V (x) + 2g(x)n(x) − μ.

Neglecting the weak interaction between quasiparticles, the
Hamiltonian of the system is H � ∑

ν h̄ων |αν |2. The above
description motivates us to approximate the probability
distribution P [ψ (x, 0)] by the one corresponding to the
canonical ensemble of noninteracting quasiparticles, that is,
P [ψ (x, 0)] = ∏

ν P (αν ), where

P (αν ) = h̄ων

πkBTin
exp

(
− h̄ων

kBTin
|αν |2

)
, (15)

where Tin denotes the initial temperature.
We now specify the finite matrix approximation to the

one-dimensional Laplacian �d by taking the one given by the
discrete Fourier transform

−�d (x, xk ) = 1

M

∑
k

k2eik(x−xk )

=
(

2π

L

)2
(

(−1)x

2 sin2
(

π
M

x
) (1 − δx ) + δxC

)
,

where k = 2π m
M

, x = x−xk

�x
, −M

2 + 1 � m � M
2 , and C =

1
M

∑M/2
m=−M/2+1 m2 = 1

12 (M2 + 2). By doing so we implic-
itly assume a periodic boundary condition. Having speci-
fied �d and knowing g(x) we solve the one-dimensional
GP equation (14), obtaining a Thomas-Fermi radius equal
to R = 0.46 mm, a chemical potential μ

h̄
= 2.05 × 2π kHz,

and the maximal density of the system equal to n � 1.8 ×
108 atoms/m. Before a further analysis of the nonuniform
system, let us first analyze its homogeneous analog.

A. Homogeneous system

The parameters of the homogeneous system were chosen
in the following way. We take the interaction parameter g =
g(0) and the mean density equal to the maximal density of the
trapped system so that the chemical potentials of both uniform
and nonuniform systems are the same. The box size is chosen
to be equal to L = 2R = 0.92 mm with M = 1024 points.
In the homogeneous case the solution of the Bogoliubov–de
Gennes equations takes the analytical form [17]

f ±
k (x) = 1√

L

(
h̄ωk

Ek

)±1/2

eikx = f ±
k eikx, (16)

where

h̄ωk =
√

Ek (Ek + 2ng) (17)

and Ek = h̄2k2

2m
. We additionally calculate the density fluctua-

tions equal to

〈δn2〉
n2

= 2

n

∑
k

(
f −

k

)2〈|αk|2〉

= kBT

nπ

∫
dk

1

Ek + 2ng
= kBT

ng

√
γ ,
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where γ is given by Eq. (4). To obtain the above, we used
Eqs. (9), (16), (17), and (15). For the parameters given above
and Tin = 200 nK we obtain

√
〈δn2〉/n � 0.1. The fact that

it is significantly smaller than unity justifies the use of the
Bogoliubov method.

The single realization of the initial state ψ (x, 0) is con-
structed using Eqs. (9), (10), and (8) upon drawing αν ran-
domly from the distribution (15) with chosen Tin. Still, this
is not the end of the construction. However, as we have
written above, the distribution (15) neglects the interaction
between quasiparticles. To get the initial state we proceed
in the following way. We evolve the just constructed state
using GP equation (7) with g(x, t ) = g(x) and V (x) = 0
for a sufficiently long time. After some time, due to the
interaction between quasiparticles present in the GP equation,
the system thermalizes and reaches its equilibrium state. In
fact, we do not know the temperature of this state. We find its
approximate value T using a procedure described below based
on the Bogoliubov method. If T � Tin, then the influence of
interaction between the quasiparticles on the temperature is
negligible and it is justified to state that the temperature of the
prepared state is equal to Tin.

The approximate procedure to extract the temperature uses
the decomposition

δn(x, t ) =
√

n(x)
∑

k

f −
k (j )(x)αk (t ) + c.c., (18)

φ(x, t ) = 1√
4n(x)

∑
k

−if +
k (x)αk (t ) + c.c., (19)

where |αk (t )| are time dependent due to the interaction be-
tween the quasiparticles omitted in the Bogoliubov approxi-
mation. Using the orthogonality condition (13) together with
the above equations, we obtain

αk (t ) =
∑

x

�x
1√
L

e−ikx

(
f +

k

δn(x, t )

2
√

n
+ if −

k

√
nφ(x, t )

)
,

(20)
where we used the fact that f ±

k are real. In every single real-
ization having ψ (x, t ), we find δn(x, t ) and φ(x, t ) and upon
inserting it into (20) we obtain all αk (t ). This enables us to find
the average over many realizations 〈|αk|2〉 = 1

Nr

∑Nr

r=1 |αk,r |2,
where Nr denotes the number of realizations. We assume the
distribution of αk to be given by the formula (15) with Tin

changed into the k-dependent final temperature Tk . We derive
the equipartition formula 〈|αk|2〉 = ∫

d2αk|αk|2P (αk ) = kBTk

h̄ωk

which connects numerically calculated averages 〈|αk|2〉 with
the final temperature Tk .In Fig. 2 we plot the ratio Tk/Tin as
the function of n where k = 2πn

L
for Tin = 50 and 200 nK. We

clearly see that Tk fluctuates around the value being very close
to the initial temperature Tin. That shows that the temperature
of the thermalized state is equal to Tin.

