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Efficient calculation of Rayleigh and Raman scattering
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We present two methods for computing the Rayleigh and Raman scattering cross sections for photon scattering
on atomic hydrogen or hydrogenlike systems. Both methods are applicable for incident photon energies above
the ionization threshold. The first method implements the well-known Gaussian quadrature approach to deal with
principal value integration and relies on evaluation of the exact eigenfunctions of hydrogen. The second, more
computationally efficient approach uses a finite-L2 basis expansion of the target and applies complex exterior
scaling methods to accurately account for the contribution of the intermediate continuum states. This method is
much more general in that it does not rely on analytic solutions to the Hamiltonian, or evaluation of any special
functions, and is expected to be applicable to more complex systems where exact wave functions are cumbersome
to evaluate. Both methods are in complete agreement with previous work based on analytical representations of
the Green’s function or the dipole matrix elements. Rayleigh, Raman, and photoionization cross sections for
scattering on the first few excited states of atomic hydrogen are presented and compared with previous results
where available.
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I. INTRODUCTION

The problem of photon-atom scattering using a fully quan-
tum approach has been well understood since the mid 1920s.
The development of the Kramers-Heisenberg-Waller (KHW)
matrix elements [1–3] provided a clear description of photon
scattering processes up to second order in perturbation theory.
In turn, it established the foundation for various applications
of photon scattering processes, such as Raman spectroscopy
[4], radiation transport and opacity [5,6], and, more recently,
quantum illumination and radars [7,8].

Calculation of the KHW matrix elements is complicated
by contributions from the continuum and, for incident photon
energies above the ionization threshold, the need to correctly
deal with the pole terms. Most calculations are restricted to
the case where the Green’s function may be given analytically
or where the bound-bound and bound-free dipole matrix
elements are known analytically. For example, Gavrila [9]
presented analytical expressions for the elastic scattering of
photons from the ground state. Saslow and Mills [10] pre-
sented analytic expressions for the 1s → 2s Raman scattering
transitions and discussed the importance of the continuum
intermediate states. Sadeghpour and Dalgarno [11] calculated
Rayleigh and Raman scattering by hydrogen and cesium using
numerical solutions to the response functions to avoid the
infinite summation in the KHW matrix elements. Many other
publications which consider Rayleigh and Raman scattering
restrict their calculations to below the ionization threshold.
For example Drühl [12] considered Raman scattering on
iodine using only small incident photon energies and was,
thus, able to approximate a sum over all intermediate states
using dipole summation rules. Delserieys et al.[13] considered
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Raman scattering on Mg using only contributions from a small
number of bound states and assumed that contributions from
all other states are negligible.

A recent publication by Bachau et al. [14] considered
scattering of short laser pulses on the metastable 2s state of
hydrogen and showed that for the intensity considered (3.51 ×
1016 W cm−2), results from solving the time-dependent
Schrödinger equation were in good agreement with the KHW
matrix element calculation using perturbation theory. In or-
der to calculate the KHW matrix element they considered
two analytic approaches, the first requiring the evaluation of
Appell functions and the second using an inhomogeneous
differential-equation-type method. This is in contrast to the
relative simplicity of the equations for scattering from the 1s

state [15] and shows that the complexity of the analytic forms
grows when considering scattering from higher excited states.

Here we present two computational approaches for scat-
tering of photons on hydrogen atoms at low and intermediate
incident energies. These techniques do not rely on analytical
evaluation of the Green’s function or the dipole matrix ele-
ments. The first method provides a direct numerical calcu-
lation of the KHW matrix element for particular transitions
using the exact eigenfunctions to calculate the dipole matrix
elements. The second method uses a finite L2 basis and
complex exterior scaling (CES) [16–18] to accurately account
for contributions from all intermediate states and provides a
computationally efficient and accurate method for calculating
the KHW matrix element for transitions between any two
states at arbitrary photon energies.

