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Fast adiabatic evolution by oscillating initial Hamiltonians
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We propose a method to produce fast transitionless dynamics for finite-dimensional quantum systems without
requiring additional Hamiltonian components not included in the initial control setup, remaining close to the true
adiabatic path at all times. The strategy is based on the introduction of an effective counterdiabatic scheme: a
correcting Hamiltonian is constructed which approximatively cancels nonadiabatic effects, inducing an evolution
tracking the adiabatic states closely. This can be absorbed into the initial Hamiltonian by adding a fast oscillation
in the control parameters. We show that a consistent speedup can be achieved without requiring strong control
Hamiltonians, using it both as a stand-alone shortcut to adiabaticity and as a weak correcting field. A number
of examples are treated, dealing with quantum state transfer in avoided-crossing problems and entanglement
creation.
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I. INTRODUCTION

Quantum adiabatic processes [1] are ubiquitous in quantum
science and they represent an important resource for quantum
control. The adiabatic theorem states that when the system
Hamiltonian H (t ) is varied slowly enough in time from an
initial configuration H (ti ) to a final configuration H (tf ),
then a state initially in an eigenstate of H (t ) will remain so
during the whole evolution [1,2]. This makes such protocols
intrinsically robust against experimental imperfections. On
the other hand, the necessity of very long timescales for their
implementation dramatically limits the number of operations
which can be performed on the system within reasonable
coherence times.

Recently, much work has been done towards the design of
adiabatic-inspired control strategies which, on the one hand,
inherit the robustness of the adiabatic dynamics, while, on
the other, avoid the necessity of slow driving. Among such
so-called “shortcuts to adiabaticity” (STAs), a particularly
promising method was introduced under the name of counter-
diabatic (CD) [3] or transitionless [4] quantum driving. The
basic idea which is put forward is that it is always possible
to reverse-engineer a correcting Hamiltonian HCD(t ) such
that the total Hamiltonian H (t ) + HCD(t ) keeps the system
in the instantaneous eigenvectors of H (t ) without requiring
it to change slowly—that is, such that the adiabatic dynam-
ics is an exact solution of the time-dependent Schrödinger
equation.

When facing a quantum control problem, one must take
into account that only a fairly restricted number of Hamilto-
nians can be realized and controlled in practice. The crucial
drawback of the CD method is that, although a well-defined
expression for computing HCD(t ) exists, the correcting field
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typically requires time-dependent control of complex inter-
actions, and more generally of Hamiltonians which do not
belong to the available control setup. As a result, the imple-
mentation of HCD(t ) is often tricky if even possible [3,5,6].
For this reason, different STAs have been developed which
connect adiabatic states at different desired times, but com-
pletely deviate from the adiabatic states at intermediate times
[7–13], therefore giving up the benefits of true adiabaticity.

Here, we propose a method for achieving fast adiabatic
driving remaining close to the adiabatic path, without needing
new unrealizable terms in the Hamiltonian. This works by
modulating the original Hamiltonian of the system in time
such that it effectively replicates the dynamics induced by
HCD without needing any additional control Hamiltonian on
the quantum system.

In order to do so, we first resort to control-theoretic tech-
niques to study how the matrix structure of the correcting field
HCD is related to the initial set of control Hamiltonians which
constitute H . This shows that HCD can always be emulated,
to arbitrary precision, by introducing a suitable (fast) time
dependence in the control parameters. Second, we identify a
class of Hamiltonians, generalizing the set of real ones, for
which the matrix structure of HCD can be discussed on general
algebraic grounds and always involves components which are
not directly controllable. They can, however, be simulated
arbitrarily well using existing protocols.

Building on these results, we describe the construction of
an effective counterdiabatic (E-CD) field HE(t ), which is a
time-dependent combination of the initially available control
Hamiltonians. The control functions in HE will be chosen to
be oscillating fast with respect to the natural time dependence
of H , and HE will be enforced to simulate the dynamics UCD

induced by HCD. As a result, the E-CD evolution tracks the
adiabatic path, being arbitrarily close at a set of sampling
time points while slightly deviating at intermediate ones. The
general idea of producing the UCD dynamics approximatively
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by working with a set of available control terms was also
pursued, yet with a different strategy, in Ref. [14].

One must take into account that the adiabatic requirement
of slow drivings can be recast as the need of strong fields.
With this in mind, we characterize the efficiency of the E-CD
scheme in terms of final fidelity and duration for different
strengths of the correcting Hamiltonian HE as compared with
the uncorrected H . We show that the E-CD field, when acting
as an auxiliary weak term in H , realizes a consistent speedup
of the adiabatic evolution. The E-CD Hamiltonian also works
as a stand-alone STA, giving even better results but at the
price of completely losing true adiabaticity. The net result is
the ability to generate entanglement or perform state transfer
significantly faster which, when taking into account noise
from an external environment, inexorably leads to higher
fidelities.

After recalling the theory of CD driving in Sec. II, the
control-theoretic setting in presented in Sec. III, together with
the results on the general matrix structure of the correcting
Hamiltonian HCD. The effective CD method is introduced in
Sec. IV, where the derivation of the E-CD field is fully worked
through for a single spin system. The results are then exem-
plified via a number of applications in Sec. V, the first being
the Landau-Zener-Majorana model [15–18]. We afterwards
show that a two-qubit entangled state can be prepared with
99.9% fidelity ten times faster with respect to purely adiabatic
evolution, using an E-CD field with strength comparable to
that of the original Hamiltonian. We further discuss the case
of a three-level system dynamically undergoing a sequence of
avoided crossings in the energy spectrum [19]. In this section,
the E-CD method is also benchmarked against traditional
finite-time adiabatic driving, and the main advantages and
limitations are discussed in detail, before proceeding to the
conclusion in Sec. VI.

II. COUNTERDIABATIC DRIVING

In this section, we recall the central elements of the
theory of counterdiabatic fields [3,4] which underpins our
method.

A unitary evolution U (t ) is always a solution of the
Schrödinger equation with Hamiltonian HU (t ) = ih̄∂tUU †.
Equivalently, the same HU (t ) is a reverse-engineered Hamil-
tonian producing dynamics U (t ) exactly. Our aim is to
find this HU (t ) for the U (t ) which performs perfect adi-
abatic transfer. By construction, the new Hamiltonian will
give the desired dynamics in an arbitrarily short period of
time.

Let the initial Hamiltonian of the physical system be

H (t ) =
N∑

n=1

En(t ) |n(t )〉 〈n(t )| ,

having instantaneous eigenvalues En(t ) and instantaneous
eigenvectors |n(t )〉. Let Ud(t ) = ∑

n e−iϕn(t )/h̄ |n(t )〉 〈n(t0)|,
with ϕn arbitrary phases, be a unitary matrix which diagonal-
izes H (t ) at all times. That is,

U
†
d (t )H (t )Ud(t ) = diag{E1(t ), . . . , EN (t )}. (1)

The corresponding reverse-engineered Hamiltonian Hcorr =
ih̄∂tUdU

†
d reads

Hcorr(t ) =
∑

n

∂tϕn(t ) |n(t )〉 〈n(t )| + HCD(t ),

where we have introduced the CD field [4]

HCD(t ) = ih̄
∑

n

|∂tn(t )〉 〈n(t )| . (2)

The Hamiltonian Hcorr drives the instantaneous eigen-
vectors of H (t ) exactly, with relative phase factors
ϕn(t ), e−iϕn(t )/h̄ |n(t )〉. In particular, one can choose ϕn(t ) =
0 for all n, which gives Hcorr = HCD. Therefore, implementing
just HCD is sufficient if one is only interested in preserving
the populations of the instantaneous eigenvectors. Another
interesting choice is ϕn(t ) = ∫ t

En(t ′)dt ′, in which case ϕn

are the adiabatic dynamic phase factors. This gives Hcorr =
H (t ) + HCD, so that HCD can be interpreted as a correcting
field acting beside the initial Hamiltonian H (t ).