B. Inhomogeneous system

As in the homogeneous case, here we would like to use the
Bogoliubov method to prepare the initial thermal state with
the given temperature Tin. However, the Bogoliubov method
described above is a correct approximation in the bulk region
of the system where δn/n � 1. At the edges of the system

FIG. 2. The ratio Tk/Tin as the function of n where k = 2πn/L

for Tin = 50 and 200 nK.

where n is negligible and a thermal cloud dominates, the
condition δn/n � 1 is no longer satisfied and the Bogoliubov
method cannot be used. Still, we need to construct a classical
field ψ (x, 0) in that region. Below, we describe the approxi-
mate method to do that.

We divide our system into three parts: the bulk region |x| <

x0 (x0 < R), where the condition δn/n � 1 is satisfied and
where we use the Bogoliubov description. The region outside
the quasicondensate |x| > R, where n is practically equal to
zero. As we checked numerically in that region, vν (x) � 0 and
the Bogoliubov equations (12) take an approximate form(

− h̄2

2m
�d + V (x)

)
uν (x) = (μ + εν )uν (x).

The above equation is not a surprise since in that region we in
fact neglect the nonlinear term g|ψ |2ψ in the GP equation (7),
ending up with a noninteracting gas. Then, the classical field
simply equals to

ψ∓(x, 0) = eiφ∓
∑

ν

uν (x)αν, (21)

where ψ∓ denotes the field in the x < −R and x > R regions.
Above we have also introduced phases φ∓ for a reason which
shall become clear later. The last region is x0 < |x| < R,
where n(x) �= 0 but the condition δn/n � 1 is not satisfied.
In that region we take

ψ∓(x) = A∓(x)eiφ∓ [
√

n(x) + δψ (x)], (22)

where

δψ =
∑

ν

(
uναν − vνα

∗
ν

)
. (23)

We introduce the A∓(x)eiφ∓ factor where we take A∓ as a real
function to match the continuity conditions at |x| = x0 which
take the form

A∓(∓x0)eiφ∓ [
√

n(∓x0) + δψ (∓x0)]

=
√

n(∓x0) + δn(∓x0)eiφ(∓x0 ). (24)
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Using Eq. (23) and the fact that in the region |x| > R, vν (x) �
0, we rewrite Eq. (21) as

ψ∓(x, 0) = eiφ∓δψ (x, 0), (25)

where φ∓ is given by the numerical solution of Eq. (24).
Then, the continuity condition at x = ∓R, where n(±R) = 0,
implies A∓(∓R) = 1. To fully define the classical field we
need to specify the function A∓(x) between |x| = x0 and
|x| = R. We make the simplest choice of linear function,

A∓(x) = A∓(∓x0)
R − |x|
R − x0

+ |x| − x0

R − x0
,

where A∓(∓x0) is given by the numerical solution of Eq. (24).
The single realization of the classical field ψ consists of
drawing αν from the distribution (15) and inserting it into
Eqs. (9), (10), and (8) to get the bulk region part and in
Eqs. (22), (23), and (25) to get the tails of ψ .

In the numerical code for the inhomogeneous case we
took M = 1024 points with the box size L = 1.9 mm. Hav-
ing g(x) and the �d operator we numerically diagonal-
ize the Bogoliubov–de Gennes equations (12). In the one-
dimensional case, f ±

ν can be chosen to be real. Then, using
the above scheme, we construct the initial state for two
temperatures Tin = 50 and 200 nK. We take x0 = 0.95R to
be as close the border of the n(x) as possible, at the same
time satisfying δn/n � 1. As in the homogeneous case, we
evolve such a constructed state according to (7) by taking
g(x, t ) = g(x) and allowing the system to thermalize to a
final temperature. Due to the fact that the Bogoliubov method
is valid only in the bulk region, the procedure of extracting
temperature from a given state is more complicated than in
the homogeneous case. The bulk region seems to be the most
convenient one to be used in extracting the temperature. We
define

Aν = 1

2

∑
x

�x f +
ν (x)

δn(x, t )√
n(x)

. (26)

From (18) we obtain that

Aν =
∑
ν ′

cνν ′ Re(αν ′ ),

where

cν,ν ′ =
∑

x

�x f +
ν (x)f −

ν ′ (x). (27)

Averaging the square of the above over realizations we obtain〈
A2

ν

〉 =
∑
ν ′

c2
νν ′ 〈Re2(α′

ν )〉 =
∑
ν ′

c2
νν ′

kBT

2h̄ων ′
,

where we used

〈Re(αν )Re(αν ′ )〉 = δνν ′
kBT

2h̄ων

,

implied by the probability distribution (15). The above equa-
tions let us calculate two quantities 〈A2

ν〉 and

Bν =
∑
ν ′

c2
νν ′

kB

2h̄ων ′
.