II. THEORY

A. Photon-atom scattering

In this paper we use atomic units. The nonrelativistic
atom-field interaction Hamiltonian is written in the Coulomb
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gauge as

Hint = A2

2c2
− A · p

c
. (1)

By considering only the first-order contributions of the seagull
term, A2, and second-order contributions of the A · p term, the
differential cross section for photon scattering between two
states is given by

dσf i

d�
= r2

0
ω′

ω
|Mf i |2, (2)

where r0 is the classical electron radius, and ω and ω′ denote
the energy of the incident and outgoing photons. Mf i is
the well-known Kramers-Heisenberg-Waller matrix element
[1,2],

Mf i = ε · ε′∗〈f |ei(k−k′ )·r|i〉

−
∑∫

t

[ 〈f |e−ik′ ·r(ε′∗ · p)|t〉〈t |eik·r(ε · p)|i〉
Et − Ei − ω − i0

+ 〈f |eik·r(ε · p)|t〉〈t |e−ik′ ·r(ε′∗ · p)|i〉
Et − Ei + ω′

]
, (3)

where ε (ε′) and k (k′) denote the incident (outgoing) photon
polarization and momenta, respectively, Et denotes the energy
of state |t〉, and the sum represents a sum over all intermediate
bound states as well as an integral over the continuum. The
outgoing photons satisfy the energy conservation condition
Ei + ω = Ef + ω′. As we are considering Rayleigh and
Raman scattering to low-lying (i.e., not Rydberg) states, it
is reasonable and convenient to apply the dipole approxi-
mation, equivalent to setting k = k′ = 0. We also limit our
calculations to relatively low photon energies, ω < 10 a.u.,
where the A · p terms are dominant [15]. Using the dipole
approximation the KHW matrix element may be rewritten as

Mf i = ωω′ ∑∫
t

[ 〈f |ε′∗ · D|t〉〈t |ε · D|i〉
Et − Ei − ω − i0

+ 〈f |ε · D|t〉〈t |ε′∗ · D|i〉
Et − Ei + ω′

]
, (4)

where D is the length form of the dipole operator. It has been
shown that the scattering matrix for nonoriented systems, i.e.,
those in which the initial magnetic sublevels are averaged and
the final magnetic sublevels are summed over, may be written
as a sum of irreducible tensor components [12,19]. We use the
notation of Delserieys et al. [13] and write the scattering cross
section for a nonoriented target as

dσn′l′nl

d�
= r2

0
ωω′3

3

1

2l + 1

[∣∣A(0)
n′l′nl

∣∣2|ε′∗ · ε|2

+ 3

2

∣∣A(1)
n′l′nl

∣∣2
(1 − |ε′ · ε|2) + 3

2

∣∣A(2)
n′l′nl

∣∣2

×
(

1 + |ε′ · ε|2 − 2

3
|ε′∗ · ε|2

)]
, (5)

which implicitly depends on photon polarization ε (ε′). In
what follows we use the compound notations |i〉 ≡ |nlm〉,
|f 〉 ≡ |n′l′m′〉, |t〉 ≡ |nt ltmt 〉, where n stands for the principal

quantum number, l for the orbital angular momentum, and m

for its projection. The tensor expansion coefficients A
(κ )
n′l′nl are

given by

A
(κ )
n′l′nl = (−1)l+l′+κ

∑∫
t

{
l l′ κ

1 1 lt

}
〈n′l′‖D‖nt lt 〉〈nt lt‖D‖nl〉

×
[

1

Ent lt − Enl − ω − i0
+ (−1)κ

Ent lt − Enl + ω′

]
, (6)

where 〈. . . ‖D‖ . . .〉 are reduced matrix elements [20]. If we
are not interested in the polarization of the photons, we may
sum over the final polarizations and average over the initial
polarization to give the unpolarized scattering cross section,

dσn′l′nl

d�
= r2

0
ωω′3

6

1

2l + 1

[∣∣A(0)
n′l′nl

∣∣2
(1 + cos2 θ )

+ 3

2

∣∣A(1)
n′l′nl

∣∣2
(2 + sin2 θ )

+ ∣∣A(2)
n′l′nl

∣∣2
(

13

2
+ 1

2
cos2 θ

)]
, (7)

where θ denotes the scattering angle. Integrating over all solid
angles d� gives the total integrated cross section for Raman
or Rayleigh scattering,

σn′l′nl = σT

ωω′3

3(2l + 1)

∑
κ

(2κ + 1)
∣∣A(κ )

n′l′nl

∣∣2
, (8)

where σT = 8πr2
0 /3 ≈ 6.652 × 10−29 m2 is the Thompson

cross section. As in [13] the κ = 0 component is proportional
to the polarizability,

A
(0)
nlnl =

√
3(2l + 1)αnl (ω), (9)

which allows for calculation of the total photoionization cross
section,

σ I
nl = 1

2
σT c3ω Im

{
A

(0)∗
nlnl

}√ 3

2l + 1
. (10)

In Appendix B we show how the scattering cross sections may
be calculated in the velocity gauge.

