
PHYSICAL REVIEW A 98, 043602 (2018)

Transport on flexible Rydberg aggregates using circular states
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Assemblies of interacting Rydberg atoms show promise for the quantum simulation of transport phenomena,
quantum chemistry, and condensed-matter systems. Such schemes are typically limited by the finite lifetime of
Rydberg states. Circular Rydberg states have the longest lifetimes among Rydberg states but lack the energetic
isolation in the spectrum characteristic of low-angular-momentum states. The latter is required to obtain simple
transport models with few electronic states per atom. Simple models can, however, even be realized with circular
states by exploiting dipole-dipole selection rules or external fields. We show here that this approach can be
particularly fruitful for scenarios where quantum transport is coupled to atomic motion, such as adiabatic
excitation transport or quantum simulations of electron-phonon coupling in light harvesting. Additionally, we
explore practical limitations of flexible Rydberg aggregates with circular states and to which extent interactions
among circular Rydberg atoms can be described using classical models.
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I. INTRODUCTION

We refer to flexible Rydberg aggregates as assemblies of
Rydberg atoms that exhibit excitation transport or collective
exciton states and are mobile in a possibly restricted ge-
ometry [1]. They exhibit links between motion, excitation
transport and coherence [2–5], and spatially inflated Born-
Oppenheimer surfaces for the simulation of characteristic
phenomena from the nuclear dynamics of complex molecules
[6–10].

Most related experiments [11–16] and theory in this di-
rection have so far focused on aggregates based on Rydberg
states with low angular momenta, l = 0, 1, 2, due to the
possibility of direct excitation and the energetic isolation
provided by the energy gap to the nearest other states. For ex-
ample, |E(| n = 49, d 〉) − E(| n = 50, p 〉)| = 18.9 GHz in
87Rb, which can be much larger than energy scales accessible
by Rydberg aggregate dynamics. Here n is the principal
quantum number. However, inertia and spontaneous decay
limit realistic flexible Rydberg aggregate sizes to less than
∼4–10 atoms for these low-angular-momentum states.

Rydberg atomic properties are qualitatively changed in
circular states, where angular momentum is maximized to
l = n − 1 and pointing along the quantization axis m = l,
or nearby l = n − 2, m = l = n − 2. Most notably, circular
states can have orders of magnitude larger lifetimes than
low-l states, ranging into seconds. This has, for example, been
essential in their use for quantum-state tomography in cavity
quantum electrodynamics [17–21] and has recently attracted
attention in the context of quantum computing [22,23] or
quantum simulations of spin systems [24]. The price paid for
the larger lifetime is a substantially more involved excitation
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process, which has nonetheless been demonstrated also in an
ultracold context [25–28].

Here we determine the utility of a regular assembly of
atoms in circular Rydberg states for studies of excitation- and
angular-momentum transport as well as a platform for flexible
Rydberg aggregates. When working in the quasihydrogenic
manifold of circular states, the many-body electronic Hilbert
space can no longer be conveniently simplified based on
energetic separation of undesired states. However, dipole-
dipole selection rules can still allow simple aggregate state
spaces consisting of only the two nearest to circular states
listed above, where we will study two choices. These both
differ from the electronic states considered in [24] (in the
n, n + 2 manifolds), in that interactions are direct and no
two-photon transition is required. We then focus strongly on
the implications for exploiting atomic motion.

We theoretically demonstrate clean back-and-forth trans-
fer of angular momentum within a Rydberg dimer due to
the underlying Rabi oscillations between circular states. We
also show that in this regime transport can be described
both quantum-mechanically and classically, showing good
agreement. Interactions between Rydberg atoms in circular
states thus might be a further interesting avenue for studies of
the quantum-classical correspondence principle with Rydberg
atoms [29–34]. Misalignment of the Rydberg aggregate and
the electron orbits is shown to cause decreased contrast of
the angular-momentum oscillations, which can, however, be
suppressed with small electric fields, as also discussed in [24]
for a different choice of states.

We finally explore accessible parameter spaces for Ry-
dberg aggregates based on circular states with the primary
focus on flexible Rydberg aggregates (atomic motion), taking
into account the main limitations, primarily finite lifetime, and
adjacent n-manifold mixing for too close atomic proximity.
We find that flexible aggregates based on circular states offer

2469-9926/2018/98(4)/043602(9) 043602-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.98.043602&domain=pdf&date_stamp=2018-10-01
https://doi.org/10.1103/PhysRevA.98.043602


ALIYU, ULUGÖL, ABUMWIS, AND WÜSTER PHYSICAL REVIEW A 98, 043602 (2018)

significantly favorable combinations of lifetime and duration
of motional dynamics, despite the weaker interactions, com-
pared to aggregates based on low-lying angular-momentum
states. The number of aggregate atoms could thus be increased
to about Nagg = 50.

This article is organized as follows: In Sec. II we intro-
duce circular state atoms and their interactions, leading to
a model of excitation transfer on a flexible Rydberg chain.
Angular-momentum Rabi oscillations in a circular Rydberg
dimer are presented in Sec. III and compared to their classical
counterpart. The parameter regimes appropriate for the model
in Sec. II C are investigated in Sec. IV and then demonstrated
in Sec. V with an example for angular-momentum transport in
a large flexible aggregates.