In Fig. 3 we plot Bν . For modes between 600 and 800 the
values of Bν oscillate between zero and unity, and for modes

FIG. 3. The function Bν . In the inset we plot the magnification in
the smaller range to show the rapid oscillation.

above 800 the function Bν is almost zero. The observed very
small values of Bν are caused by the fact that for certain
ν, the function f +

ν vanishes in the bulk region of the qua-
sicondensate and is located in the thermal cloud. In Fig. 4
we plot the values of Tν/Tin, where Tν = 〈A2

ν〉/Bν for those
ν for which Bν takes nonzero values. Additionally, we plot
Tν/Tin obtained in the same way but for an initial state for
which we set the value of ψ (x, 0) = 0 for |x| � x0. Two
plots correspond to Tin = 50 and 200 nK. We observe that
Tν/Tin is close unity for both temperatures, when we took ψ

being nonzero in the whole system, while Tν/Tin is about 0.6

FIG. 4. Fraction Tν/Tin for Tin = 50 nK (upper) and Tin =
200 nK (lower). The lower curve corresponds to the case when
the initial field was zero outside the region |x| > x0, whereas the
upper one is given for the initial field being nonzero everywhere.
We observe that the upper curve oscillates around unity whereas the
lower one is around 0.6.
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for ψ being zero at the borders of the system. We draw the
following conclusions from the results presented in the figure.
First, the presented results show the necessity of a correct
introduction of the classical field outside the bulk region. For
small temperatures a fraction of the norm of ψ located in that
region is very small and it is tempting to neglect it. Still, in this
small fraction a lot of the energy of the system is stored and
that is why it cannot be neglected. Second, the fact Tν � Tin

implies that the temperature of the thermalized state is Tin

with a relatively small error. The third conclusion is connected
with the choice of the field ψ (x, 0) outside the bulk region. It
is rather obvious that the thermalized field differs from our
choice. However, the initial field serves only as a state that
needs to be thermalized and any way of constructing the tails
of the field is correct as long as Tν � Tin. The fact that this
condition is satisfied in the discussed examples justifies our
choice of the field.

As it can be seen from Eq. (26), we diagnosed the tempera-
ture using only density fluctuations but not phase fluctuations.
The reason is that the contribution of each of the modes to
the density fluctuation does not depend crucially on the mode
while in the phase fluctuations only low modes contribute.
This makes it almost impossible to extract a high mode
contribution, making it useless for temperature diagnostics.

IV. ATOMIC PAIR CREATION PROCESS

After discussing the way of preparing the initial state we
move to the atomic pair creation process. In the experiment [6]
the time variation of the effective one-dimensional interaction
parameter is obtained via a change of the trap frequencies,
which is due to the temporal change of the laser intensity. In
the experiment the trap frequency oscillation is given by

ωx,r (t ) = ωx,r (1 + h cos ωmt ), (28)

where h = 0.05 and ωm = 2π × 2170 Hz. In Ref. [18] the
authors analyze the dynamics of the three-dimensional (3D)
cold gas. They find in a certain approximation that the density
profile n3d (r, t ) keeps its initial shape with the change of the
relative width λx,r (t ) i.e.,

n3d (r, t ) � 1

λx (t )λ2
r (t )

n3d

(
x

λx (t )
,

y

λr (t )
,

z

λr (t )

)
,

where n3d (r) is the initial density profile given by the solution
of Eq. (3). According to Ref. [18], the change of the width
relative to the width λx,r (t ) is given by the equations

λ̈r = ω2
r (0)

λxλ3
r

− ω2
r (t )λr, (29)

λ̈x = ω2
x (0)

λ2
xλ

2
r

− ω2
x (t )λx. (30)

As h � 1, we approximate ω2
x,r (t ) � ω2

x,r (0)(1 +
2h cos ωmt ). We substitute λx,r = 1 + δλx,r and linearize
the above equations with respect to λx,r . Then, the solution is

δλr � hωr

(2ωr )2 − ω2
m

[ωm sin(2ωrt ) − 2ωr sin(ωmt )]. (31)

The amplitude of δλx is by a factor ω2
x/ω

2
r � 1 smaller than

the amplitude δλr and therefore can be neglected. The relative

FIG. 5. Momentum density ρ(vx ) = 1
Nr

∑Nr

r=1 |ψr (vx, tf )|2 aver-
aged over Nr = 5000 realizations.

change of the radial width leads to the temporal change of
g(x) given by the expression

g(x, t ) � g(x)

λ2
r (t )

� g(x)[1 − 2δλr (t )]. (32)

We see that g(x, t ) oscillates with two different frequencies
ωm and 2ωr , which are close to each other.