B. Resonance behavior

In Eq. (3), and those which follow from it, it is clear that
the KHW matrix element becomes infinite when the quantity
�a = Et − Ei − ω or �e = Et − Ei + ω′ becomes 0. If |t〉 is
a continuum state, then this is formally handled through con-
tour integration around the singular point, and no unphysical
results arise. If, however, |t〉 is a bound state, then unphysical
resonances occur due to the neglect of the finite lifetimes of
the states [3,21]. In Fig. 1 we schematically show how these
processes occur. One standard approach to calculation of the
KHW matrix elements at or near these singularities involves
the introduction of a complex damping term [3], which can
be achieved through the substitution Et → Et − i�t /2, where
�t is the linewidth of state |t〉. Wijers [22] has argued that
the introduced terms should in fact be frequency dependent
to ensure that the damping term goes to 0 as ω → 0. For
multiphoton processes where resonances occur the method of
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FIG. 1. Schematic of the resonant processes in photon scat-
tering. (a) The emission-then-absorption term is resonant if the
detuning �e, defined by �e = Et − Ei + ω′, is small. (b) The
absorption-then-emission term is resonant if the detuning �a , defined
by �a = Et − Ei − ω, is small, and |t〉 is a bound intermediate
state.

resolvent equations is also often applied [23]. Presently, we
choose not to explicitly deal with resonant behavior, as we
are more interested in demonstrating the capabilities of the
methods. This allows us to directly compare our calculations
with previously published analytical results.

III. CALCULATION METHODS

In this section we outline two computational methods for
calculating Rayleigh and Raman scattering. In Sec. III A we
present an approach which calculates the KHW matrix ele-
ments for particular transitions and incident photon energies
by generating a suitable set of true hydrogen eigenfunctions.
In Sec. III B we present a new method for calculation of
Rayleigh and Raman cross sections using CES [18].

A. Principal value approach

The first method we consider for calculating the cross
section is a straightforward explicit calculation of the matrix
elements using the true bound and continuum eigenstates of
hydrogen; we refer to this method throughout the text as the
principal value (PV) method. The sum in Eq. (6) is broken into
a sum over bound states, a PV integral over the continuum,
and an imaginary contribution from the pole term,

A
(κ )
n′l′nl = (−1)l+l′+κ

∑
lt

{
l l′ κ

1 1 lt

}⎛
⎝ Nb∑

nt=lt+1

〈n′l′‖D‖nt lt 〉〈nt lt‖D‖nl〉
[

1

Ent lt − Enl − ω
+ (−1)κ

Ent lt − Enl + ω′

]

+ P
∫

dE
〈n′l′‖D‖Elt 〉〈Elt‖D‖nl〉

E − Enl − ω
+ iπ〈n′l′‖D‖(Enl + ω)lt 〉〈(Enl + ω)lt‖D‖nl〉

+ (−1)κ
∫

dE
〈n′l′‖D‖Elt 〉〈Elt‖D‖nl〉

E − Enl + ω′

⎞
⎠. (11)

Here the states |nt lt 〉 refer to the bound states, while |Elt 〉
refer to continuum states of energy E. Formally Nb = ∞,
however, practically we may choose sufficiently large Nb so
that the sum converges. If the incident photon energy is such
that Enl + ω < 0, then the imaginary part of the second line
of Eq. (11) is ignored, and the PV integral reduces to a regular
integral. When Enl + ω > 0 the principal value integral is
calculated using the Gaussian quadrature approach outlined
by Bray and Stelbovics [24], which has been applied to a large
variety of collision problems involving electrons and positrons
scattering from atoms, ions, and molecules [25,26]. This
approach provides a clear representation of the problem and
allows us to test the convergence of our results by increasing
the number of bound states included and the number of points
in the quadrature. The method, however, is computationally
inefficient, as the quadrature chosen depends on the location
of the singularity, which is fixed by both the energy of the
initial state and the energy of the incident photon. Thus
in order to calculate the energy-dependent scattering cross
section we are required to calculate a new quadrature for
each photon energy (above the ionization threshold) and must
also calculate the continuum wave functions at these new
points. The procedure outlined in this section also relies on the
ability to obtain, either numerically or analytically, the exact
wave functions for the target. This is not easily generalizable
to more complex systems, particularly in the case of the
continuum wave functions.