Alternative expressions of HCD are useful in order to
highlight specific properties. For example, from

HCD = ih̄
∑
m�=n

N∑
n=1

|m〉 〈m| ∂tH |n〉 〈n|
Em − En

, (3)

one can see that HCD, after having absorbed the geometric
phases into the ϕn [4], is purely off-diagonal in the basis of
instantaneous eigenvectors (adiabatic basis). In terms of the
Hilbert-Schmidt inner product Tr(A†B ), this implies that HCD

is orthogonal to H , and in general to all matrices commuting
with H . It is also orthogonal to ∂tH . Moreover, if we assume
that the whole evolution takes place starting from an initial
time ti for a total time τ , one can rescale time according
to s = (t − ti )/τ and see that HCD scales like 1/τ . In other
words, the faster the process, the stronger the field HCD should
be. This property will be important in our discussion and it is
particularly interesting in the context of quantum speed limits
[20,21].

By taking the derivative of Eq. (1), one can obtain the
relation

∂tH (t ) = i

h̄
[H (t ),HCD(t )] + ∂D(t ), (4)

where ∂D(t ) = ∑N
n=1 ∂tEn(t ) |n(t )〉 〈n(t )|. Equation (4)

highlights the fact that ∂D(t ) generates the variation
of the instantaneous eigenvalues of H (t ), while HCD is
responsible for the variation of eigenvectors. This is so since
[∂D(t ),H (t )] = 0, and then ∂D makes H (t ) “move” inside
the set of Hamiltonians which commute with H at time t ,
without changing the eigenvectors. On the other hand, the
term i[H,HCD]/h̄ determines the deviation from zero of
the off-diagonal elements of H (t + dt ) with respect to the
instantaneous adiabatic basis at time t .

III. CONTROL FRAMEWORK

In order to realize HCD, it is of great interest to understand
how the structure (matrix components) of the Hamiltonian
HCD is related to the structure of the initial Hamiltonian
H and to the control resources. In this section we exploit
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techniques from control theory to show that, assuming that
HCD can be computed, its action can be approximated at
all times, arbitrarily well, by a time-dependent tuning of the
initial parameters in the system Hamiltonian. This proves that
the realization of our E-CD scheme is actually possible, and
the specific construction will be discussed in the next section,
Sec. IV. Second, this study permits us to identify a class of
Hamiltonians that generalizes the set of real Hamiltonians, for
which all matrix elements of HCD are not directly accessible
without implementing new terms, which are not present in the
original Hamiltonian.

Let H (t ), of finite dimension N , be realized by tuning
some available time-independent control Hamiltonians H =
{H1, . . . , HM} via a set of continuous control functions u(t ) =
{u1(t ), . . . , uM (t )}. That is, H (t ) can be expressed in the form

H {u(t )} = u(t ) · H =
M∑

k=1

uk (t )Hk.

Let −iH be the vector of skew-Hermitian matrices
{−iH1, . . . ,−iHM}. The matrices −iH generate the so-called
dynamical Lie algebra L of the system [22]. This is the small-
est algebra which contains −iH, all possible commutators
[−iHj ,−iHk] of matrices from −iH, all possible commu-
tators of commutators, and so on, considering all possibly
nested commutators [−iHl, [. . . , [−iHj ,−iHk]], . . . ].

A basis of L can be constructed by calculating, as a first
step, the commutator of all possible pairs of matrices drawn
from −iH. Among the new obtained matrices, one should
select those which are linearly independent from themselves
and the original set, and compute the commutator of such
new matrices with this original set. The procedure is repeated
iteratively until no new linearly independent elements are
produced. An explicit algorithm can be found in [23]. In our
context, the linear span span{H} can be though of as the set of
all possible matrices attainable by H (t ) at different times, for
different values of the control functions.

Dynamical Lie algebras are of central importance in the
study of the controllability of quantum systems [22,24,25].
This has its origin in the fact [26] that the set of reachable
states, i.e., the set of unitary matrices that can be obtained as
solutions of the controlled Schrödinger equation for different
choices of the control functions, coincides with the connected
Lie group generated by L. An intuition for this can be given as
follows. If an element −iH belongs to L, then the Lie group
element e−iH t that it generates at time t can be realized, to
arbitrary precision, by suitably concatenating group elements
generated by Hamiltonians in the initial set −iH, which
belong to the one-parameter subgroups {e−iH1t , . . . , e−iHM t }.
From a control-theoretic perspective, this means that the evo-
lution produced by H in a time t can also be obtained by a
sequence of evolutions governed by the Hamiltonians H, in
general in a different total time.

Lie algebraic methods were also used in Refs. [9,10], in
the context of STA, for designing feasible shortcuts connect-
ing the same initial and final adiabatic states, but following
different paths in the Hilbert space.

Assuming that all Hamiltonians involved are made trace-
less, L can at most be su(N ), the algebra of skew-Hermitian
traceless matrices generating the group of special unitary

matrices SU (N ), and has dimension N2 − 1. When L =
su(N ), the system is said to be (operator) controllable [22].
The Lie group generated by L through the exponential map
will be denoted by eL.

Since −iHCD(t ) is a skew-Hermitian matrix, it must be-
long to su(N ) at all times. Therefore, if L = su(N ) then
−iHCD(t ) is obviously in L. The first result we show is
that HCD ∈ L is a general property of HCD, even when L is
not equal to su(N ), but is rather a smaller subalgebra L ⊂
su(N )—that is, even when the system is not fully controllable.
This is an interesting result for two reasons. First of all,
it allows us to restrict the class of Hamiltonians needed to
identify and realize HCD, with respect to the full set of trace-
less Hermitian matrices. Second, and more importantly in the
present work, it means that the action of HCD can be always
approximated, in the sense of the action of the Lie group, by
working only with the initially available Hamiltonians. This
result is stated in the following theorem, whose proof is given
in Appendix A. In all the following results, we will generally
assume that HCD can be computed. This excludes, in general,
cases in which evolving eigenvectors can be degenerate [7].

Theorem 1. Let the Hamiltonian of the system be ex-
pressible, at all times and for all values of the control
functions u(t ) = {u1(t ), . . . , uM (t )}, as a linear combination
H (t ) = ∑M

k=0 uk (t )Hk of time-independent control Hamilto-
nians H = {H1, . . . , HM}. Let L be the Lie algebra gener-
ated by the matrices −iH. Assuming the HCD exists, then
−iHCD(t ) belongs to L, for all times t .

When the Lie algebra L has an additional structure, the
general form of HCD can be characterized more accurately.
In order to do so, let us introduce Cartan decompositions,
which are important tools in the study of controllability of
quantum systems [22,24,27]. These are decompositions of the
algebra L into the direct sum form L = h ⊕ p which satisfy
the commutation relations

[h, h] ⊆ h, [h, p] ⊆ p, [p, p] ⊆ h. (5)

We can then state the following result (some of the quantities
were defined in Sec II).

Theorem 2. Given a Cartan decomposition L = h ⊕ p, if
span{−iH} ∈ p and −i∂D ∈ p for all t , then −iHCD(t ) ∈ h

for all t .
Proof. If −iH ∈ p, then also −i∂tH ∈ p, since it can be

written as a linear combination −i∂tH = −i∂t u(t ) · H. If also
−i∂D ∈ p for all t , then from Eq. (4) it holds [H,HCD] ∈ p.
From commutation relations defining the Cartan decomposi-
tion, one can then conclude that −iHCD ∈ h for all t. �

Let us clarify the result of Theorem 2 by means of two
examples. The first one is the situation in which H includes
exclusively real symmetric Hamiltonians. If this is the case,
H (t ) can always be diagonalized by a (real) special orthog-
onal matrix O(t ). Thus HCD(t ) = i∂tOO† is necessarily a
purely imaginary, skew-symmetric matrix, and −iHCD(t ) has
thus no component on −iH for all t . When the set of control
matrices generates the full algebra su(N ), this corresponds to
a Cartan decomposition of the form so(N ) ⊕ I, where so(N )
is the algebra spanned by the real matrices in su(N ), while
I = so(N )⊥ is the set of purely imaginary matrices in su(N ).
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J3

J2

J1

HCD(t)

H(t)

H(t + dt)

∂tH = ∂D

∂tH
⊥ = i[H,HCD]

FIG. 1. Sketch of the geometric interpretation of relation (4)
for the algebra su(2). The Hamiltonian H (t ) = u1(t )J1 + u2(t )J2

can be interpreted as a vector �H = {u1, u2, 0}, whose magnitude√
u2

1 + u2
2 is the largest eigenvalue, in the three-dimensional space

spanned by the su(2) generators J1, J2, J3. The term ∂D is respon-
sible for variations of magnitude (eigenvalues), which we indicate
with ∂tH

‖. The term i[H,HCD] generates rotations of the vector, i.e.,
a change of eigenvectors of H , and we denote this component of the
variation ∂tH

⊥.