A. Inhomogeneous system

Now we proceed with numerical simulations towards
the true experimental situation. We take the initial state
as the final state obtained in the previous section and
evolve it for tf = 25 ms using the GP equation (7) with
g(x, t ) given by Eqs. (31) and (32).We repeat the proce-
dure many times to obtain the average over realizations. In
Fig. 5 we plot the momentum density of the classical field
ρ(vx ) = 1

Nr

∑Nr

r=1 |ψr (vx, tf )|2 averaged over Nr = 5000 re-
alizations for a few initial temperatures. The field is nor-
malized

∑
vx

�v|ψ (vx, tf )|2 = N with �v = 2πh̄
mL

. We notice
a huge central peak which is given by the quasicondensate
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distribution whose width grows with temperature, as ex-
pected. In the tails of the distribution we notice pairs of peaks.
For low temperatures (first panel) we notice three pairs of
peaks with velocities |vx | � 0.25, 0.8, and 1 cm/s. Using
the homogeneous case calculation presented in the following
section we find that the peaks with velocities 0.8 and 1.0 cm/s
correspond to frequencies ωm and 2ωr , respectively. The
third peak with a velocity 0.25 cm/s corresponds roughly to
a frequency 2ωr − ωm, which is a clear sign of frequency
mixing taking place in the system. The highs of all the
peaks produced by the temporal modulation of the interaction
parameter decrease with increasing temperature so that at
higher temperatures (second panel) only the ωm peaks are
visible.

In the experiment the system is suddenly released from
the trap at time tf . We simulate this part of the experi-
ment to check if expansion changes the momentum den-
sity. To model the ballistic expansion we solve Eq. (29),
obtaining in that case λr (t ) = √

1 + ω2
r t

2. It gives us an
effective change of the one-dimensional interaction parameter
g(x, t ) = g(x)/(1 + ω2

r t
2). With such an interaction parame-

ter and taking V (x) = 0 to model the expansion, we further
evolved the GP equation (7) for time t0 � 30/ωr . After that
time g(t ) is so small that it can be practically neglected.
Then, the evolution is linear with an unchanged momentum
distribution. We calculated the final momentum density and
compared it with the one before the release of the trap (at the
end of modulation period). We have not found any noticeable
differences.

Let us now compare the momentum density for T =
200 nK (which is the temperature in the experiment [6])
plotted in Fig. 5 with the one measured in the experiment that
can be seen in Fig. 1(e) of Ref. [6]. We notice that the position
of the peaks in the experiment resembles the one coming from
numerical simulations. The same applies to the amplitude of
the peak with respect to the background given by the tails of
the central peak. Thus we notice a good agreement between
the theoretical calculation and the experimental results.

In Ref. [6] the authors also compared the intensity differ-
ences in the two peaks. One of the possibilities to do this is to
calculate the so-called number squeezing parameter defined
as

s(t ) = 〈[N̂+(t ) − N̂−(t )]2〉 − 〈[N̂+(t ) − N̂−(t )]〉2

〈[N̂+(t ) + N̂−(t )]〉 , (33)

where

N̂±(t ) =
∑

|k∓k0|<�k0

�k �̂†(k, t )�̂(k, t ) (34)

is the operator describing the number of particles in the peak
whose maximum is located at ±k0. The condition s < 1,
together with 〈N̂+〉 = 〈N̂−〉, implies the particle entanglement
of the quantum state [12]. In the classical field method the
above takes the form

N±(tf ) =
∑

|v∓v0|<�v0

�v |ψ (vx, tf )|2

and

s(t ) = 〈[N+(t ) − N−(t )]2〉 − 〈[N+(t ) − N−(t )]〉2

〈[N+(t ) + N−(t )]〉 , (35)

where �v = 2πh̄
mL

and ψ (vx, tf ) is the classical field in a single
realization at final time tf . Using the above formulas we
calculated numerically s(tf ) for an experimental temperature
T = 200 nK and for a few values of �v0. We found the
minimal value of s(tf ) being close to 9. This is in agreement
with experimental measurements as the authors of Ref. [6]
report the lack of sub-Poissonian fluctuations [19].