B. Complex exterior scaling method

In this section we present a new approach to calculation of
the photon scattering matrix. This approach was inspired by
the work of Rescigno and McKoy [18], who used the complex
rotation method (commonly referred to as the complex scaling
method or complex exterior scaling) in order to calculate the
photoionization cross section for hydrogen. Their approach
has many enticing benefits, such as the use of a finite-L2 basis,
the simplicity with which the contribution from the pole term
is accounted for, and the capability for calculations over a
broad range of incident photon energies. Finite-L2 methods
are also more easily generalizable to complex systems such
as atoms and molecules (see, for example, Han and Yarkony
[27]). Throughout we refer to this as the complex exterior
scaling method. To outline the method we first consider the
simpler problem of calculating the sum∑∫

t

〈n′l′m′|Dρ |nt ltmt 〉〈nt ltmt |Dσ |nlm〉
Ent lt − Enl − ω − i0

, (12)

where Dρ is the ρth component of the dipole operator, and we
find it convenient to use spherical basis vectors so that Dρ is
an irreducible tensor of rank 1. If we choose to use finite-L2

methods, then the sum and integral over all intermediate states
are approximated by a sum over pseudostates. For incident
photon energies above the ionization threshold such methods
would contain unphysical singularities [18]. Following the
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approach of Rescigno and McKoy we rewrite the sum as

〈n′l′m′|Dρ

1

H − Enl − ω
Dσ |nlm〉

=
∫

d3r ψ∗
n′l′m′ (r)Dρ (r)

1

H (r) − Enl − ω
Dσ (r)ψnlm(r),

(13)

where H is the Hamiltonian of the atom. Here we are consid-
ering scattering from hydrogen, so that the wave functions ψ

may be written as

ψnlm(r) = 1

r
unl (r )Ym

l (r̂). (14)

We then analytically continue the radial coordinates of the
Hamiltonian by taking r → rθ , where θ = eiϕ and 0 < ϕ <

π/2. This leads to

θ3
∫

d3r ψ
†
n′l′m′ (rθ )Dρ (rθ )

1

Hθ − Enl − ω
Dσ (rθ )ψnlm(rθ ),

(15)

where Hθ ≡ H (rθ ), and the dagger indicates complex conju-
gation of the angular components of the wave-function but not
of the radial component. The properties of such analytically
continued Hamiltonians have been described in the fundamen-
tal work by Balslev and Combes [16], as well as Simon [17],
and have typically been used to study resonances in atoms and
molecules [28]. In performing the CES we require that the ini-
tial and final states of the system decrease sufficiently rapidly
at ∞, especially under analytic continuation. Following the
procedure of Rescigno and McKoy [18] we wish to diagonal-
ize the complex symmetric Hamiltonian Hθ in a finite-L2 ba-
sis. Here we choose the radial Laguerre functions, used com-

monly in the convergent close-coupling formalism [25,26],

ξkl (r ) =
√

αl (k − 1)!

(k + l)(k + 2l)!
(2αlr )l+1 exp(−αlr )L2l+1

k−1 (2αlr ),

(16)

where Ln
k are the associated Laguerre polynomials. Under

complex exterior scaling the atomic Hamiltonian H , provided
that the potentials are Coulombic, transforms as

H = K + V → Hθ = θ∗2K + θ∗V. (17)

As the matrix elements 〈ξkl|K|ξk′l〉 and 〈ξkl|V |ξk′l〉 are known
analytically, it is simple to extend these results to calculation
of the matrix elements 〈ξkl|Hθ |ξk′l〉. We then diagonalize the
complex symmetric matrix to find pseudostates, which are
written as a sum over the nonrotated basis functions,