II. RYDBERG ATOMS IN CIRCULAR STATES

Consider an electronic Rydberg state with principal quan-
tum number n � 10 of an alkali atom, e.g., 87Rb. For a given
n, we concentrate on the circular or almost circular states
with the two highest allowed values of angular momentum
l = (n − 1), (n − 2). In both cases, angular momentum shall
point as much as possible along the quantization axis, with
azimuthal quantum number m = +l. In the following, we
write triplets of quantum numbers | n, l,m 〉 for electronic
states of atoms. Then our states of main interest are | a 〉 =
| n, (n − 1), (n − 1) 〉 and | b 〉 = | n, (n − 2), (n − 2) 〉, the
circular and next-to-circular states in the principal-quantum-
number manifold n. They can be interpreted in terms of
Bohr-like orbits, with the electron encircling the nucleus on
a circular (or very slightly elliptical) orbit, giving rise to the
electron probability densities shown in Fig. 1(b), via their
isosurfaces, for the quantization axis along ẑ.

We will additionally consider a further third state | c 〉 =
| n + 1, n, n 〉, the fully circular one in the next-higher n

manifold; all states are sketched in Fig. 1(a).

A. Effective lifetimes

The change of angular momentum �l = l2 − l1 in a spon-
taneous electric dipole transition from state 1 to state 2 must
fulfill |�l| = 1; hence circular states must decay towards
the ground state through radiative cascades via the nearest-
angular-momentum state and thus exhibit much longer ra-
diative lifetimes τ in vacuum than lower-angular-momentum
(Rydberg) states. At T = 0 we can use the formula [22,35]

τ0 = 24πε0h̄
4c3[

E3
Ha2

0e
2
] (2n − 1)4n−1

24n+1n2n−4(n − 1)2n−2
(1)

for the vacuum lifetime of a circular state in the manifold
n, which is based on the rate for the first transition of this
cascade. In (1) EH is the Hartree energy and a0 the Bohr
radius. However, τ0 then gets shortened to an effective lifetime
τ by black-body radiation (BBR) at temperature T , which
accelerates the first step of the cascade by stimulated transi-
tions and may even redistribute electronic population to higher
energy states when BBR absorption occurs. We can estimate

FIG. 1. (a) Schematic diagram of energy E vs angular mo-
mentum L for low-angular-momentum vs high-angular-momentum
Rydberg states. We highlight the special states relevant for this article
| a 〉, | b 〉, | c 〉, defined in the text. (b) Schematic shape of the electron
probability distribution (tagged with e−

1,2) for two atoms in circular
states with angular momentum pointing fully along the quantization
axis ẑ. Electron orbits are reminiscent of a circular planetary orbit
(red toroidal shape). We also indicate nuclear positions and the unit
vector along the interatomic axis R̂, its angle with the quantization
axis θR , and orbital angles for classical electron positions ϕ1,2.
(c) Controlled-angular-momentum transport on a chain of Rydberg
atoms along the z axis can proceed using only two single-atom states,
| a 〉, | b 〉, among the high-angular-momentum manifold.

τ , for T in degrees Kelvin, by

τ = (14.7μs)
n2

T
, (2)

derived in [36] by using sum rules. For the state | 53, 52, 52 〉,
considered later in Fig. 2 of this article, formula Eq. (1) yields
a lifetime of τ = 38 ms at T = 0 but Eq. (2) an effective
lifetime τ = 138 μs at T = 300 K.

B. Binary interactions

While long lifetimes are an attractive feature for quantum
simulations involving Rydberg atoms, such simulations typi-
cally rely also on a small accessible electronic state space per
atom, such that each atom can, for example, be considered as
a (pseudo) spin-1/2 or spin-1 system. This can be realized
by Rydberg | s 〉 (l = 0) or | p 〉 (l = 1) states of the same
principal quantum number, provided the energy gap to the | d 〉
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FIG. 2. Angular-momentum transport in a dimer of n = 53 cir-
cular state Rydberg atoms, separated by R = 10 μm, after initializa-
tion in | �(0) 〉 = | ab 〉. Solid lines show the quantum-mechanical
results for the angular momentum one for each atom 〈L̂1〉 (red,
starting at 〈L̂1〉 = 52.5) and 〈L̂2〉 (blue, starting at 〈L̂2〉 = 51.5).
Black dashed lines are the corresponding angular momenta from
the classical Newton’s equations, see Appendix C. In (a), electron
orbital planes for state | a 〉 are perfectly normal to the interatomic
axis. The angle θR between R̂ and z [see Fig. 1(b)] is θR = 0o. (b)
Quantum-mechanical angular momenta for a misaligned dimer with
θR = 3◦. The solid line is a fit on the envelope as discussed in the
text. (c) θR = 5◦. (d) θR = 10◦. The gray lines without reduction of
oscillation amplitude show the corresponding result in the presence
of a small electric field, see text.

state is larger than the dynamical energy scales of the problem,
which is frequently the case. In contrast, the high-angular-
momentum states become essentially degenerate approaching
hydrogen states, so simple energetic inaccessibility can no
longer be exploited.