The second example is the angular momentum al-
gebra su(2) with H containing two arbitrary genera-
tors Ji, Jj among the three possible {J1, J2, J3}. Explicit
diagonalization and computation of HCD [3,4] shows that then
HCD is proportional to the third generator. This can be also
seen from Eq. (4): interpreting H geometrically as a vector
�H (t ) = {H1,H2,H3} in the three-dimensional algebra, the

matrix ∂D generates the stretching of the Hamiltonian vector
along in its own direction, while HCD generates rotations
on the plane spanned by Ji and Jj ; see Fig. 1. Therefore,
recalling the properties of the rotations in 3D, HCD must lie
in the direction of Jk . In this case the Cartan decomposition is
unitarily conjugate to so(2) ⊕ I.

IV. EFFECTIVE CD FIELD

From Theorem 1 one knows that (i) HCD can be approxi-
mated by a suitable choice of the control functions u(t ) for all
t and that (ii) HCD can be expressed as a linear combination
of (nested) commutators of elements of H. Observation (i)
suggests that the problem of finding an effective CD field can
be formulated as that of finding a correcting Hamiltonian HE,
of fully controllable form

HE(t ) = c(t ) · H =
M∑

k=1

ck (t )Hk, (6)

which emulates HCD. More precisely, the Hamiltonian HE

should produce a dynamics UE emulating the one induced by
HCD, i.e., UCD. While the algebraic structure suggests this can
be done, it does not constructively specify what the ck (t ) need
to be. To find them, from observation (ii), we choose to adopt
a representation of the propagators UE and UCD based on a
Magnus expansion, see Appendix B, where terms involving

commutators of the Hamiltonians appear naturally. The first
two terms are given for completeness,

M (1)(t ) = − i

h̄

∫ t

0
H (t1)dt1,

M (2)(t ) =
(−i

h̄

)2 ∫ t

0
dt1

∫ t1

0
dt2[H (t1),H (t2)].

The first step for designing the effective field HE is to choose
an ansatz for the control functions c(t ) involving a certain
number of free parameters. The second, considering a small
evolution time t , is to ask the first terms of the Magnus
expansion of UCD and UE to coincide up to a desired order
in t . This requirement will produce constraint equations for
the free parameters. Since UCD and UE cannot coincide at all
times, one needs to choose a discrete temporal grid {tk} for de-
composing the whole evolution, and enforce the approximate
equality at such time points. As a result, the approximating
dynamics will match the true one at times {tk}, while deviating
at intermediate times.

The matrix components of HCD which do not belong to
span{H} will not appear in the first Magnus term of H +
HE, which is essentially the time average of H + HE. They
will appear from the commutators in the following terms.
Therefore, if one wants HE to reproduce HCD effectively, it
must hold that HE gives no contribution to the first term, i.e.,
has vanishing time average on each interval (tk, tk+1). Besides,
since the mediated effect will be of some order m greater than
one in t , the magnitude of the control functions in HE must be
proportional to t−X, for some X > 0 depending on m, in order
to amplify the mediated effect so that it acts at first order.

Making these general ideas concrete, we choose the control
functions in Eq. (6) to have the form of a truncated Fourier
series,

ck (t ) = ωX

L∑
j=1

[Ak,j sin(jωt ) + Bk,j cos(jωt )], (7)

involving at most L harmonics of the fundamental frequency
ω. This way, the needed time grid is naturally defined by
the set of stroboscopic times tk = ti + kT , k ∈ N, where T =
2π/ω is the period of the control functions and ti the initial
time. The constant amplitudes {Ak,j , Bk,j } are the free param-
eters used to enforce the constraints on the Magnus expansion
at the end of each period. As a result, the control functions so
determined will be discontinuous between different periods,
due to the jumps in the values of the amplitudes. From a prac-
tical perspective, this is of course physically inconvenient, and
so one would like to come up with an interpolation providing
continuous and possibly smooth functions Ak,j (t ), Bk,j (t ).
We will see that this can indeed be done, and often in a
natural way.

The smaller the period T , the better the target dynamics
UCD will be sampled, so in general HE will need to oscillate
fast with respect to the time dependence of H . Raising the
number of harmonics L permits us to introduce more pa-
rameters, and thus to obtain and solve constraint equations
produced by higher Magnus terms. Ideally, one would like to
find a good compromise between high sampling rates of UCD,
good approximation at stroboscopic times, while keeping the
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fundamental frequency and the number of harmonics as small
as possible. This will be discussed in detail in Sec. V. A
strategy based on similar ideas was introduced in Ref. [28] for
the purpose of producing effective time-independent Hamilto-
nians via optimal control.

Let us now focus on the class of Hamiltonians identified by
Theorem 2. Due to the commutation relations from Eq. (5),
the Magnus terms of UE involving an odd number of commu-
tators, M

(2k)
E , belong to h. Those involving an even number

of them, M
(2k+1)
E , belong to p instead. Therefore, the general

form of the constraint equations is

M
(2k)
E = M

(k)
CD, M

(2k+1)
E = 0.

A discussion of the accuracy of the method is presented
in Appendix B 2, where an estimate of the expected error in
the probability of not being in the target state, at the end of
one period, is derived as a function of the number of solved
constraint equations. Let us show the overall procedure by
working through a specific case.

A. Worked through case: Single spin

We concentrate here on the case of the Lie algebra su(2),
which can physically describe, for example, a single spin
driven by magnetic fields. A first application of STA methods
via CD driving to this kind of system was studied in Ref. [29].
Since for tracking the instantaneous ground state it is suffi-
cient to implement HCD without H , as discussed in Sec. II,
and for simplicity of presentation, we treat the case in which
one wants to approximate HCD alone by means of HE. The
general case, H + HCD approximated by H + HE, will be dis-
cussed at the end of this section. For clarity, let us work with
the Pauli matrices {σx, σy, σz}, having commutation relations
[σi, σj ] = 2iεijkσk . We assume that the Hamiltonian of the
system is controllable only along two directions, say x and
z, and can thus be written as

H (t ) = ux (t )σx + uz(t )σz. (8)

The field HCD, as discussed in Sec. III, will be directed along
the unavailable direction. It can be calculated explicitly [3,4]
and it has the form HCD(t ) = fCD(t )σy , with

fCD(t ) = −1

2

ux (t )∂tuz(t ) − ∂tux (t )uz(t )

ux (t )2 + uz(t )2
. (9)

To achieve compensation to first order in T at stroboscopic
times, we apply the E-CD Hamiltonian HE = cx (t )σx +
cz(t )σz, with control functions of the form (7). The first
nonzero term of the Magnus exponent produced by HE is the
second one, and has the desired matrix structure. Generalizing
to the choice of two arbitrary generators {σi, σj }, one has

M
(2)
E (T ) = −iεijk

2π

ω2−2X

L∑
n=1

1

n
[Ai,nBj,n − Bi,nAj,n]σk.