χθ
nlm(r) = 1

r
vθ

nl (r )Ym
l (r̂), vθ

nl (r ) =
∑

k

ankξkl (r ), (18)

where the ank are complex numbers found in the
diagonalization process, and the superscript θ denotes
that the states are pseudostates of the complex exterior scaled
Hamiltonian. The pseudostates satisfy

(χθ
nlm|Hθ |χθ

n′l′m′ ) = Wnl (χ
θ
nlm|χθ

n′l′m′ ), (19)

where we use the c norm described by Moiseyev et al. [28],
given by

(χθ
nlm|χθ

n′l′m′ ) =
∫

d3r χ
θ†
nlm(r)χθ

n′l′m′ (r), (20)

and Wnl are the complex eigenvalues. Giraud and Katō [29]
provided a proof of the completeness of complex scaled
Hamiltonians, however, Moiseyev et al. [28] noted that
incompleteness pathologies may still arise when performing
finite basis calculations. As a precaution, within our code we
check that all pseudostates are indeed c-normalizable, allow-
ing us to approximate the Green’s function using the sum over
all pseudostates. We are now able to write the sum, (12), as

θ3
∑

t

∫
d3r ψ

†
n′l′m′ (rθ )Dρ (rθ )χθ

nt ltmt
(r)

∫
d3r χ

θ†
nt ltmt

(r)Dσ (rθ )ψnlm(rθ )

Wnt lt − Enl − ω
. (21)

The procedure described above was used by Rescigno and McKoy [18] in the case where the initial and final states were the
ground state of hydrogen, and only the z component of the dipole operators was considered. The generality of our consideration
now allows us to apply the Wigner-Eckart theorem to the angular components of the above; noting that only the radial part of
the calculation has been altered by the complex scaling, we may write

(ψnlm|Dρ |χθ
nt ltmt

)θ ≡
∫

d3r ψ
†
nlm(rθ )Dρ (rθ )χθ

nt ltmt
(r) = (−1)l−m

(
l 1 lt

−m ρ mt

)(
ψnl‖D‖χθ

nt lt

)
θ
. (22)

We note that the inner product defined above makes a distinction between the state on the left, which is an eigenstate of the real
Hamiltonian, and the state on the right, which is an eigenstate of the complex exterior scaled Hamiltonian. The reduced matrix
elements of this inner product are given by

(
ψnl‖D‖χθ

nt lt

)
θ

= (−1)l
√

(2l + 1)(2lt + 1)

(
l 1 lt
0 0 0

) ∫
dr unl (rθ )rθvθ

nt lt
(r ). (23)
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The same arguments presented in [12], [13], and [19] then allow the scattering cross section to be written exactly as in Eq. (5),
where now the A

(κ )
n′l′nl are defined as

A
(κ )
n′l′nl = θ (−1)l+κ

∑
t

{
l l′ κ

1 1 lt

}(
ψn′l′ ‖D‖χθ

nt lt

)
θ

(
ψnl‖D‖χθ

nt lt

)
θ

[
1

Wnt lt − Enl − ω
+ (−1)κ

Wnt lt − Enl + ω′

]
. (24)

The sum is now a finite sum over the complex rotated
pseudostates and converges to Eq. (6) as the basis size
increases. Using Eqs. (9) and (10) we recover the results of
Rescigno and McKoy and generalize it to the case where the
ground state (or excited state of interest) is not an s state.

As an interesting additional result we consider the imag-
inary part of the κ = 0 component of Eq. (6) and note that
this directly relates to the bound-free matrix elements. To
exploit this we define a new quantity for the case of elastic
scattering on a state nl, where we sum only over the subspace
of intermediate states of fixed lt ,

A
lt
nl (E) = (−1)lt−l

∑∫
nt

〈nl‖D‖nt lt 〉〈nt lt‖D‖nl〉
Ent lt − E − i0

. (25)

We find that the imaginary part of this quantity is

Im
{
A

lt
nl (E)

} = π |〈nl‖D‖Elt 〉|2. (26)

Similarly to Eq. (24) we may now calculate the sum and
integral over all intermediate states using complex exterior
scaled pseudostates, giving

A
lt
nl (E) = θ

∑
nt

(
ψnl‖D‖χθ

nt lt

)2
θ

Wnt lt − E
, (27)

which will converge to Eq. (25) as the basis size increases.
As the Laguerre functions approximate a complete set of
intermediate states for the subspace of each value of angular
momentum, Eq. (27) provides an accurate method for calcula-
tion of Eq. (26) from any initial state and allows calculation of
the bound-free matrix elements without the need for explicit
calculation of the true continuum state.