However, in principle, interactions can be designed such
that still only two circular Rydberg states per atom play a
role. This becomes clear by inspection of the dipole-dipole
coupling matrix elements, see Appendix A and Refs. [37–39],
for example. These couple only two-body states with the
same total azimuthal quantum number M = m1 + m2, as long
as the quantization axis ẑ is oriented along the interatomic
separation R = x2 − x1, where x1,2 are the coordinates of the
nuclei in the two interacting atoms. In that case we have ẑ =

R̂, where R̂ = R/|R|. Dipole-dipole interactions (A1) then
couple the two pair states | ab 〉, | ba 〉. However, since these
are the only pair states with M = 2n − 3 for the principal-
quantum-number n manifold, they form a closed subspace, as
long as interactions are weak enough not to cause mixing of
adjacent n manifolds.

It is the main objective of this article to explore the
limitations of this simple picture. To this end, we consider
the more complete Rydberg-Rydberg interactions that arise
when taking into account more states and imperfect axis
alignment or adjacent n-manifold mixing. For this we gen-
erate a Rydberg dimer Hamiltonian Ĥpair in matrix form for
a fixed atomic separation R and a large range of pair states
| (n, l,m)1(n′, l′,m′)2 〉 in the energetic vicinity of those of
interest. In the state notation, (n, l,m)k are quantum numbers
pertaining to atom k. Ingredients of the Hamiltonian are
all noninteracting pair energies and matrix elements of the
dipole-dipole interactions, as discussed in Appendix A.

We firstly extract dipole-dipole interactions such as
〈 ba |Ĥpair| ab 〉 ≡ C

(ab)
3 /R3, with R = |R|, see also Ap-

pendix B. Second, we determine van der Waals interactions
in state | aa 〉 by the diagonalization

Ĥpair(R)| φn(R) 〉 = Vn(R)| φn(R) 〉. (3)

The interaction potential Vn(R) for which | φn(R) 〉 → | aa 〉
for R → ∞ is then fitted with Vn(R) ≈ C

(aa)
6 /R6 + Vn0 to

infer C
(aa)
6 .

For simplicity, we neglect spin-orbit interactions through-
out this article. Their presence will not cause large quantitative
or qualitative changes from the conclusions reached here.

C. Many-body interactions in flexible Rydberg aggregates

Armed with binary interactions inferred as discussed
above, we can now reduce the effective electronic state space
per atom to include only two states. This then enables us to
easily treat a larger number of atoms.

We consider a multiatom chain as sketched in Figs. 1(b)
and 1(c), where all atoms are as much as possible aligned
with the quantization axis ẑ. While the angle θR between the
quantization axis and internuclear axis R̂ is ideally θR = 0,
we will later consider alignment imperfections θR �= 0. In the
ideal case, a single “excitation” in the state | b 〉 can migrate
through coherent quantum hops on a chain of circular Rydberg
atoms in | a 〉, as sketched in Fig. 1(c).

Note that creating an initial state such as shown, involving
two different circular states, poses additional challenges not
covered by protocols experimentally demonstrated so far.
These only manipulate all atoms in an identical fashion.
Possible solutions allowing atom-specific manipulation may
have to utilize electric field gradients and sequential optical
excitation for atom-selective addressing and could employ
optimal coherent control [40].

A setup as in Fig. 1(c) realizes a Rydberg aggregate [1].
Since the number of excitations is conserved, we can describe
the aggregate in the basis | πn 〉 = | aa · · · b · · · aa 〉, where
only the nth atom is in the next-to-circular state | b 〉 and all
others are in | a 〉. This is called the single-excitation manifold.
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The effective electronic Hamiltonian can then be written as

Ĥeff(X) =
N∑

n�=m

C
(ab)
3

X3
nm

| πn 〉〈πm | + E(X)1, (4)

E(X) = 1

2

∑
j �=�

C
(aa)
6

X6
j�

, (5)

where the vector X = [x1, x2, x3 . . . ] groups all the individual
positions xn of our N atoms, and Xnm = |xn − xm|, 1 is the
electronic identity matrix 1 = ∑

n | πn 〉〈πn |. The first term
in (4) allows excitation transport as discussed above and the
second represents van der Waals (vdW) interactions between
atoms in the | a 〉 state. For simplicity we assumed C

(ab)
6 ≈

C
(aa)
6 . Typically the dipole-dipole interactions dominate vdW

interactions in parameter regions where C
(ab)
6 �= C

(aa)
6 would

make a difference; however, see [10] for counterexamples.
To describe a flexible aggregate with mobile atoms we

solve

Ĥeff(X)| ϕn(X) 〉 = Un(X)| ϕn(X) 〉 (6)

and obtain the excitonic Born-Oppenheimer surfaces Un(X)
that govern the atomic motion, see [1].

