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Singularity-free quantum tracking control of molecular rotor orientation
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Quantum tracking control aims to identify applied fields to steer the expectation values of particular
observables along desired paths in time. The associated temporal fields can be identified by inverting the
underlying dynamical equations for the observables. However, fields found in this manner are often plagued by
undesirable singularities. In this paper we consider a planar molecular rotor and derive singularity-free tracking
expressions for the fields that steer the expectation of the orientation of the rotor along the desired trajectories in
time. Simulations are presented that utilize two orthogonal control electric fields to drive the orientation of the

rotor along a series of designated tracks.
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I. INTRODUCTION

The desire to manipulate quantum dynamics has inspired
significant research activity for many years [1-3]. One long-
standing goal is to identify control fields capable of driving
a quantum system from its initial state to a desired target
state at a designated time ¢ = T. Such goals have led to the
formulation of quantum optimal control theory [4], which has
been utilized in many applications including high harmonic
generation [5], quantum information science [6,7], and chem-
ical reactions [8—10]. Quantum optimal control seeks fields to
steer a system to a target objective using iterative optimization
methods [11-13], which are traditionally carried out with no
specific regard for the intervening dynamics linking the initial
state to the final target.

An alternative approach is quantum tracking control, which
aims to steer a quantum system from its initial state to a target
following a prescribed time-dependent path for the interven-
ing dynamics. Quantum tracking control typically involves
two stages: first, specifying a trajectory (O (t))4, ¥Vt € [0, T']
to describe the “designated” time evolution of an operator
expectation value, (O(2)) = (Y (2)|O|¥(¢)) [here, | (2)) is
the wave function of the quantum system at time ¢ and O is the
observable of interest] and, then, seeking a control field &(¢)
to track the specified trajectory such that (O(¢)) = (O(¢))a
within the time span [0, T]. Numerical studies for quantum
tracking control have been carried out in systems ranging from
a qubit [14] to diatomic and triatomic molecules [15,16], and
it has also been accomplished in combination with Lyapunov
[17-19] and adaptive [20] methods.

The roots of quantum tracking control lie in the engineer-
ing literature, beginning with the case of linear control sys-
tems [21]. Later, many of these key results were generalized
for nonlinear control systems [22] including bilinear quantum
control systems [23]. However, it was found that attempting
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to exactly track arbitrary observable trajectories in nonlinear
control systems can lead to singularities in the controls, where
the control becomes unbounded (i.e., often swinging from a
positive to a negative unbounded value when passing through
the singularity) and the ability to follow the designated track
can break down [24].

In the quantum tracking control formulation, a control field
&(t) is determined via the solution of an inverse dynami-
cal expression, which is computationally attractive compared
with the arduous iterative optimization methods called for
in quantum optimal control. The primary obstacle in the
implementation of quantum tracking control is the possible
impending field singularities mentioned above [25], which
often appear as an artifact of attempting to force a system to
evolve along a track inconsistent with its natural dynamics.
If singularities can be avoided, however, tracking control
can become an efficient means for realizing quantum system
objectives. Thus far, there remains no a priori approach to
prescribing a smooth path (O(t)), connecting arbitrary initial
and final objective values [(O(0)) and (O(T)), respectively]
that assures a well-behaved control field, and further investi-
gation of quantum tracking control is needed in order to better
assess its general practical utility.

In this paper, we take a step in the latter direction by
showing that quantum tracking control of the expectation
value of molecular rotor orientation is singularity-free. We
illustrate this concept with a series of simulations using
two orthogonal, linearly polarized control fields to steer the
orientation of a planar rigid rotor along designated trajectories
in time. Although the global controllability of rotors subject
to two orthogonal control fields has been studied [26],
the corresponding tracking control problem has not been
considered. Moreover, the control of molecular orientation
is important for a number of applications including chemical
reactions [27] and high harmonic generation [5], and as such
it has been the subject of numerous experimental studies
[28-30]. Experiments have also been carried out to drive
unidirectional rotations in molecules by controlling the
orientation of the molecules’ angular momentum [31,32].
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In the laboratory, a planar molecular rotor system could
be constructed using laser and evaporative cooling techniques
to generate an ultracold molecule and then adsorbing the
molecule onto a surface or trapping it in an “optical lattice”
created using the interference of optical laser beams [33].
Shaped microwave tracking fields can be created experimen-
tally by modulating the field in the time domain using an
arbitrary waveform generator [34,35].

The remainder of the paper is organized as follows. In
Sec. II we review the theoretical foundations of quantum
tracking control. We then present the model used to describe
the planar rotor, followed by the derivation of the tracking
control equations to control the orientation of the rotor, high-
lighting the singularity-free character of these equations. In
Sec. III we present a series of numerical examples illustrating
the capability of singularity-free tracking of rotor orientation,
and in Sec. IV we finish with conclusions.