We now also make note of the form of the complex scaled
initial and final states. We may obtain unl (rθ ) and un′l′ (rθ )
either from complex scaling of the analytical solutions to H

or from coefficients obtained by diagonalizing the real Hamil-
tonian H using basis functions ξkl (r ) and then applying the
complex scaling to the basis functions. We choose to apply the
second method, as it is more likely to generalize to complex
atoms and provides very little computation overhead. The
intermediate states may only be obtained by diagonalization
of the complex rotated Hamiltonian Hθ using real basis func-
tions, which is done using the LAPACK routine zggev [30].

In Appendix C we show the velocity form of the CES
method, allowing for comparison of the length and velocity
forms of the scattering cross sections.

IV. RESULTS

Due to the versatility of the CES method we are able to
generate scattering cross sections for transitions between any
low-lying states of interest for incident photons at essentially

any energy. We present scattering cross sections for Rayleigh
and Raman scattering from the ground state and the first few
excited states to demonstrate, then compare them to several
analytic results. It is also possible to calculate differential
cross sections for any particular transition at any given energy
using Eq. (5) or (7). We find it more interesting to demonstrate
the energy dependence of the integrated cross sections. All re-
sults are presented for the length gauge formulation, however,
we have verified the results using the velocity gauge and found
full agreement.

For calculations using the PV method we found that for
transitions from the 1s, 2s, and 3s states it was sufficient
to include Nb = 40 bound states. However, for other cal-
culations, such as the 3p → 2p Raman transitions (which
include contributions from the intermediate d states), up to
100 bound-state functions were required for convergence.
The positive energy spectrum used for the integration was
dependent on the particular transition and incident energies.
For calculations using the CES method we chose to use Nl =
125 − l Laguerre functions for each angular momentum l and
αl values of 0.65 and 0.645 for l = 0 and 1, respectively. If
higher-angular-momentum intermediate states were required,
e.g., in 1s → 3d transitions, we chose αl = 0.64 for l > 1. We
also chose the angle of complex rotation to be 15◦. A number
of other choices were made to test the convergence of our
results, and we found that the scattering cross sections con-
verged quickly for all transitions and photon energies. Near
the ionization threshold the cross sections are less accurate,
as the pseudostates in that region do not accurately represent
highly excited target states. In such regions resonance effects
become more important and the inaccuracy of our results near
these points is irrelevant.

In Fig. 2 we present our calculations for Rayleigh scatter-
ing on the ground state of hydrogen using both the CES and
the PV methods. We compare our results with those of Gavrila
[9], and find perfect agreement at all given energies.

In Fig. 3 we present the 2p Rayleigh scattering cross
section, again finding excellent agreement between our two
computational methods. We also make note of the resonant
behavior which occurs above the ionization energy. This
resonance corresponds to decay to the 1s state and is outlined
in Fig. 1(a).

In Figs. 4 and 5 we present the Raman cross sections for
scattering on the 1s and 3p states. The total Raman cross
section has been calculated by summing contributions from
the first 10 scattering states allowed by the dipole selection
rules and is convergent to better than 1%. We have compared
our 1s → 2s results with analytic results of Saslow and Mills
[10] (as discussed in Appendix A) and have found excellent
agreement. We do not present the results of Saslow and Mills
[10] in Fig. 4, as they are indistinguishable from our own.
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FIG. 2. Rayleigh scattering from the ground state of hydrogen
calculated using the present CES and PV methods. Comparison is
made of the elastic 1s results vs those of Gavrila [9]

In Fig. 5 we make note of the large cross section which
occurs at low incident photon energies in the 3p → 2p

transition. If we consider the length form of the scattering
tensor, (6), we see that the large cross section at low energies
corresponds to absorption-type resonances [see Fig. 1(b)],
with the intermediate 3s or 3d states of equal energy. If we
instead consider the velocity form of the scattering cross sec-
tions, where the 3p → 3s and 3p → 3d momentum matrix
elements are 0, the behavior is instead attributed to the ω′/ω
prefactor of Eq. (B2).
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FIG. 3. Rayleigh scattering from the 2p state of hydrogen calcu-
lated using the CES and PV methods.
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FIG. 4. Raman scattering from the 1s state. Our results for the
1s → 2s transition are indistinguishable from analytic results of
Saslow and Mills [10], which are omitted for clarity.