Finally, we comment on the number squeezing calculation
in the classical field method. Here, we face the problem of
operator ordering. We note that in the formula for the number
squeezing parameter the numerator is quadratic in the num-
ber operator. Thus the difference coming from the different
ordering of the operators in the numerator is roughly equal
to the number operator which is present in the denominator
of the number squeezing formula. This shows that different
choices of the operator ordering result in the difference in
the number squeezing parameter of the order of unity. Thus
the uncertainty of the s parameter calculation given by the
classical field method can be estimated to be equal to one.
So in fact the result in the inhomogeneous case is s � 9 ± 1,
which still gives a lack of sub-Poissonian fluctuations in the
system.

We briefly summarize that the classical field simulation
results are in agreement with the experimental measurements.
However, to understand the theoretical results, we move to the
homogeneous case analysis.

B. Homogeneous case

To simplify the analysis we take

g(t ) = g(0)

(
1 + 2

hωr

(2ωr )2 − ω2
m

2ωr sin(ωmt )

)
= g(1 + ε sin ωmt ), (36)

which is equal to g(x = 0, t ) given by (32) with sin(2ωrt )
neglected. As before, we chose the density to be given by the
maximal density of the homogeneous case.

1. Bogoliubov method

First, we perform a Bogoliubov analysis of the pair pro-
duction process similar to that in Ref. [13]. In such a case we
do not use the classical field approximation but stay with a
quantum field theory analysis. In the Bogoliubov method we
use the density and phase operator representation of the field
operator [17]

�̂ = ei(φ+φ̂)
√

n + δn̂,

together with the mode decomposition

δn̂(x, t ) = √
n

∑
k

f −
k (x)âk (t ) + H.c.,

δφ̂(x, t ) = 1

2
√

n

∑
k

−if +
k (x)âk (t ) + H.c.
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The equation of motion for the density δn̂, phase φ, and
phase operator φ̂ reads [17]

−h̄
∂φ

∂t
= g(t )n,

h̄(∂δn̂/
√

n)/∂t = − h̄2

2m

∂2

∂x2
(2φ̂

√
n),

−h̄
∂ (2

√
nφ̂)

∂t
=

(
− h̄2

2m

∂2

∂x2
+ 2g(t )n

)
δn̂√
n
.

Inserting the mode decomposition into the above, we find

d

dt
âk = −iωk

(
Ek + [g(t ) + g]n

Ek + 2gn
âk + [g(t ) − g]n

Ek + 2gn
â
†
−k

)
.

Here, the functions f ±
k are given by Eq. (16). We now take

g(t ) = g(1 + ε sin ωmt ) given by Eq. (36) where ε � 1 and
approximate Ek+[g(t )+g]n

Ek+2gn
� 1. We additionally assume that

|ωm − 2ωk| � ωm which enables us to use the rotating-wave
approximation so that the above equation takes the form

i
d

dt
âk = ωk

(
âk + i

εgn

2(Ek + 2gn)
e−iωmt â

†
−k

)
,

with the solution

âk (t ) =
(

cosh �kt + i
�k

�k

sinh �kt

)
e−iωmt/2âk (0)

+ δk

�k

sinh �kte
−iωmt/2â

†
−k (0), (37)

where

δk = ωk

εgn

2(Ek + 2gn)
,

�k = ωm/2 − ωk, �k =
√

δ2
k − �2

k.

We find the resonance at k0 satisfying ωm = 2ωk0 with the
resonance width approximately equal to δk0 .

The above describes the quasiparticle properties. We now
turn our attention to the particle properties. In Appendix A
we establish an approximate connection between the quasi-
particle and particle properties of the system. We find that the
particle momentum density is approximately equal to

〈�̂†(k, t )�̂(k, t )〉 = Nρ(k) + ρ(k − k0)
〈
b̂
†
k0

(t )b̂k0 (t )
〉

+ ρ(k + k0)
〈
b̂
†
−k0

(t )b̂−k0 (t )
〉
, (38)

where

b̂k (t ) = ukâk (t ) − vkâ
†
−k (t ) (39)

and ∑
k

�k ρ(k) = 1,

with �k = 2π
L

. By inspecting Eq. (38) we find that the particle
momentum distribution has three peaks. The central one,
equal to Nρ(k), represents the quasicondensate momentum
distribution. The two other peaks represent the resonant quasi-
particle modes centered around k = ±k0. We notice that the
shape of the peaks is given by the quasicondensate momen-
tum distribution. Substituting experimental values we find

h̄k0/m � 0.8 cm/s, which is the same as the value of the
center of the peaks in the momentum distribution observed
experimentally.