(10)

From Eq. (10) one can see that the highest order in T is
produced by the interplay of sin and cos components re-
lated to the same harmonic n, belonging to different control
functions ci and cj . There is no mixing between different

harmonics, and no mixing between fields with the same phase.
This feature is due to the properties of the integrals of the
form

∫ T

0 dt1 sin(nωt1)
∫ t1

0 dt2 cos(kωt2). Higher-order Mag-
nus terms can be computed analytically, but the expressions
get longer and longer with respect to Eq. (10).

Now, let us find the constraint equation to first order in T .
For this purpose, two amplitudes are sufficient and, since we
want M

(2)
E to be of order T , we choose X = 1/2 in Eq. (7). A

possible choice of control functions is then

cz(t ) = A
√

ω sin(ωt ), cx (t ) = B
√

ω cos(ωt ). (11)

Using this functions, we can compute the first Magnus terms.
Let tn = ti + nT , n = 1, 2, . . . , and let us indicate with

∫ T

the integral over a full period
∫ tn+T

tn
. The exponents of the

Magnus expansion for the CD and the effective dynamics
at the end of each period nT of the control functions are,
respectively,

MCD(T ) = −i

(∫ T

fCD(t )dt

)
σy

= −i[fCD(tn + T/2)T + o(T 3)]σy, (12)

ME(T ) = −iABT σy + o(T 3/2). (13)

The last equality in Eq. (12) is obtained by formally Taylor-
expanding fCD(t ) around the midpoint of the integration inter-
val, tn + T/2, and then integrating. Equating order-T terms in
Eqs. (12) and (13) one obtains the first constraint equation:
AB = fCD(tn + T/2). This can be straightforwardly solved,
and a possible solution for the nth period is

A =
√

|fCD(tn + T/2)|, B = sgn[fCD(tn + T/2)]A,

(14)

where sgn(x) indicates the sign of x and takes care of the
case in which fCD(t ), and thus the product AB, is negative.
Different solutions may be more suitable depending on the
structure of fCD.

The fact that the above solution for A and B, Eq. (14),
is a simple function of fCD evaluated at the midpoint of the
period suggests a straightforward manner to interpolate the
solutions in all intervals, obtaining continuous and smooth
amplitude functions A(t ) and B(t ). It is indeed sufficient to
replace fCD(tn + T/2) → fCD(t ) in Eq. (14) and the same
accuracy is maintained. As a conclusion, the effective field
can be written as

HE(t ) =
√

|fCD(t )|ω[sgn{fCD(t )} cos(ωt )σx + sin(ωt )σz].

(15)

Two immediate observations can be made from Eq. (15): First,
HE is proportional to

√
ω, so, as expected, a better sampling

can be obtained at the cost of having a stronger field. Second,
due to the proportionality with

√|fCD(t )|, the effective CD
field inherits to some extent the behavior of the exact one.
In particular, it vanishes when HCD does, that is, when the
probability of nonadiabatic transitions is zero.

The third constraint equation, M
(3)
E = 0, can be solved by

adding a further term −4A sin(2ωt )σz to Eq. (15).
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We conclude this section by discussing the more interesting
case in which H + HE approximates H + HCD. This scenario
is particularly important in a quasiadiabatic regime. When
nonadiabatic effects are strong, the correcting fields become
dominant with respect to the initial Hamiltonian H , and the
method is highly nonadiabatic. In fact, even if the instanta-
neous eigenvectors of H are tracked during the evolution,
the system is not in an instantaneous eigenstate of the total
(corrected) Hamiltonian which is actually applied, H + HCD

(or H + HE). On the other hand, if the nonadiabatic effects are
weak, then one can think of being close to true adiabaticity.

Depending on the problem, it might be convenient to move
to the time-dependent interaction picture for computing the ef-
fective field. In general, though, it becomes more complicated
to compute the terms in the Magnus expansion. In any case,
the treatment above can be repeated, and to order T 3 in infi-
delity, one still obtains the same effective field as in Eq. (15).

V. APPLICATIONS

In this section, we discuss three applications of the method
introduced in Sec. IV. The first one is the Landau-Zener-
Majorana (LZM) model [15–18]. This is the standard mile-
stone in the study of nonadiabatic effects and more generally
of the physics near avoided crossings in the energy spectrum.
The second one regards the adiabatic preparation of a two-
qubit entangled state, a task of central importance for quantum
information processing [30]. The last application generalizes
the first one and deals with a three-level system whose natural
evolution induces the formation of a sequence of avoided
crossings [19]. Such a model can describe local parts of many-
body nontrivial energy spectra.

We also benchmark the efficiency of the E-CD method
against standard (finite time) adiabatic driving. This is
done with a focus on the LZM case, it being the simplest
nonadiabatic scenario. This analysis underpins the usefulness
of the method not only for theoretical purposes but, more
importantly, for practical applications in the control of
quantum systems.

For setting up the comparison between the E-CD and
the adiabatic paradigms, a quantification of their respective
performance is first needed. Since this is not an obvious task,
let us here introduce the criteria which are adopted for this
purpose. The principle figure of merit we are interested in
is the infidelity IF = 1 − | 〈ψ (tf )|gs(tf )〉 |2, i.e., the proba-
bility that the final state |ψ (tf )〉 of the system is not in the
instantaneous ground state |gs(tf )〉 at the end of the protocol.
We are also interested in making the evolution as fast as
possible with as few resources as possible, but there is not
a unique way to quantify this. The general idea is that one
should not only take into account the full duration of the
protocol, but also the intensity of the Hamiltonian which is
applied to the system. Indeed, the adiabatic theorem [1,31]
(see Appendix A) formally states a property of the solutions
of the family of Schrödinger equations

ih̄∂sUτ (s) = τH (s)Uτ (s), (16)

for varying τ . Therefore, the theorem can be interpreted, on
one side, as describing a varying-duration behavior, if Eq. (16)
is obtained after a rescaling s = (t − ti )/τ of the physical time

for a fixed Hamiltonian. Alternatively, it can be interpreted
as describing an intensity-varying behavior, if Eq. (16) is
obtained from considering the duration fixed and amplifying
the Hamiltonian like H (t ) → τH (t ).

These considerations lead us to study the infidelity IF both
as a function of the protocol duration and of the ratio between
the strength of HE and that of the initial Hamiltonian H (t ).
We formalize this by choosing, as a measure of strength S (·),
the maximal Frobenius norm over the whole evolution,

S (H ) ≡ max
t

‖H (t )‖F . (17)

The Frobenius norm is defined as ‖A‖F = Tr(AA†) and pro-
vides a quantification of the magnitude of the whole Hamil-
tonian matrix. Different choices are possible as cost functions
depending on the resource one is interested in. For instance,
one might be practically interested in the maximal matrix
element, or the maximal or average amplitude reached by the
control functions.

With these tools at hand, let us now proceed to the discus-
sion of the above mentioned applications.

A. Landau-Zener-Majorana model

We demonstrate the general approach detailed in Sec. IV A
for the specific case of the Landau-Zener-Majorana model
[15–18]. Such a model describes a linear sweep of the gap
between the energy levels of a two-level system. As they
approach each other, the presence of a coupling h̄β/2 prevents
a net crossing, and an avoided crossing is produced instead
with minimal gap h̄β. Assuming that the sweep spans an
energy difference h̄α in a time interval ti � t � tf , and that
the anticrossing takes place at the intermediate time tc =
(tf − ti )/2, the Hamiltonian can be written in the form

HLZM(t )/h̄ = α

2

t − tc

tf − ti
σz + β

2
σx.