III. RYDBERG DIMER WITH CIRCULAR STATES

We begin to study angular-momentum transport between
a pair of Rydberg atoms in circular states for a simple dimer
shown in Fig. 1(b). This allows us to still use the Hamiltonian
Ĥpair based on a larger number of electronic states per atom.
We employ the time-dependent Schrödinger equation (TDSE)
ih̄ ∂

∂t
| � 〉 = Ĥpair| � 〉, where the Hamiltonian is constructed

as discussed in Sec. II and Appendix A. Within that space

| �(t ) 〉 =
∑

nlm,n′l′m′
cnlm,n′l′m′ (t )| (nlm)1(n′l′m′)2 〉, (7)

where (nlm)1 are quantum numbers of atom 1.
The dimer is initialized in the pair state | �(0) 〉 =

| ab 〉 for the n = 53 manifold. As discussed in Sec. II,
dipole-dipole interactions cause transitions to the pair state
| ba 〉, giving rise to Rabi oscillations in an effective two-
level system, shown in Fig. 2(a). For now, the inter-
atomic axis is perfectly aligned with the quantization axis
(θR = 0). Physically this implies that Rydberg electron or-
bitals are orthogonal to the interatomic axis. The fig-
ure shows the modulus of electronic angular momentum
per atom 〈L̂1〉 = ∑

nlm,n′l′m′ h̄
√

l(l + 1)|cnlm,n′l′m′ |2, 〈L̂2〉 =∑
nlm,n′l′m′ h̄

√
l′(l′ + 1)|cnlm,n′l′m′ |2.

A. Quantum-classical correspondence

The angular-momentum exchange can also be modeled
classically, using Newton’s equation for the Rydberg elec-
trons, with results shown in black in Fig. 2(a). Further details
of these simulations can be found in Appendix C. Already
the simple model employed reproduces the quantum results
almost quantitatively. This is expected for circular Rydberg
states, since the number of de Broglie wavelengths λdB fit-
ting into one orbital radius rorb equals rorb/λdB = n in Bohr-
Sommerfeld theory, which reduces the importance of quantum

effects (wave features) for large n, in accordance with the
correspondence principle.

The result indicates the utility of interactions among circu-
lar Rydberg atoms to illustrate the correspondence principle
in action. Once verified in more detail, classical simulations
could then supplement quantum ones in the regime where
each atom accesses a large number of electronic states, which
are challenging quantum mechanically.

B. Misalignment of electron orbits and interatomic separation

In the remainder of Fig. 2, we explore how a misalign-
ment of the circular orbits from the interatomic axis, θR >

0, affects angular-momentum transport. For that case M =
m1 + m2 is no longer conserved in dipole-dipole interac-
tions (see Appendix A). Hence a large number of differ-
ent azimuthal states m �= {n − 1, n − 2} become populated.
This brings into play additional dipole-dipole interaction ma-
trix elements that cause angular-momentum transfer between
the two atoms. Since these differ in magnitude, the overall
angular-momentum oscillations in L1,2 lose contrast as seen
in Figs. 2(b)–2(d). We fitted the envelope of oscillations with
exp [−t2/τ 2

L] and indicated the resultant τL in the figures.
Note that even a relative large misalignment such as θ =

5◦ still allows many visible periods of angular-momentum
oscillations. The coupling to an undesired azimuthal state
can, however, be entirely suppressed by the addition of
an electric field. This removes the degeneracy of dif-
ferent |m| states through the dc Stark effect [37]. For
Fig. 2(d) we used an electric field amplitude E = 0.2 V/cm
and initialized the dimer in | �(0) 〉 = | (53, 52, 52)1 〉 ⊗
(| (53, 51, 51)2 〉 + | (53, 52, 51)2 〉)/

√
2 ≡ | ab̃ 〉. Note that

| b̃ 〉 = (| 53, 51, 51 〉 + | 53, 52, 51 〉)/
√

2 is the Stark coupled
eigenstate corresponding to | b 〉 in the presence of the field.
While the Rabi frequency is now reduced by a factor of
2, since the dipole-dipole interaction couples only the first
component of | b̃ 〉 to | a 〉, we regain an effective two-level
system. Calculations with electric field were streamlined by
solving the TDSE only in the most relevant state space [41].
Suppressing coupling to undesired m states through an ex-
ternal field was explored in detail in [24] for coupled states
from different (next-to-adjacent) n manifolds. Here we now
extended these concepts to almost circular states from the
same n manifold.

C. Adjacent n-manifold mixing

So far, we explored one limitation of the simple picture
in which only circular states | ab 〉 and | ba 〉 are considered,
namely, undesired m levels mixing in through atomic mis-
alignment. We have shown that this effect can be suppressed
using external electric fields.

Another limitation of the simple model arises at too short
distances, where state manifolds that differ in principal quan-
tum number n are shifted into each other through strong
interactions. We show the resultant spectrum in Fig. 3, for a
much lower principal quantum number (n = 20) than used in
Fig. 2, due to computational reasons.