In the experiment [6] the authors measured the properties
of the number of particles in both peaks. Above we introduced
operator N̂± defined by Eq. (34) describing the number of
particles in the peak located at ±k0. Assuming that �k0

present in the definition of N̂± is such that it covers most of
the peak, we show in Appendix A that

N̂±(t ) � b̂
†
±k0

(t )b̂±k0 (t ). (40)

Applying the Bogoliubov results given by Eq. (37) and using
Eq. (39) we find

〈N̂±(t )〉 � 〈
b̂
†
±k0

(t )b̂±k0 (t )
〉 = u2

k0
nk0 (t ) + v2

k0
[nk0 (t ) + 1],

(41)
where

nk0 (t ) = 〈
â
†
k0

(t )âk0 (t )
〉

= nk0 cosh2 δk0 t + (nk0 + 1) sinh2 δk0 t, (42)

and we took the initial state as a thermal one with

nk = 〈â†
k (0)âk (0)〉 = [exp(h̄ωk/kBT ) − 1]−1. (43)

Taking the experimental parameters we find δk0 � 170 Hz,
v2

k0
= u2

k0
− 1 � 0.55, and nk0 � 3.36 for T = 200 nK and

t = tf = 25 ms. For such values we find 〈N±(tf )〉 � 2 × 104,
which is much larger than the value measured in the exper-
iment. We also calculate the number squeezing parameter
defined by Eq. (33). From Eqs. (39) and (40) we find

(N̂+ − N̂−)(t ) = (
â
†
k0

âk0 − â
†
−k0

â−k0

)
(t ), (44)

where we used the normalization condition u2
k − v2

k = 1.
Moreover, from Eq. (37) we find that

(â†
kâk − â

†
−kâ−k )(t ) = (â†

kâk − â
†
−kâ−k )(0).

As a result, the numerator of the formula for the squeezing
parameter is constant in time and is equal to

〈[N̂+(t ) − N̂−(t )]2〉 − 〈[N̂+(t ) − N̂−(t )]〉2 = 2nk0 (nk0 + 1).

The denominator of the mentioned formula is equal to
〈(N̂+(t ) + N̂−(t ))〉 and according to Eqs. (41) and (42) grows
in time. For the experimental parameters we find that s(tf ) �
7 × 10−4, which is much smaller than unity, shows disagree-
ment with experimental results where s(tf ) is above unity.

As we see, the above calculations of the peak popula-
tion properties show huge discrepancies with experimental
measurements. This shows the necessity of taking into ac-
count the interaction between quasiparticles neglected in the
Bogoliubov method. To take them into account we move to
the classical field method.

2. Classical field analysis

The method is defined as follows. We take the initial
state ψ (x, 0) as the thermal state obtained in the previous
section. Then, we evolve the GP equation (7) for tf = 25 ms
as in the experiment taking V (x) = 0 and g(x, t ) = g(t )
given by Eq. (36). We repeat the procedure many times
to obtain the average over realizations. First, we calculate
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FIG. 6. The quasiparticle relative mode occupation f (k0, t ) =
〈|αk0 (t )|2〉/〈|αk0 (0)|2〉 for the mode in resonance as a function of time
for a few temperatures.

f (k0, t ) = 〈|αk0 (t )|2〉/〈|αk0 (0)|2〉, where the quasiparticle am-
plitude αk0 (t ) is given by Eq. (20). In Fig. 6 we plot this quan-
tity for various temperatures. For comparison we draw the
Bogoliubov prediction in the classical field method derived
in Appendix B,

f (k0, t ) =
〈∣∣αk0 (t )

∣∣2〉〈∣∣αk0 (0)
∣∣2〉 = cosh

(
2δk0 t

)
.

We notice a dramatic drop in the production of quasiparticles
with an increase in the temperature. For low temperatures
the production tends to the Bogoliubov result. We also note
that for smaller temperatures the quasiparticles are constantly
produced in time, whereas for higher temperatures the number
of quasiparticles produced tends to a constant, practically
stopping after some critical time.

We interpret these facts in the spirit of Refs. [13,20].
In Ref. [13] a three-dimensional analog of the system con-
sidered here was discussed. There, the interaction between
quasiparticles was taken into account in the description of
the parametric amplification process. In the approximation
assuming a lack of memory of self-energy functions, the
interaction between quasiparticles enters the process only
through the single parameter γk , which is simply the inverse of
the quasiparticle lifetime. It was found that the pair production
process practically stops in time when γk0 gets larger than
the amplification parameter δk0 defined in the same way as
in the Bogoliubov method described above. An interesting
way of describing systems similar to the one considered
was presented in Ref. [20]. There, the authors consider the
Bogoliubov model as presented above. However, the interac-
tion between quasiparticles is substituted by an interaction of
quasiparticles with a large reservoir. The authors assume that
the response of the reservoir to external perturbation is instan-
taneous in time (which is equivalent to the above-mentioned
assumption of a lack of memory of the self-energy functions
used in Ref. [13]). Then, it is not surprising that the interaction
with the reservoir is effectively described by γk and that the re-
sults of Ref. [20] are the same as the one obtained in Ref. [13].
Still, the description presented in Ref. [20] that is quite general
enables us to use the results obtained in Refs. [13,20] for