In order to study the adiabatic properties of the system, it is
convenient to rescale the quantities in terms of β, which de-
fines a fundamental frequency scale of the problem. Further-
more, let us parametrize the time according to s = t−ti

tf −ti
, with

0 � s � 1. In terms of the dimensionless quantities s, ε =
α/β and τ = β(tf − ti ), the Schrödinger equation becomes

i
∂U (s)

∂s
= τ

2

[
ε

(
s − 1

2

)
σz + σx

]
U (s). (18)

The parameter ε determines the distance, in units of β, from
the avoided crossing at the beginning and at the end of the
protocol. It also rules the decay rate of the LZM oscillations
in the transition probability, i.e., of nonadiabatic transition,
after the anticrossing [32,33] (see also Appendix A in [34]).
Assuming that the system starts in the ground state, the tran-
sition probability to the excited state (i.e., of a nonadiabatic
transition) is shown in Fig. 2. The asymptotic value, for large
times, is given by the Landau-Zener formula [16–18],

PLZ = exp
(
−πτ

2ε

)
. (19)
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FIG. 2. Evolution given by the LZM Schrödinger equation (18),
with parameters ε = 20, τ = ε. Above, the populations of the bare
states are depicted. The dashed lines represent the true instantaneous
eigenstates, while the solid blue and dot-dashed orange lines repre-
sent the LZM evolution. Below, the infidelity, i.e., the probability of
nonadiabatic transition, is shown. In both plots, the thin gray line
represents the prediction given by the LZM formula, Eq. (19).

The CD field for this problem, satisfying i∂sU = τHCD(s)U ,
is HCD(s) = fCD(s)σy , with

fCD(s) = − 1

2τ

ε

ε2
(
s − 1

2

)2 + 1
.

This CD protocol was experimentally studied in Refs. [5,35].
From the results of the previous Sec. IV A, Eq. (15), the di-
mensionless effective CD field, satisfying i∂sU = τHE(s)U ,
is

HE(s) =
√

|fCD(s)|ω[− cos(ωsτ )σx + sin(ωsτ )σz], (20)

with ω = 2π/(βT ). The negative sign in front of the cosine is
due to the fact that fCD is always negative.

The dynamics given by H alone can be compared with
the one produced by HE from Figs. 2 and 3, for β = 1.
As expected, the E-CD dynamics oscillates fast, remaining
close to the target one. In the vicinity of the anticrossing,
where nonadiabatic effects are strong, the deviation between
consecutive periods is larger.

Let us now study the comparison between the E-CD and
finite-time adiabatic methods more thoroughly. In particular,
we show that the E-CD strategy can provide a consistent
speedup of adiabatic protocols, characterizing the important
regimes of parameters in terms of duration of the protocol and
strength of the involved Hamiltonians.

Specifically, we compute the infidelity obtained with the
E-CD Hamiltonian for different total durations τ , after having
selected the maximal frequency ω such that, for a certain
factor k, the inequality

S (HE) � kS (H ), (21)

with S defined in Eq. (17), holds.
Let us remark that nonadiabatic transitions are exponen-

tially weak in the adiabatic parameter [36,37]. On the other
hand, one expects that the efficiency of the E-CD method

FIG. 3. Evolution given by the E-CD field, Eq. (20), with param-
eters ε = 20, τ = 20, NT = 2τ . Above, the populations of the bare
states are shown, with an inset zooming around the avoided crossing.
The solid (orange/blue) lines represent the E-CD dynamics, which
oscillates around the true adiabatic one, represented by dashed lines.
Below, the infidelity, i.e., the probability of nonadiabatic transition,
is shown.

increases polynomially when raising the frequency ω, since it
is based on a perturbative argument. Therefore, one can safely
predict that the adiabatic method, for very large τ and for a
fixed maximal strength of the control fields, performs better.
Nonetheless, what we are interested in is the intermediate
range of durations, very far from the asymptotic limit in τ ,
which is the regime where practical protocols need to work.

The results for the LMZ model are shown in Fig. 4 and 5.
In Fig. 4, the case in which only HE, as a stand-alone shortcut
to adiabaticity, is applied is reported. As expected from the
above discussion, the infidelity under effective CD driving
scales like a power law for large durations τ , and eventually
the adiabatic exponential decay takes over. However, in the
intermediate range of τ , the effective method does permit us
to achieve an important speedup of the adiabatic process, for
fixed infidelity. The range of improvement gets wider and
wider as one allows a stronger correcting field, while still
remaining below the maximal norm of H . For example, one
can reach a fidelity of ∼99.9% twenty times faster using an
E-CD field of the same strength of H (t ) [k = 1 in Eq. (21)].
Figure 5 shows the same results for the case in which the
E-CD Hamiltonian is implemented beside H (t ), and thus acts
as a weak correcting field to the major dynamics induced
by H (t ). The final infidelity oscillates strongly for different
values of τ (thin gray line), so the points indicate an average of
20 surrounding points. The oscillations can bring the infidelity
to much lower values, but never much higher than those
represented by the points. This method performs worse in
numbers than the previous case (Fig. 4) for small τ , but its
main advantage is that it allows us to preserve true adiabaticity
to a certain extent. That is, the driven states are close to being
instantaneous eigenstates of the full Hamiltonian H + HE,
since HE is weaker than H and averages to zero in time. One
can see that there is an initial regime in which the protocol is
too fast for the correction to give a significant improvement,
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FIG. 4. Comparison between finite-time adiabatic dynamics and
E-CD driving, using only HE. Different (colored) line styles rep-
resent the results for different ratios k in relation (21). The empty
squared points represent the adiabatic dynamics, whose behavior is
well predicted by the LZ formula of Eq. (19) (black solid line). For
each τ , the number of periods NT is determined as the largest integer
smaller than ωτ/2π , once ω is chosen to be the largest such that
Eq. (21) is satisfied. The conversion to integers explains the steps in
the colored curves. The beginning of the latter is determined by the
condition NT > 1.

and a second regime in which the infidelity follows essentially
the same behavior as in Fig. 4. As an example, an infidelity of
at least ∼10−4 can be achieved with a speedup of around ∼6.5
times, using a maximal strength of the correcting field satisfy-
ing Eq. (21) with k = 1/2. A speedup of 2.2 times is obtained
in the case k = 1/4 for the same infidelity. All these results
confirm that the E-CD method represents an efficient strategy

FIG. 5. The results obtained with the procedure described in
Fig. 4, shown for the application of the total Hamiltonian H + HE.
The solid line represents the adiabatic dynamics, while different line
styles represent the E-CD method for different values of the factor
k in Eq. (21), i.e., for different strength of HE as compared to H .
The infidelity oscillates fast for different τ , as shown by the thin gray
line for the case k = 1/2, so the depicted points are representing an
average of 20 surrounding points.

FIG. 6. Comparison between finite-time adiabatic and E-CD
driving in terms of the infidelity as a function of the time integral
of the Frobenius norm of the respective Hamiltonians [Eq. (22)],
for parameters ε = 40, β = 1. The adiabatic curve (upper line) is
obtained by raising the amplifying factor (corresponding to the total
duration) τ of the original Hamiltonian, while the E-CD curve (lower
line) is obtained by keeping the initial value of τ fixed, while raising
the frequency ω. The quantity on the abscissa is dimensionless,
having set h̄ = 1.

for obtaining fast adiabatic evolution, without requiring strong
drivings.

The second criterium for comparing adiabatic and effective
CD driving is the following: we consider the total duration to
be fixed, 0 � s � 1, and we compare the dynamics produced
by the amplified Hamiltonians Hτ (s) with the one produced
by HE for increasing values of the frequency ω. Due to
the intertwined relation between duration and amplitude, we
choose as a basis for comparison the integral of the norm over
the whole evolution

∫ tf

ti

dt‖HX(t )‖F . (22)

The results are shown in Fig. 6. As for the previous criterium
adopted, they are rather promising, confirming the validity of
the E-CD method. Indeed, the E-CD Hamiltonian turns out
to always produce a better infidelity, for a given total integral
norm of the Hamiltonian, in the range of values studied.

The robustness of the method against static errors in the
parameters, namely amplitude and relative phase of the fields,
is discussed in Appendix C. The results show that the method
is not very sensitive to errors: it behaves linearly with respect
to amplitude noise and quadratically with respect to phase
noise.

B. Two-qubit entanglement creation

The ability to reliably produce and manipulate entangle-
ment is at the core of quantum information processing [30].
High-fidelity entanglement preparing protocols are thus a cen-
tral touchstone for the development of quantum technologies.
These are typically difficult to realize, especially due to the
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necessity of strong interactions and the ability of controlling
many of them.