For demonstration, the figure also shows the detrimen-
tal effect on angular-momentum transport through this state
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FIG. 3. Interaction potentials Vn(R) of a circular Rydberg dimer
near n = 20 at close proximity, see Eq. (3). The reduced Hilbert
space contained all states with n = 19, 20, 21 and l = 18, 19, 20.
The simple effective-state picture involving only two circular states
| a 〉 and | b 〉 that couple via dipole-dipole interactions to (| ab 〉 ±
| ba 〉)/

√
2 (red lines with dots) breaks down once neighboring n

manifolds begin to merge into each other at around R = 60 nm.
The insets show angular-momentum transport from initial states as
in Fig. 2(a) at the indicated separations.

mixing. The right inset shows angular-momentum oscillations
that are regular at distances where adjacent n manifolds are
energetically separate. However, even here the initial state is
composed of eigenstates from (3) according to (| φab(R) 〉 +
| φba (R) 〉)/

√
2, where | φab 〉 denotes the eigenstate of Ĥpair

that has the largest overlap with | ab 〉. Oscillations finally
become irregular at separations where adjacent n manifolds
mix, shown in the left inset, even when constructing an initial
state from four eigenstates similar to the construction above.
This effect imposes a minimal separation dmin for atoms in a
circular Rydberg aggregate, which we define as the distance
at which the dipole-dipole shift exceeds the energetic n-
manifold separation. The resultant formula is given in Ap-
pendix D.

IV. PARAMETER REGIMES FOR CIRCULAR
RYDBERG AGGREGATES

After exploring the limitations of the simple model intro-
duced in Sec. II C, which are not problematic for the right
choice of atomic positions xn, we now proceed to determine
interaction parameters required for the model (4) as discussed
in Sec. II B.

A. Determination of interaction constants

For dipole-dipole interactions we extract the matrix ele-
ments 〈 ab |Ĥpair| ba 〉 and 〈 ac |Ĥpair| ca 〉 from the numerical
Hamiltonian and verify the former analytically in Appendix B.
Next we consider vdW interactions for two atoms in the state
| a 〉 (i.e., the energy of | aa 〉). We find these by diagonalizing
a suitable Hamiltonian as a function of atomic separation R, as

TABLE I. Reference values in interaction parameters for dipole-
dipole and van der Waals interactions of 87Rb atoms in circular or
next-to-circular Rydberg states. Using these parameters, interaction
strengths can be found with Eqs. (8)–(10). States | a 〉, | b 〉, | c 〉 are
sketched in Fig. 1 and defined in Sec. II.

C̃
(0)
3 [kHz μm3] C̃

(0)
6 [Hz μm6]

| aa 〉 2.11 × 10−11

| ab 〉 2.0

| ac 〉 0.47

discussed in Sec. II B and Appendix A. All these calculations
assume an internuclear axis aligned with the quantization axis
R̂ ‖ ẑ, which is enough to determine the scale of interactions
in a setting such as Fig. 1(c).

All interactions exhibit a characteristic scaling with princi-
pal quantum number n:

C
(aa)
6 = C̃

(0)
6 n12, (8)

C
(ab)
3 = C̃

(0)
3,abn

3 for | ab 〉, (9)

C
(ac)
3 = C̃

(0)
3,acn

4 for | ac 〉, (10)

which allows their approximate representation in terms of
the reference values C̃

(0)
k given in Table I. The table distin-

guishes between dipole-dipole interactions within the same or
among adjacent n manifolds. Note that the scaling of interac-
tions with n is different from that encountered for low-lying
angular-momentum states, where dipole-dipole interactions
scale as n4 and van der Waals interactions as n11 [37]. vdW
interaction strengths from Eq. (8) and Table I for circular
states with n = 48 and n = 50 are in rough agreement with
the values given in [24], the latter calculated at nonzero
electric and magnetic fields.

B. Domains for flexible Rydberg aggregates

Dipole-dipole interactions in the pair | ac 〉 substantially
exceed those in | ab 〉 for the relevant high principal quantum
numbers (n > 20) due to the steeper scaling in n. We thus now
assume aggregates based on states | π̃n 〉 = | aa · · · c · · · aa 〉,
where only the nth atom is in the state | c 〉 and all others in
| a 〉, replacing the states | πn 〉 in Sec. II C.

With interactions determined, we can follow the approach
taken in [1] to delineate parameter regimes in which circular
flexible or static Rydberg aggregates are viable, based on a
variety of requirements that are listed in detail in Appendix D.
The results are shown in Fig. 4. It is clear that the use of
circular Rydberg atoms for studies involving atomic motion
offers substantial advantages. However, this is the case only
in a cryogenic environment at T ≈ 4 K, since black-body
redistribution has too detrimental an effect on the lifetime
advantage otherwise. Ideas to suppress spontaneous decay by
tuning the electromagnetic mode structure with a capacitor
could improve this situation further [24,42,43].
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dddda
n=1 2 3 4 5 6

flex.

static

acc.

FIG. 4. Parameter domains of static (green and red) vs flexible
(violet) Rydberg aggregates for different principal quantum numbers
n and nearest-neighbor separations d . For the latter we assume
geometry as shown on the top, with main nearest-neighbor separation
d and shorter initial dislocation a. We compare the use of sp Rydberg
states in (a) vs circular Rydberg states in (b), where the latter are
assumed to be in a cryogenic environment at T = 4 K. Note the
substantially different aggregate sizes Nagg assumed for either as
indicated. The red shade (marked acc.) indicates where static aggre-
gates exist, however, with atoms that would visibly accelerate during
excitation transport. White areas are excluded, either by too short
aggregate lifetimes (top) or too close proximities to avoid Rydberg
state mixing as in Fig. 3 (bottom). See the text and Appendix D for
the precise criteria used. The symbol (�) in (b) indicates parameters
used for our numerical demonstration in Fig. 5.