The total 3p Raman cross section shows two series of
resonances above the ionization threshold. The first, occur-
ring in the range 0.09 < ω < 0.13, corresponds to resonant
processes involving the intermediate 2s state, while the sec-
ond, occurring in the range 0.3 < ω < 0.5, corresponds to
processes involving the intermediate 1s state. All resonant
processes above the ionization energy correspond to emission-
type resonances as shown in Fig. 1(a). We also show an
example of a Raman transition between a p and an f state,
which we have not found elsewhere in the literature.
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FIG. 5. Raman scattering from the 3p state.
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FIG. 6. Elastic scattering from the 3s state, with a comparison to
the analytic calculations of Florescu and Cionga [31].

In Fig. 6 we present the cross sections for elastic scattering
from the 3s state. We present both coherent (3s → 3s) and
incoherent (3s → 3d) cross sections and compare with the
analytic results of Florescu and Cionga [31], again showing
excellent agreement with the analytic results.

In Fig. 7 we present the (one-photon) photoionization cross
sections for ionization from the first five bound states of
hydrogen. As in [18] we find that only a small number of pseu-
dostates are required for convergence of the photoionization
cross section.
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FIG. 7. Photoionization from the first few states of hydrogen
using the CES method. Comparison is made to the analytic photoion-
ization cross section from the 1s state [18].

For Figs. 4–7 we have only presented the results of the CES
method. We also performed calculations using the PV method
in Sec. III A and found no difference for all possible cross
sections. The ability of the CES method to produce all cross
sections presented in this paper within a single calculation
shows its efficiency and versatility, while comparison to the
PV method allows us to confirm the validity of the cross
sections for all cases where analytic results were unavailable.

V. CONCLUSION

We have presented two computational methods for cal-
culation of photon scattering from atomic hydrogen in the
nonrelativistic dipole approximation. The PV method in-
volves straightforward evaluation of the KHW matrix element
through calculation of a large number of bound eigenstates
and generation of continuum eigenstates on an energy grid
suitable for calculation of the principal value integral. This
method provides a direct computation of the matrix elements
and is suitable for testing the validity of our second, more
computationally efficient method. The CES method involves
calculation of the pseudostates of the complex scaled Hamil-
tonian in a finite-L2 basis. It accurately captures the analytic
structure of the Green’s function and does not require calcula-
tion of true bound and continuum eigenstates of the target.
This method allows for accurate and efficient calculation
of cross sections at any number of energies and with little
computational overhead.

We expect that the versatility of the method, combined with
the use of finite-L2 techniques, will allow generalization to
more complicated systems and processes. The ability of both
the PV and the CES methods to calculate scattering cross
sections at energies above the ionization threshold allows
calculations in the extreme UV and soft x-ray energy regimes.
At such energies the dipole approximation becomes progres-
sively less accurate, and the higher-order terms of the eik·r
expansion become relevant. The extension of both methods to
account for such terms will be considered elsewhere.

For highly charged hydrogenlike ions relativistic effects
become important and, for the photon energies of interest
in this work, can well be described by the Dirac equation
[32]. The PV and CES methods developed here allow for
a straightforward generalization to the relativistic case. For
the PV method the exact bound and continuum states of the
Dirac-Coulomb Hamiltonian are available. Complex scaling
methods have already been applied to study resonances in
Dirac Hamiltonians [33,34], and so for the CES method we
can utilize the Dirac L spinors in exactly the same way as done
in the relativistic formulation of the convergent close-coupling
method [35].
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APPENDIX A: RAMAN 1s-2s ANALYTIC CALCULATIONS

Saslow and Mills [10] presented the analytic form of the scattering matrix element for 1s → 2s photon scattering transitions.
Their reduced matrix element M is related to our form of the scattering tensor by