Here, we use the E-CD method for the high-fidelity adia-
batic preparation of a two-qubit entangled Bell state, requir-
ing time-dependent control of local terms and one two-body
interaction. Specifically, let us consider the Hamiltonian

H (s) = B(s)H1 + g(s)H2

= −B(s)
(
σ (1)

z + σ (2)
z

) − g(s)
(
σ (1)

x σ (2)
x + σ (1)

z σ (2)
z

)
.

(23)

The Hamiltonian H1 is local, while H2 has entangled eigen-
states. Varying the field B(s) from high values to very small
values, while keeping g fixed, the adiabatic path of the ground
state connects a separable state |00〉 to an entangled Bell state
|ψ+〉 = 1√

2
(|00〉 + |11〉). In particular, we fix g = 1, choose

the simple time dependence B(s) = ε(1 − s), and consider a
total duration τ of the protocol.

The dynamical Lie algebra L of the system has dimension
four and is isomorphic to u(2), so the system is not fully
controllable, since L ⊂ su(4). However, from Theorem 1, we
already know that the Hamiltonian HCD will be inside L, and
will thus be a combination of the four basis elements. Since
we know from Sec. II that HCD is orthogonal, with respect
to the Hilbert-Schmidt inner product, both to H (t ) and its
time derivative, we also know that it will not have components
along H1 and H2. Indeed, HCD can be computed analytically
(Appendix D) and turns out to have the form

τHCD(s) = 1

2

ε

4ε2(1 − s)2 + 1
H3 = τfCDH3, (24)

where H3 = σ (1)
x σ (2)

y + σ (1)
y σ (2)

x is a hopping term. Therefore,
HCD would require the time-dependent control of an extra
two-body interaction.

In order to avoid the additional implementation of H3, we
can use the results of Sec. IV A, since H3 ∝ [H1,H2]. We thus
apply an E-CD field of the form HE(s) = c1(s)H1 + c2(s)H2,
with control functions

c1(s) = −
√

|fCD(s)|ω cos(ωsτ ),

c2(s) =
√

|fCD(s)|ω sin(ωsτ ).

The outcomes of a numerical simulation with parameters
ε = 5, τ = 5, NT = ωτ/2π = 10 are reported in Fig. 7. A
final infidelity of 1.7 × 10−3 is produced with a speedup of
∼12 times, for HE having maximal strength S (HE) � 1

2S (H )
[see Eq. (17)]. These results are extremely favorable, showing
that the E-CD method provides a concrete advantage as a
quantum control tool for a difficult and important task such
as entanglement creation.

C. Three-level system

We apply now the E-CD scheme to the case of a three-level
system undergoing a sequence of LZM avoided crossing.
The calculation and application of the exact CD field was
discussed in detail in Ref. [19]. The Hamiltonian, in terms of

FIG. 7. Preparation of a two-qubit entangled state via the E-CD
method (solid blue), compared against standard adiabatic (dashed
red). The results are zoomed in the rescaled-time interval 0.7 � s �
1 for better visibility and the parameters are ε = 5, τ = 5, T = 1/2.
Above, the evolution of the population of the bare level |00〉 is
shown, with the black dashed line indicating the target dynamics.
The two eigenstates (|01〉 ± |10〉)/

√
2 are never populated, while the

state |00〉 is adiabatically converted into the entangled superposition
(|00〉 + |11〉)/

√
2. Below, the infidelity is represented, reaching a

final value of ∼0.1 for adiabatic driving and 1.7 × 10−3 for E-CD
driving. The total speedup is of ∼12 times using an E-CD field HE

with maximal strength satisfying S (HE) = 1
2S (H ) [see Eq. (21)].

dimensionless quantities, reads

H (s) =

⎛
⎜⎝

d + ε
(
s − 1

2

)
1 0

1 −2d 1

0 1 d − ε
(
s − 1

2

)
⎞
⎟⎠. (25)

This Hamiltonian can physically describe an effective spin-
1. For example, it could describe a local part of the energy
spectrum of a molecular nanomagnet [38], which is subject
to a constant magnetic field along the x direction, a linearly
sweeping magnetic field along the z direction, and an axial
zero-field splitting [19]. The Hamiltonian is real, so we are
in the situation of Theorem 2. The CD field HCD cannot be
computed analytically for all times, but has the general form

HCD =

⎛
⎜⎝

0 −if
(12)

CD −if
(13)

CD

if
(12)

CD 0 −if
(23)

CD

if
(13)

CD if
(23)

CD 0

⎞
⎟⎠, (26)

with f
(12)

CD and f
(23)

CD always negative, while f
(13)

CD assumes also
positive values. The effective field is chosen of the form

HE = √
ω

⎛
⎝c3(t ) c1(t ) 0

c1(t ) 0 c2(t )
0 c2(t ) −c3(t )

⎞
⎠. (27)

The control functions c(t ) are chosen such that the con-
straint equations given by M

(1)
CD = M

(2)
E can be easily solved

analytically, ensuring precision in infidelity at least to order
T 3 at the end of one period. This is done by recalling, as
observed in Sec. IV A, that only sines and cosines of the same
harmonics contribute to the first set of constraint equations.
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FIG. 8. Comparison of E-CD and adiabatic methods for the
three-level system with Hamiltonian of Eq. (25) and parameters
τ = 25, ε = 40, d = 5/2. The evolution of the populations of the
bare states is shown in dotted-solid red for adiabatic driving, by the
blue solid line for E-CD driving, in dashed black for true (target)
adiabatic dynamics. The inset highlights the oscillation of the E-CD
dynamics around the target one.

They read

c1(t ) = A cos(ωt ) − B cos(2ωt ),

c2(t ) = C sin(ωt ) − D cos(3ωt ),

c3(t ) = B sin(2ωt ) + D sin(3ωt ).

The constraint equations are

1

4
T B2 = −

∫ T

f
(12)

CD (t )dt, (28a)

1

6
T D2 = −

∫ T

f
(23)

CD (t )dt, (28b)

1

2
T AC = −

∫ T

f
(13)

CD (t )dt. (28c)

Approximating the integrals with the value of the integrated
functions multiplied by T , as explained in detail in Sec. IV A,
an interpolated solution for Eqs. (28) is given by

A(t ) = − sgn
[
f

(13)
CD

]√
2
∣∣f (13)

CD

∣∣, B(t ) = 2
√∣∣f (12)

CD

∣∣,
C(t ) =

√
2
∣∣f (13)

CD

∣∣, D(t ) =
√

6
∣∣f (23)

CD

∣∣. (29)

The results with parameters τ = 25, ε = 40, d = 5/2 are
shown in Fig. 8. A speedup of 2.5 times is obtained, for equal
strength S (HE) = S (H ) of the Hamiltonians. This shows that
the E-CD paradigm behaves well also in a situation where
more complex nonadiabatic phenomena are present in the
dynamics of the quantum system.

VI. CONCLUSION

We have introduced and discussed a method for
speeding-up adiabatic quantum state transfer without
requiring the introduction of new Hamiltonian components,
while remaining always close to the true adiabatic path.
This is achieved by introducing a control Hamiltonian which

simulates in real time the effect of a counterdiabatic field
[3,4], but can be adsorbed into the initial Hamiltonian H (t ).
As a trade-off, complete control of H (t ) is required. However,
the algebraic results of Sec. III can be exploited to limit the
number of independent control Hamiltonians needed in H (t )
to implement the control protocol. For instance, we have
shown in Sec. V that, by encoding a two-level problem into
a two-qubit framework, a two-qubit entangled state can be
prepared with high fidelity in short time, requiring control of
a single two-body interaction and a local field.