V. ANGULAR-MOMENTUM TRANSPORT IN LARGE
FLEXIBLE RYDBERG AGGREGATES

To illustrate the potential of circular state Rydberg aggre-
gates for studying the coupling between atomic motion and
excitation transport, we show a quantum-classical simulation
of adiabatic excitation transport on a large (Nagg = 20) Ryd-
berg aggregate. Adiabatic excitation transport in Rydberg ag-
gregates was thoroughly discussed in [2,3,8]. Briefly, a single
excited state is initially coherently shared among two atoms
at one end of the chain, that are in much closer proximity
a than all others, here a = 5 μm. These are atoms n = 1, 2
in the sketch on top of Fig. 4. This initial state, | ϕrep 〉 =
(| caaa . . . 〉 + | acaa . . . 〉)/

√
2, is the most repulsive eigen-

state in Eq. (6).
The initial repulsion of atoms 1 and 2 causes subsequent

repulsive collisions with the remainder of the atoms, the
dislocation thus propagating through the chain. The single
excitation is carried along with the positional dislocation
with high fidelity. This can be traced back to an adiabatic
following of the initial dipole-dipole eigenstate | ϕrep(X(t )) 〉
[see Eq. (6)].

We model the process using Tully’s surface hopping
[44–46], described for our specific purposes in [8,47]. It
evolves an electronic aggregate quantum state | �agg(t ) 〉 =∑

n cn(t )| πn 〉, coupled to the classical Newton equations
mRbẌ(t ) = −∇XUs[X(t )] for motion of rubidium atoms with
mass mRb on the current Born-Oppenheimer surface Us(t ) [see
Eq. (6)]. Note that creating the initial electronic state | ϕrep 〉
will pose additional experimental challenges.

FIG. 5. Adiabatic-angular-momentum transport on a large flex-
ible Rydberg aggregate with N = 20 atoms arranged in a one-
dimensional line along z with spacing d = 10 μm, but the last two
atoms only a = 5 μm apart. Dynamics proceeds on the repulsive
Born-Oppenheimer surface n = 0. The aggregate is based on circular
states | a 〉, | c 〉 with principal quantum number n = 80. For that
value, the effective lifetime from Eq. (2) for the entire aggregate is
τagg = τ/Nagg ≈ 1.2 ms at T = 4 K. Each atom has a spatial posi-
tion uncertainty of σ = 0.3 μm. (a) Total density of atoms, bright
(yellow) indicates high density, blue (dark) no density. (b) Excitation
amplitudes on each atom |ck|2 = |〈 πk | �(t ) 〉|2, with atom number
k indicated near each line. We indicate where numbering starts in
(a). (c) Populations of system eigenstates |c̃k|2 = |〈 ϕk (X) | �(t ) 〉|2,
discussed in Sec. II C, indicating largely adiabatic dynamics.

The parameters used for the simulation are indicated by
the white star in Fig. 4, and the (one-dimensional) geometry
is sketched on top of that figure. For these parameters, even
Nagg = 100 would still allow end-to-end transport within the
lifetime, however, with long simulation times due to the need
for matrix diagonalization at each time step.

Proposals in [2,3,8] were limited by spontaneous decay
to about eight Rydberg atoms, even when considering the
lighter, and thus more easily accelerated, lithium atom. The
quantum-classical simulation shown in Fig. 5 highlights that
for aggregates made of circular states much larger arrays are
possible, even for the heavier but more common rubidium
atom, and still show adiabatic excitation transport within the
system lifetime, i.e., well before a single black-body redistri-
bution event is expected.

While the multitrajectory average in Fig. 5(b) seems to
indicate a loss of fidelity for the excitation transport, this is
merely due to the different arrival times for different parts
of the many-body wave packet (different trajectories). We in-
spected many individual quantum-classical trajectories which
all show near unit fidelity of excitation transport through the
entire chain.
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VI. CONCLUSIONS AND OUTLOOK

We assess the utility of arrays of Rydberg atoms in cir-
cular and nearly circular angular-momentum states for the
realization of flexible Rydberg aggregates. While the motion
of circular state Rydberg atoms was considered in [24] as a
precursory stage during the creation of regular static arrays,
in our work freely moving atoms are the primary focus. These
will then allow studying the interrelationship between atomic
motion and excitation- or angular-momentum transport. Note
that the apparatus proposed in [24] would also be highly
suitable for such studies.

In a cryogenic environment (suppressing black-body radi-
ation), circular state flexible Rydberg aggregates will allow
much larger arrays of atoms to participate in collective mo-
tional dynamics, despite their inertia, due to the substantially
increased lifetimes. For example, adiabatic excitation trans-
port with high fidelity on chains of as many as Nagg = 50
atoms appears feasible. In the future we will explore the
application of this phenomenon for use as a data bus in cir-
cular Rydberg-atom-based quantum computing architectures
[22,23].