FIG. 7. The normalized single-particle correlation function gk (t )
for the resonance mode as a function of time for a few
temperatures.

the one-dimensional system considered here. They could be
used in a straightforward way if the assumption of a lack of
memory is satisfied. This can be verified by looking at the
quasiparticle decay curve which is then exponential. Unfortu-
nately, as we shall see below, this is not the case in our system.
However, in the model considered in Ref. [20] or alternatively
in the models of two modes coupled to a reservoir widely
used in quantum optics [21], the quasiparticle decay curve
can take different shapes depending on the reservoir memory
functions used. Thus we expect that the condition δk0 � γk0 for
stopping the pair production process still applies to our sys-
tem with γk0 describing the width of the quasiparticle decay
curve.

Below, we check if the condition described above applies to
our system. We calculate numerically the normalized single-
particle correlation function

g(1)(k0, t ) =
∣∣〈α∗

k0
(0)αk0 (t )

〉∣∣〈∣∣αk0 (0)
∣∣2〉

for the resonant mode. The results of the numerical calculation
are presented in Fig. 7. Looking at this figure, we clearly
see that the curves are not exponential. Still, the half width
decreases with increasing temperature, as expected. Looking
at Fig. 6, we find that the quasiparticle production process
practically stops for a temperature around 150 nK. For that
temperature we find γk0 � 100 Hz which is close to δk0 =
170 Hz calculated above. It shows that the derived condition
applies.

Additionally, we calculate the squeezing parameter. In
order to do it we rewrite Eqs. (39) and (41) substituting
b̂k → βk . We obtain

βk (t ) = ukαk (t ) − vkα
∗
−k (t ) (45)

and

N±(t ) = ∣∣β±k0 (t )
∣∣2

. (46)

Using Eqs. (45) and (46) where αk (t ) is given by Eq. (20), we
calculate all the observables needed in the calculation of the
squeezing parameter given by Eq. (35). For the temperature
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T = 200 nK we find s(tf ) � 3.3. This is larger than unity but
smaller than the value obtained in the inhomogeneous system
case, which is close to 9. We think that the reason for the
observed difference is the following. Looking at the velocity
distribution shown at Fig. 5, we notice that for a temperature
200 nK the peak height compared to background density
coming from the quasicondensate distribution is smaller than
unity. It means that more than half of the particles contributing
to the number of particles in the peak come from a thermal
distribution. These particles are not correlated in velocities
and rather contribute to the increase of the number squeezing
parameter. On the other hand, the value in the homogeneous
case is obtained assuming a lack of quasicondensate particles
in the side peaks. That is probably why the value of s(tf )
calculated in the homogeneous case is smaller than in the
nonhomogeneous case. However, it is important to notice that
both values give a lack of sub-Poissonian fluctuations in the
system.

V. SUMMARY

In the present paper we performed numerical simulations
of an experiment [6] using the classical field method. The
atomic pairs were created using a temporal modification of
the effective interaction parameter. The results found are
in full agreement with the experimental measurements. To
understand the theoretical results we additionally analyzed the
homogeneous analog of the experimental system. Analytical
calculations within the Bogoliubov method were performed
together with numerical simulations using the classical field
approximation. The results of the Bogoliubov method show
a pair production that is much larger than observed experi-
mentally. The classical field analysis showed agreement with
Bogoliubov results for temperatures significantly smaller than
in the experiment. For higher temperatures it predicted a dra-
matic decrease of the number of pairs produced, in agreement
with the experiment. We additionally calculated the number
squeezing parameter for both homogeneous and inhomoge-
neous systems. We found that number squeezing does not
take place, which is in agreement with experimental measure-
ments. We interpreted these results in the spirit of the findings
presented in Refs. [13,20]. There it was shown that the interac-
tion between quasiparticles omitted in the Bogoliubov method
(and accounted for in the classical field approximation) may
dramatically influence the pair production process as well as
the value of the number squeezing parameter. It was shown
that the pair production process practically stops when the
parameter δk0 describing the enhancement of the resonant
mode, derived within the Bogoliubov method, is roughly
equal to the quasiparticle decay constant γk0 which appears
as a consequence of the interaction between quasiparticles.
We numerically calculated γk0 and the atomic pair production
as a function of temperature together with the δk0 parameter.
We have shown that indeed the pair production process gets
frozen when γk0 � δk0 . Additionally, we have shown that the
experiment is in the regime when the pair production process
gets frozen after a short time. This explains the fact of a
relatively small number of generated atomic pairs observed
in the experiment.
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APPENDIX A: CONNECTION BETWEEN
QUASIPARTICLE AND PARTICLE PROPERTIES