Effective counterdiabatic Hamiltonians have been com-
puted for the prototype applications studied, by choosing
control functions which produce simple constraint equations
for the amplitudes; see Secs. IV A and V. Remarkably, this
allowed us to solve the equations analytically, and to ob-
tain satisfying results without resorting to heavy numerical
methods. Nonetheless, the structure of the E-CD problem still
leaves room for optimization of the parameters, so further
improvement can be predicted by the hybridization with op-
timal control strategies [25]. Moreover, one could combine
the E-CD method with a preselection of an optimal adiabatic
protocol. For instance, one might first conceive a “local” adia-
batic driving [39], in which the evolution is accelerated where
nonadiabatic effects are small and then slowed down in the
vicinity of avoided crossings. This would provide an a priori
improvement of the basic adiabatic protocol with respect, for
example, to a simple LZM sweep. Such a protocol could then
be ulteriorly sped up by means of E-CD corrections.

In particular, the simplicity and versatility of the E-CD
method makes it a strong strategy for the control of adiabatic
processes. Therefore, we expect it to be of practical
interest for many applications, ranging from quantum
state preparation to adiabatic quantum computing [40,41],
quantum thermodynamics [42,43], and probing of quantum
critical dynamics [44–47].

The method has been developed for finite-dimensional
quantum systems. Still, the scheme could in principle be
applied to infinite-dimensional systems with discrete levels,
or restricted to well-separated nonpathological parts of the
spectrum. Pathological here refers to possible degeneracies
or continuous spectra. The first case, which is problematic
also for finite dimensions, would require addressing the de-
coupling of instantaneous eigensubspaces, rather then single
instantaneous eigenvectors. On the other hand, continuous
spectra would require a revision of the CD framework, starting
from the adiabatic theorem itself [48]. Concerning the more
mathematical results, noncompactness of the dynamical Lie
group of the system would break some of the assumptions
used in our control-theoretic setting [49], which should then
be investigated more thoroughly.
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APPENDIX A: PROOF OF THEOREM 1

Before proceeding with the proof of Theorem 1, and to fix
notation, let us recall the basic formulation of the adiabatic
theorem.

Considering the Schrödinger equation, ih̄∂tU (t ) =
H (t )U (t ), from initial time ti , let us parametrize the physical
time t according to t − ti = sτ, 0 � s � 1, where τ = tf − ti
is the total evolution time. The equation becomes

ih̄∂sUτ (s) = τH (s)Uτ (s). (A1)

Theorem 3 (adiabatic theorem [1,2]). Let Uτ (s) be the
solution of (A1). Then,

Uτ (s) −
∑

n

e− i
h̄
τ

∫ s

0 En(t (s ′ ))ds ′ |n(t (s))〉 〈n(0)| = O(τ−1).

(A2)

In the adiabatic limit τ → ∞, and for s = 1, it holds exactly

Uτ (1)
τ→∞−→ Uad(ti , t ) ≡

∑
n

e
− i

h̄

∫ t

ti
En(t ′ )dt ′ |n(t )〉 〈n(0)| .

(A3)

Under the control-theoretic setup introduced in Sec. III, we
proceed with the proof of Theorem 1.

Proof. Let ĤCD = HCD( t̂ ) be the time-independent matrix
obtained by evaluating HCD(t ) at the time instant t = t̂ . In
order to prove that HCD ∈ L, one can equivalently show
that either (i) HCD can be written at all times as a linear
combination of elements of a basis of L, or (ii) that the group
elements generated by the matrices ĤCD for all time instants
t̂ , e−iĤCDt , can be written as a concatenation of elements of
the group eL. We follow route (ii). With the initial time ti set
to zero and h̄ set to one for simplicity of notation, let UCD(t )
be the solution of the Schrödinger equation

i∂tUCD(t ) = HCD(t )UCD(t ) = [Hcorr(t ) − H (t )]UCD(t ),

where the Hamiltonian Hcorr was introduced in Sec. II. Let us
assume that a Magnus expansion (see Appendix B) UCD(t ) =
eMCD(t ) can be formally written, where

MCD(t ) = −i

∫ t

0
[Hcorr(t1) − H (t1)]dt1

− 1

2

∫ t

0
dt1

∫ t1

0
dt2[HCD(t1),HCD(t2)] + · · · .

(A4)

Now, calling Mcorr(t ) and M (t ) the Magnus exponents gen-
erated by Hcorr and H , respectively, the terms in (A4) can be
rearranged as to give

MCD(t ) = Mcorr(t ) − M (t ) + R(t ), (A5)

with

R(t ) = − 1

2

∫ t

0
dt1

∫ t1

0
dt2[Hcorr(t1),H (t2)]

− 1

2

∫ t

0
dt1

∫ t1

0
dt2[H (t1),Hcorr(t2)] + · · · .

By expanding in Taylor series around the midpoint t∗ = t/2
of the (small) integration interval (0, t ), see Eq. (B6) in

Appendix B, one can write

R(t ) = − 1

12

([
H (1)

corr,H
(0)

] − [
H (0)

corr,H
(1)

])
t3 + o(t4),

where we have used the notation

H
(k)
X = 1

k!

∂kHX(t )

∂kt

∣∣∣∣
t∗
.

Therefore R(t ) = o(t3).
Now, considering small times t , and using repeatedly

the Zassenhaus formula [50] to factorize the exponential
exp{MCD(t )}, UCD can be decomposed like

UCD(t ) = Ud(t )U †(t )e− 1
2 [MCD(t ),M (t )]eo(t3 ).

The unitary matrix Ud(t ), introduced in Sec. II, is the
solution of i∂tUd = HcorrUd. Proceeding as above, one
can estimate − 1

2 [MCD(t ),M (t )] = o(t2). The adiabatic
theorem, Eqs. (A2) and (A3), then states that Ud(t ) can be
approximated to arbitrary precision through an adiabatic
process of long duration τ ,

UCD(t ) = Uad(t )U †(t )eo(t2 ) + o(τ−1). (A6)

We are then ready to prove the theorem. First of all, let us
observe that, for sufficiently small t , one can rewrite

ĤCD = ∂

∂t̂

∫ t̂

0
HCD(t1)dt1 = 1

t

∫ t̂+t

t̂

HCD(t1)dt1 + o(t ).

(A7)

Applying the exponential map to Eq. (A7) and using Eq. (A6)
we eventually obtain

e−iĤCDt = UCD(t̂ , t̂ + t )eo(t2 )

= Uad(t̂ , t̂ + t )U †(t̂ , t̂ + t )eo(t2 ) + o(τ−1). (A8)

Since Uad and U can be realized via time-dependent control
of H (t ), they belong to the group eL. Equation (A8) then
means that, for all times t̂ , the group element exp(−iĤCDt )
generated by −iĤCD can be approximated by a concatenation
of elements of the group eL, arbitrarily well for sufficiently
small t and large τ . That is, ĤCD ∈ L for all t̂ . �

APPENDIX B: MAGNUS EXPANSION

1. Basics and useful bounds

The Magnus expansion [50,51] is a representation of
the evolution operator U (t ), solution of the time-dependent
Schrödinger equation ih̄∂tU (t ) = H (t )U (t ), in exponential
form U (t ) = exp{M (t )}. The exponent M (t ) is an infinite
sum M (t ) = M (1)(t ) + M (2)(t ) + · · · , whose first terms read

M (1)(t ) = − i

h̄

∫ t

0
H (t1)dt1, (B1)

M (2)(t ) =
(−i

h̄

)2 ∫ t

0
dt1

∫ t1

0
dt2[H (t1),H (t2)], (B2)

M (3)(t ) =
(−i

h̄

)3 ∫ t

0
dt1

∫ t1

0
dt2

×
∫ t3

0
dt3([H (t1), [H (t2),H (t3)]]

+ [H (t3), [H (t2),H (t1)]]). (B3)
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We will in general denote with M
(k)
X the kth Magnus term

for the Hamiltonian HX. The behavior of the Magnus terms
for small integration time t can be conveniently studied by
Taylor-expanding the Hamiltonian around the midpoint of the
integration interval, and computing the integrals afterwards
[51]. It turns out that, due to the time symmetry of the
expansion, all terms are odd functions of t . In particular, one
has

M (2m)(t ) = o(t2m+1), M (2m+1) = o(t2m+3). (B4)

Due to its usefulness in Appendix A, for the proof of Theorem
1, we do the explicit calculation for the following “general-
ized” Magnus term, which involves the commutator of two
different matrices,

�2(t ) = 1

2

∫ t

0
dt1

∫ t1

0
dt2[A(t1), B(t2)]. (B5)

Let us denote with t∗ = t/2 the midpoint, and let us introduce
the notation

ak = 1

k!