We also demonstrate a case where interacting circular
Rydberg atoms can be quite well described using the classical
Newton’s equations for the Rydberg electrons in a manifes-
tation of the correspondence principle. Both quantum and
classical calculations exhibit comparable coherent angular-
momentum oscillations in a pair of circular Rydberg atoms.
More detailed comparisons using more involved classical-
phase-space distributions and quantum wave packets, larger
numbers of atoms, or more involved geometries could be an
interesting exploration of the extent of the correspondence
principle. A classical treatment of interactions could then
benefit from secular perturbation theory techniques also used
in planetary orbital mechanics.
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APPENDIX A: CIRCULAR RYDBERG INTERACTIONS

We assume the interatomic interactions are entirely based
on the dipole-dipole component of the electrostatic Hamilto-
nian (in atomic units)

Ĥdd = r1 · r2 − 3(r1 · R̂)(r2 · R̂)

R3
, (A1)

where r1 and r2 denote the position of the Rydberg electron
in atoms 1,2 relative to their parent nuclei, and R̂ = R/R is
a unit vector along the interatomic separation R = x2 − x1,
with R = |R|, see Fig. 1(b). We thus ignore wave-function
overlap, core polarization, or higher-order multipoles, as is
typical for Rydberg-Rydberg interactions.

We then cast (A1) into a matrix form using pair states
| n1, l1,m1 〉1 ⊗ | n2, l2,m2 〉2 in a truncated Hilbert space
in which all pair states are energetically close to those
for which we want to determine Rydberg-Rydberg interac-
tions. As usual, the position-space representation is written
as 〈 r1 | n1, l1,m1 〉 = Rn1l1 (r1)Yl1,m1 (θ1, ϕ1)/r1, where Y are

spherical harmonics, and (r1, θ1, ϕ1) the three-dimensional
(3D) spherical polar coordinates of electron 1 with respect to
its nucleus.

The matrix elements of (A1) are

〈n1, l1,m1; n2, l2,m2|Ĥdd |n′
1, l

′
1,m

′
1; n′

2, l
′
2,m

′
2〉

= −8π

√
2π

15

dn1,l1;n′
1,l

′
1
dn2,l2;n′

2,l
′
2

R3

×
∑

ma,mb

2∑
μ=−2

Y ∗
l=2,μ(θR, ϕR )〈 1m1, 1m2 | 2μ 〉

×〈 l1,m1 |Y1m1 | l′1,m′
1 〉〈 l2,m2 |Y1m2 | l′2,m′

2 〉, (A2)

see also [38]. Here θR , ϕR are the polar angles of R̂ in the 3D
spherical coordinate system defining n, l,m, 〈 1m1, 1m2 | 2μ 〉
the Clebsch-Gordan coefficient coupling two constituent an-
gular momenta (l = 1,m = m1,2) to a total angular momen-
tum (L = 2,M = μ), and the integrals in the last line involve
now a single electronic coordinate and three spherical har-
monics each.

Evaluating these as in [48], we use

〈 l1,m1 |Y1m1 | l′1,m′
1 〉

= (−1)m1

√
3(2l1 + 1)(2l′1 + 1)

4π

×
(

l1 l′1 1
0 0 0

)(
l′1 l1 1
m′

1 −m1 m1

)
, (A3)

where terms in brackets denote Wigner 3j symbols.
The dn1,l1;n′

1,l
′
1
= ∫ ∞

0 r Rn1,l1 (r )Rn′
1,l

′
1
(r )dr in (A2) are ra-

dial matrix elements, determined via the Numerov method
including modifications of the Coulomb potential due to the
core as in [49]. To avoid instabilities, the solutions R(r ) are
set to zero inside the inner classical turning point for large l.

When considering interactions within an external electric
field of strength E , we describe the field through single-body
matrix elements

−〈n, l,m|Eeẑ|n′, l′,m′〉

= −dn,l;n′,l′Ee

√
3(2l + 1)(2l′ + 1)

4π

×
(

l l′ 1
0 0 0

)(
l′ l 1
m′ −m 0

)
. (A4)

To obtain vdW interaction potentials, the resultant dimer
Hamiltonian Ĥpair = Ĥ0 + Ĥdd is diagonalized as a func-
tion of separation R, see Eq. (3) and, e.g., Fig. 3.
Here, the noninteracting Hamiltonian is Ĥ0 = ∑

α1,α2
(Eα1 +

Eα2 )| α1α2 〉〈α1α2 |, where the α group all electronic labels,
such as α1 = {n, l,m} with Eα1 = En1,l1,m1 = −Ry/(n1 −
δn1,l1 )2. Then Ry is the Rydberg constant and δn,l the quantum
defect taken from [49,50]. For transport simulations, the re-
stricted basis Hamiltonian is constructed at a fixed separation
R0 and then used in the time-dependent Schrödinger equation.

A recent numerical package for these sorts of calculations
is described in [51]. For low-lying state interaction, also
perturbation theory can be used [52].
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APPENDIX B: CALCULATION OF DIPOLE-DIPOLE
INTERACTION CONSTANTS

For circular states of alkali atoms, the wave-function over-
lap with the core becomes so small that the use of hydrogen
wave functions �(rk, θk, ϕk ) = Rnl (rk )Ylm(θk, ϕk )/rk , where
k ∈ {1, 2} numbers the atom, becomes highly justified. We
can then determine, e.g., C

(ab)
3 coefficients from Eq. (A1) by

inserting the appropriate sets of quantum numbers into the
matrix element M = 〈 ab |Ĥdd| ba 〉 between hydrogen states.