FOR HOMOGENEOUS SYSTEM

In this Appendix we establish an approximate relation
between the quasiparticle and particle properties of the ho-
mogeneous system. We have

�̂ = ei(φ+φ̂)
√

n + δn̂,

together with the mode decomposition

δn̂(x, t ) = √
n

∑
k

f −
k (x)âk (t ) + H.c.,

δφ̂(x, t ) = 1

2
√

n

∑
k

−if +
k (x)âk (t ) + H.c.,

where f ±
k are given by Eq. (16). The modes of the system can

be divided into low- and high-energy ones. Low-energy modes
are highly populated and responsible for phase fluctuations
of the system. The population of high-energy modes in the
equilibrium state is much smaller than the population of low-
lying modes. We divide φ̂ = φ̂l + φ̂h, δn̂ = δnl + δnh, and
approximate

�̂(x) = ei(φ+φ̂)
√

n + δn̂ � ei(φ+φ̂l )
√

n

(
1 − iφ̂h + δn̂h

2n

)
.

Inserting into the above the mode decomposition, one obtains

�̂(x) � 1√
L

ei(φ+φ̂l )

[√
N +

∑
k∈h

(uke
ikx âk − vke

−ikx â
†
k )

]
,

where we used f ±
k = uk ± vk. We further simplify the above

by treating the phase operator of the low-energy modes (which
are all highly populated) classically, φ̂l → φl . Having done
that we introduce the classical field of the low-energy modes
defined as

ψc(x, t ) = 1√
L

ei[φ(t )+φl (x,t )]. (A1)

Using that field and additionally introducing

b̂k (t ) = ukâk (t ) − vkâ
†
−k (t ),

we arrive at

�̂(x, t ) � ψc(x, t )

(√
N +

∑
k∈h

eikx b̂k (t )

)
.

Inserting the above into

�̂(k, t ) = 1√
2π

∑
j

�x e−ikx�̂(x, t ),

we arrive at

�̂(k, t ) �
√

Nψc(k, t ) +
∑

p

ψc(k − p, t )b̂p(t ), (A2)
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where

ψc(k, t ) = 1√
2π

∑
x

�x e−ikxψc(x, t ). (A3)

We assume that the influence of the high-energy sector on
the dynamics of the low-energy sector can be neglected. Thus
the classical phase φ(t ) + φl (x, t ) describes the evolution of
the thermal state. This implies that the averages of the field
ψc(x, t ) are the thermal state averages that do not depend on
time.

We further assume that among all high-energy modes
only two resonance modes with k = ±k0 have a significant
population. Thus we have

〈�̂†(k, t )�̂(k, t )〉 = Nρ(k) + ρ(k − k0)
〈
b̂
†
k0

(t )b̂k0 (t )
〉

+ ρ(k + k0)
〈
b̂
†
−k0

(t )b̂−k0 (t )
〉
, (A4)

where

ρ(k) = 〈|ψc(k, t )|2〉.

In the above formula we used the fact that the average
〈|ψc(k, t )|2〉 does not depend on time. Using Eqs. (A1) and
(A3) we find that ρ is normalized to unity, i.e.,

∑
k

�k ρ(k) = 1,

where �k = 2π
L

. We introduce the operators

N̂± =
∑

|k∓k0|<�k0

�k �̂†(k)�̂(k).

Using Eq. (A2) and the fact that ψ∗
c (k)ψc(k ± k0) � 0, we

find

N̂± =
∑

|k∓k0|<�k0

�k|ψc(k ∓ k0)|2b̂†±k0
b̂±k0 .

From Eqs. (A1) and (A3) we obtain∑
|k∓k0|<�k0

�k|ψc(k ∓ k0)|2 � 1.

To obtain the above we assumed that �k0 is such that it covers
most of the peak. As a result, we find

N̂± � b̂
†
±k0

b̂±k0 .

APPENDIX B: THE BOGOLIUBOV METHOD IN THE
CLASSICAL FIELD APPROXIMATION

In this Appendix we use the results of the Bogoliubov
method described in Sec. IV B 1 to find their analog in the
classical field approximation. In the classical field method
we substitute the annihilation and creation operators by c-
numbers âk → αk . Then the averages over αk (0) are calcu-
lated using the probability distribution given by Eq. (15). For
example,

〈|αk (0)|2〉 = kBT

h̄ωk

.

This corresponds to the quantum average

nk = 〈â†
k (0)âk (0)〉 = [exp(h̄ωk/kBT ) − 1]−1

in the limit nk � 1. Applying the above procedure to Eq. (37)
we find that

〈|αk (t )|2〉 = (
sinh2 δk0 t + cosh2 δk0 t

)〈|αk (0)|2〉.
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