∂kA(x)

∂kx

∣∣∣∣
t∗
, bk = 1

k!

∂kB(x)

∂kx

∣∣∣∣
t∗
.

Inserting the Taylor expansions A(t ) = ∑
k ak (t − t∗)k and

B(t ) = ∑
k bk (t − t∗)k into Eq. (B5) one obtains

�2(t ) = 1

2

0,∞∑
k,n

1

n + 1

{
1 − (−1)k+n+2

k + n + 2

− (−1)n+1[1 − (−1)k+1]

k + 1

}
[ak, bk]

(
t

2

)n+k+2

= 1

4
[a0, b0]t2 + 1

24
([a1, b0] − [a0, b1])t3

+ 1

48
([a0, b2] + [a2, b0])t4 + o(t5). (B6)

2. Error in the infidelity for the E-CD method

It is useful in our study to estimate the error when the
expansion is truncated. In particular, we will focus on the error
in the infidelity at the end of one period T of the oscillating
control functions, for the problem of approximating UCD by
means of UE, and for the class of Hamiltonians characterized
by Theorem 2 (see the end of Sec. IV). We will assume that
the system starts in the ground state |gs(ti )〉 at the initial time
ti . Writing the states in terms of the evolution operators, and
denoting with 〈·〉 the expectation value 〈gs(ti )| · |gs(ti )〉, the
infidelity can be written in the form

IF = 1 − |〈U †
CDUE〉|2. (B7)

We then write the propagators in terms of their Magnus ex-
pansions, U

†
CD(T ) = e−MCD(T ) and UE(T ) = eME(T ), and use

the Baker-Campbell-Hausdorff formula for computing the
product U

†
CDUE. Assuming that one has solved the constraint

equations, discussed in Sec. IV, involving the first 2m Magnus
terms of UE, then it holds

m∑
k=1

M
(k)
CD =

2m∑
k=1

M
(k)
E .

We can then write

〈U †
CDUE〉 = 〈

exp
{
M

(2m+1)
E + M

(2m+2)
E − M

(m+1)
CD

− 1
2

[
M

(1)
CD,M

(2m+1)
E

]
(B8)

− 1
2

[
M

(m+1)
CD ,M

(2)
E

] + · · · }〉. (B9)

Let us remark that, since the oscillations in HE are much
faster than the timescales of HCD, the behavior in Eq. (B4)
does hold for MCD(T ), that is, M

(2m)
CD (T ) = o(T 2m+1) and

M
(2m+1)
CD (T ) = o(T 2m+3). For the dynamics UE, though, the

integration is over a full period and the same is thus not true.
Recalling the prefactor

√
ω in HE, the E-CD Magnus terms

are of order M
(m)
E (T ) = o(T m/2). Equation (B9) can then be

expressed like

〈U †
CDUE〉 = 〈

exp
{
M

(2m+1)
E + o(T m+1)

}〉
. (B10)

One can now expand the matrix exponential in Taylor series
and take the expectation value termwise. Taking the modulus
squared, for a generic Hermitian matrix X, it holds

|〈eiXt 〉|2 = 1 + t2(Re〈X2〉 + |〈X〉|2) + o(t3). (B11)

Applying the same reasoning to Eq. (B10) and inserting into
Eq. (B7) one finally obtains

IF(T ) = −Re
〈(
M

(2m+1)
E

)2〉 − ∣∣〈M (2m+1)
E

〉∣∣2 + o(T 2m+ 3
2 )

(B12)

= o(T 2m+1). (B13)

APPENDIX C: ROBUSTNESS

We test the robustness of the E-CD method against possible
experimental imperfection for the LZM case discussed in
Sec. V A. We take into account possible errors in the am-
plitude and relative phase of the driving fields. This is done
by adding a static relative offset δ. More specifically, with
reference to Eq. (20),

sin(ωsτ ) → (1 + δ) sin(ωsτ ),

sin(ωsτ ) → sin(ωsτ + 2πδ), (C1)

with −1/2 � δ � 1/2. The quantity F = |〈gs(tf )|ψ (tf )〉|2 is
the final fidelity between system state |ψ (tf )〉 and target
(ground) state |gs(tf )〉, while F0 is the fidelity in the absence
of errors. The behavior of the relative error |1 − F/F0| is
shown in Fig. 9 as a function of the offset δ for the two error
situations described by Eq. (C1). Both positive and negative
values of δ are considered. The E-CD method results in being
mostly linearly stable against amplitude errors, while it turns
out to be quadratically sensitive to phase errors. It should be
remarked that in some cases small errors in amplitude can
incidentally lead to a small improvement of the method: this
can be seen from the two regimes observable for positive
δ. The negative peak around 10−1 indicates the transition
between a region δ < 10−1 where the protocol improves and a
region for greater values where it performs worse instead. The
behavior is symmetric with respect to the sign of δ for phase
noise.
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FIG. 9. Robustness of the E-CD method, Eq. (20), against im-
perfections in amplitude and relative phase of the control fields as
considered in Eq. (C1). For the amplitude, the solid line indicates
the results for relative error δ > 0, while the dashed line is used for
δ < 0. In the case of the relative phase, the results are completely
symmetric with respect to the sign of δ (the two lines are overlap-
ping). The dependence on δ is linear for the amplitude for |δ| < 10−2.
It is quadratic instead for the relative phase.

APPENDIX D: CD FIELD FOR THE
TWO-QUBIT PROBLEM

In this Appendix, we report the explicit computation of the
CD field for the two-qubit problem described in Sec. V B. The
initial Hamiltonian in dimensionless units, see Eq. (23), is

H (s) = −ε(1 − s)
[
σ (1)

z + σ (2)
z

] − [
σ (1)

x σ (2)
x + σ (1)

z σ (2)
z

]
.

As a first step, we need to diagonalize H (s). First of all,
H (s) can be partially diagonalized by writing it in the (time-
independent) basis

B1 =
{
|00〉 ;

|01〉 + |10〉√
2

;
|10〉 − |01〉√

2
; |11〉

}
.

Let Q be the change-of-basis matrix from basis B0 =
{|00〉 , |01〉 , |10〉 , |11〉} to B1, thus having the kets in B1 as
columns. The Hamiltonian reads⎛

⎜⎝
−1 + 2ε(s − 1) 0 0 −1

0 0 0
0 0 2 0

−1 0 0 −1 − 2ε(s − 1)

⎞
⎟⎠. (D1)

We thus see that two levels are actually decoupled among
themselves and from the rest of the spectrum. What remains
to be diagonalized is a two-by-two real symmetric matrix
(formed by the four corner elements). For this we can use the
usual convenient trigonometric parametrization of two-by-two
unitary matrices [3], and the matrix diagonalizing (D1) is

P (s) =

⎛
⎜⎝

− sin[θ (s)] 0 0 cos[θ (s)]
0 1 0 0
0 0 1 0

cos[θ (s)] 0 0 sin[θ (s)]

⎞
⎟⎠,

with θ (s) = 1
2 arctan[ 1

2ε(1−s) ]. Eventually, the full diagonaliz-
ing matrix is U (s) = P (s)Q, and thus the CD field can be
readily computed, recalling that s = (t − ti )/τ ,

HCD(s) = i

τ

∂U (s)

∂s
U (s)†

= 1

2τ

ε

1 + 4ε2(s − 1)2

[
σ (1)

x σ (2)
y + σ (1)

y σ (2)
x

]
.
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