Since R̂ ‖ ẑ we have θR = 0. In that case, only Y ∗
l=2,0(θR =

0, ϕ) in the sum over μ is nonzero, and out of the options
for m1 + m′

1 = 0 only one set fulfills the remaining angular-
momentum selection rules in (A2), yielding the integral

I =〈 1, 1; 1,−1 | 2, 0 〉〈 a |Y1,1| b 〉〈 b |Y1,−1| a 〉, (B1)

which results in

I = (−1)2(2n−3)(2n − 1)(2n − 3)(2n − 2)!(2n − 4)!

22(2n−3)((n − 1)!(n − 2)!)2

×
(

1

4π

)2(
−3(2π )2

8π
√

6

)( √
π�(n)

�
(
n + 1

2

)
)2

, (B2)

where �(n) is the Gamma function. Using Y ∗
2,0(θR = 0, ϕ) =√

5
4π

and the radial matrix element

dn(n−1);n(n−2) = −3n

2

√
(2n − 1), (B3)

we finally reach

M = −8π

R3

√
2π

15

√
5

4π

(−3n

2

√
(2n − 1)

)2

× (−1)2(2n−3)(2n − 1)(2n − 3)(2n − 2)!(2n − 4)!

22(2n−3)((n − 1)!(n − 2)!)2

×
(

1

4π

)2(
−3(2π )2

8π
√

6

)( √
π�(n)

�
(
n + 1

2

)
)2

. (B4)

See [22] for analytical results for the | aa 〉 ↔ | cc′ 〉 dipole-
matrix elements, where | c′ 〉 = | n − 1, n − 2, n − 2 〉.

APPENDIX C: CLASSICAL SIMULATIONS OF THE
RYDBERG DIMER

In the classical simulations, we adopted the Bohr-
Sommerfeld atomic model to mimic the orbital behavior by
using elliptical orbits for a classical point electron. Initial
positions and velocities are drawn from a random distribution
that respects the target quantum numbers via energy and
(angular momentum):

En = − e4me

32π2ε2
0 h̄2

1

n2
, (C1)

Lm = h̄
√

l(l + 1), (C2)

where me is the mass of the electron.

In the model, the electron follows an elliptic path and the
semimajor (An) and semiminor (Bnl) axes are defined as

An = 4πε0h̄
2

mee2
n2, Bnl = l

n
An. (C3)

In the simulation, nuclei of the atoms are assumed to be
motionless and the equation of motion for the electrons is

r̈ei = − e2

4πε0me

(
rei − rni

|rei − rni |3 + rei − rn(i+1)

|rei − rn(i+1)|3

− rei − re(i+1)

|rei − re(i+1)|3
)

, (C4)

where the index ni is the ith nucleus and the index ei is the
ith electron. The notation (i + 1) pertains here simply to the
adjacent atom in a dimer.

The classical simulation is conducted by numerical eval-
uation of the equation of motion and averaging the results
over random initial positions of the electron on the elliptic
orbit. For this we vary in particular the relative orbital phase
between the electrons, ϕ2 − ϕ1, see Fig. 1(b).

The black dashed lines in Fig. 2(a) show finally the
ensemble-averaged angular momenta Lk = |Lk|, where Lk is
the angular momentum of electron k with respect to nucleus k.
The model could be made more sophisticated by incorporating
also the out-of-plane distribution of the Rydberg electron
evident in Fig. 1(b) or nuclear motion.

APPENDIX D: PARAMETER CONSTRAINTS FOR
RYDBERG AGGREGATES

For the parameter space survey in Sec. IV we have uti-
lized the following mathematical criteria to define when a
one-dimensional circular Rydberg atom chain can constitute
a useful flexible Rydberg aggregate. We are following the
approach of [1].

Validity of the essential-state model. We have seen in Fig. 3
that the essential-state models based on | a 〉, | b 〉 or | a 〉,
| c 〉 break down once adjacent n manifolds begin to mix. We
have taken the corresponding distance dmin as the one where
C

(ac)
3 (n)/d3

min = 1/(2n2) − 1/[2(n + 1)2] (atomic units).
Static aggregates. From (9) we can infer a transfer time

(Rabi oscillation period) Thop = πd3/C3 for an excitation to
migrate from a given atom to the neighboring one if the
interatomic spacing is d. We have calculated the correspond-
ing time for Nhops = 100 such transfers, given by Ttrans =
NhopsThop, imagining migration along an entire aggregate. We
finally require Ttrans to be short compared to the system life-
time, which is determined for circular states based on Eq. (2).

Perturbing acceleration. The characteristic time for atom

acceleration is Tacc =
√

d5mRb

6C
(ac)
3

[1], with mass of the atoms mRb

and their initial separation d. We then color the parameter
space red in Fig. 4, where atoms would inadvertently be set
into motion due to 4Tacc < Ttrans.

Flexible aggregates. For flexible aggregates, we assume
an equidistant chain with spacing d but the existence of
a dislocation on the first two atoms with spacing of only
dini = a = d/2 to initiate directed motion, similar to Sec. V.
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Hence, dini > dmin must be fulfilled, a tighter constraint than
d > dmin. We can then assess as in [1] whether an excitation-

transporting pulse can traverse the chain within the system
lifetime.
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