M = ωω′
√

3
A

(0)∗
2s,1s , (A1)

which allows for comparison of our numerical calculations to their analytic results. Correcting a typo in [10], we note that the
full contribution from the continuum is given by

M (c) = − 512
√

2

3

∫ ∞

0
dn

n3 exp [−2n arctan(1/n) − 2n arctan(2/n)]

(n2 + 1)(n2 + 4)2(1 − exp[−2πn])

(
1

1 + 1
n2 − r + i0

+ 1
1
4 + 1

n2 + r

)
. (A2)

The pole term occurs at n′ = (r − 1)−1/2. The form for the imaginary contribution by the continuum is then

Im{M (c)} = 512
√

2

6

πn′6 exp[−2n′ arctan(1/n′) − 2n′ arctan(2/n′)]
(n′2 + 1)(n′2 + 4)2(1 − exp[−2πn′])

. (A3)

APPENDIX B: VELOCITY FORM

If we consider the KHW matrix given in Eq. (3) in the dipole approximation, we have

Mf i = ε · ε′∗〈f |i〉 −
∑∫

t

[ 〈f |ε′∗ · p|t〉〈t |ε · p|i〉
Ent lt − Enl − ω − i0

+ 〈f |ε · p|t〉〈t |ε′∗ · p|i〉
Ent lt − Enl + ω′

]
. (B1)

It is useful to compare our calculations in the length gauge to those in the velocity gauge. The two forms are equivalent only
when the complete set of intermediate states is used, and so comparison between the two forms allows us to check the stability
and accuracy of our results. Bassani et al. [36] showed that the length form converges more rapidly when the true bound and
continuum states are used for calculation of the 1s → 2s two-photon transition rate, and thus for approximate calculations where
the complete set of states is not known the length form is expected to be more accurate.

We first note that if we are considering Raman scattering, i.e., i = f , then we may follow the same arguments used in taking
Eq. (4) to Eq. (8) to write the total integrated unpolarized cross section as

σn′l′nl = σT

ω′

ω

1

3(2l + 1)

∑
κ

(2κ + 1)
∣∣B (κ )

n′l′nl

∣∣2
, (B2)

where

B
(κ )
n′l′nl = (−1)l+l′+κ

∑∫
t

{
l l′ κ

1 1 lt

}
〈n′l′‖p‖nt lt 〉〈nt lt‖p‖nl〉

[
1

Ent lt − Enl − ω − i0
+ (−1)κ

Ent lt − Enl + ω′

]
. (B3)

If we are considering Rayleigh scattering, then taking into account the 〈f |i〉 term gives

σnlnl = σT

[
1 + 2√

3(2l + 1)
Re

{
B

(0)
nlnl

} + 1

3(2l + 1)

∑
κ

(2κ + 1)
∣∣B (κ )

nlnl

∣∣2
]
. (B4)

Finally, similarly to Eq. (9) the polarizability may be given by

B
(0)
nlnl =

√
3(2l + 1)ω2α(ω), (B5)

giving the photoionization cross section as

σ I
nl = σT

c3

2ω
Im

{
B

(0)∗
nlnl

}√ 3

2l + 1
. (B6)

APPENDIX C: CES VELOCITY FORM

We may follow the same arguments given in Sec. III B to apply the complex exterior scaling method to calculation of the
terms B

(κ )
n′l′nl . In this case the terms are found using

B
(κ )
n′l′nl = θ (−1)l+κ+1

∑
t

{
l l′ κ

1 1 ln

}(
ψn′l′ ‖∇‖χθ

nt lt

)
θ

(
ψnl‖∇‖χθ

nt lt

)
θ

[
1

Wnt lt − Enl − ω
+ (−1)κ

Wnt lt − Enl + ω′

]
, (C1)
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where (
ψnl‖∇‖χθ

nt lt

)
θ

= (−1)l

θ

√
(2l + 1)(2lt + 1)

(
l 1 lt
0 0 0

)[∫
dr unl (rθ )

(
d

dr
+ cl,lt

r

)
vθ

nt lt
(r )

]
(C2)

and

cl,l′ = l′(l′ + 1) − l(l + 1)

2
. (C3)

For all scattering transitions presented in this paper we produced the cross sections using both the length and the velocity forms
of the CES method and found that the two forms were essentially indistinguishable.
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