II. THEORETICAL FOUNDATIONS

A. Quantum tracking control formulation

Consider a quantum system with a Hamiltonian of the form
H(t) = Hy — ne(t), where H is the field-free Hamiltonian,
&(t) is an applied field, and u is the system’s dipole operator;
in this initial presentation of tracking control principles, ()
is considered to be aligned with ., while for the planar rotors
in Sec. IIC this restriction is relaxed. The evolution of the
expectation value of the observable operator O is governed
by the equation

o) _ i HI[Hy — 1), Ol (¢ 1
= SOl — pe@). Oy @) ()

where O is a time-independent Hermitian operator and |1 (¢))
the state of the quantum system at time ¢. In the quantum
tracking control formulation, a designated trajectory (O(¢))y,
t € [0, T is first specified a priori for the expectation value
(O(t)). Then, by assuming [u, O] # 0 and invoking Eq. (1),
the tracking control field e(¢), given the trajectory (O(t))y,
can be directly computed as

inHoD 4 (4 (1) |[Ho, O (1))
(W (Oll, Oy (1)) '

In the situation where [it, O] = 0, additional time derivatives
of Eq. (1) need to be taken until e(¢) appears explicitly. In
general, for k additional time derivatives, with the simplified
notation Oy = £[Ho, Or—1] — i, Ox_1]e(t), where Oy =
O and k =1, ..., and assuming [u, O] £ 0 we then obtain
a working expression of the form [15]

ey (). 1) =

2)

im0 4y (1)) [ Ho, O] (1))
WOl OlY (1))

in which the denominator (Y (#)|[w, O¢]|¥(¢)) is generally
nonzero but may still pass through some isolated zeros and
change sign, thus causing &(¢) to possess singularities. To use
Eq. (3) to compute the tracking control field, & initial condi-

. — k —
tions (O(t = 0)), W, ..., and % are needed to

ensure consistency with the designated track (O(?)),.

e(ly(0). 1) = )

The underlying time-dependent Schrédinger equation

9
iy () = (Ho — pe(iy (0), )Y (1) )

is highly nonlinear due to the functional dependence of the
field (Y (¢)), t) on | (¢)). In practice, the coupled Egs. (3)
and (4) may be solved in the following fashion. We start
with the initial field value £(t = 0), which can be obtained
by evaluating Eq. (3) using the initial condition for [ (0))
and any necessary derivatives at + = (0. We then propagate
the system forward by integrating Eq. (4) over a small time
step, | (t = 0)) — [ (¢t = Atr)). The updated system state
|Y (At)) is then substituted back into Eq. (3), which is fol-
lowed by another propagation, i.e., |V (At)) — [V (2At1)),
and the same process is repeated until the target time is
reached or a singularity is encountered. If the latter circum-
stance arises, various methods have been suggested to deal
with the situation [17-20], but a fully satisfactory general
procedure is yet to be found.

B. Planar rigid rotor model

We consider a linear rigid rotor in a plane with dipole
moment vector [i(¢), where ¢ denotes the rotational angle
of the dipole moment with respect to the % axis. The X
and 9 projections of the rotor’s dipole vector are given by
My (@) = pcos g and u,(p) = wsin @, respectively. The rotor
is coupled through the dipole moment to two orthogonal
control fields, & (t) and &,(¢), linearly polarized along the %

and ¥ axes, respectively. The rotor’s Hamiltonian is given by

32
H(p,t)= _Ba_gpz — pec(t)cosp — uey(t)sing,  (5)

2, . .
where B = 2—1 is the rotational constant, 7 is the reduced

Planck’s constant, and / is the rotor’s moment of inertia.
The rotor is studied in the basis of the eigenstates |m) of

2 . .
the angular momentum operator, L? = —Fz2337, satisfying the
eigenvalue equation,

L%|m) = m?*h?|\m), (6)

wherem = -M,-M+1,...,—-1,0,1,...,M — 1, M. The
eigenstates |m) can be expanded as

2
|m) =/0 lp)(plm)dy (7

in terms of the angle ¢ € [0, 27], where

1 .
— = im 8
(plm) Vot ’, ®)

noting that fozn |o)(p|lde = 1. In this basis, the angular terms
in Eq. (5) can be calculated using the matrix element relations,

, 1
(m|cosplm’y = E{(Sm,mfﬂ + 81}
9

—i
A {Sm,m’-&-l - Sm,m’—l }

(msinglm’) = —
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The dynamics of the rotor are governed by the time-dependent
Schrddinger equation,

0
i1 (D) = Hig. DIV @), [Y(©O) = Yo),  (10)

where H (g, t) is given in Eq. (5).

C. Simultaneous tracking of orientation observables

Here we derive equations for computing the orthogonal
fields &,(¢) and €,(¢), which simultaneously track the expec-
tation values of the rotor orientation observables. These ob-
servables are defined as the & and ¥ projections of the rotor’s
dipole vector (normalized with respect to 1), O, = cos ¢ and
O, = sin ¢, respectively. We remark that the singularity-free

J

&y(1)

2 2 . p a2
CGHL 4 B (Y ()] cos g + 4sin g — 4cos g [y (1)

d*(0,(1)a

e\ 1 2uB [ (Y®)lcos’ Y1)
© D, 1) B2 \(Y(1)] sin g cos gl (1))

nature of tracking atomic and molecular dipoles outside of an
orientation context has been studied in [36].

The tracking equation requires going to second order to
determine the fields, and the resultant coupled differential
equations governing (O, (¢)) and (O,(t)) are given by

d*(0(1)  —1

gz F(WO‘)HH((P, 1), [H(gp, 1), cos ]|y (1)),
(1)

d(0,(1) -1 ,

g ?Wf(lﬂ[H((P, 1), [H(p, 1), sin gl (1)),

where H(g,t) is given in Eq. (5). Equations (11) are two
coupled algebraic equations in the fields &,(z) and &,(z).
Thus, after rearranging them and substituting in the desig-
nated tracks (O, (1)) = (O« (1))q and (O, (1)) = (O,(t))q, the
equations can simultaneously be solved for ¢,(¢) and &,(¢), to
give

<w(t>|cosgosin<p|w<r>>>
(¥ ()] sin? |y (1))

12)

-~ +§—22(1p(t)|sin<p—4cos<p%—4sin§0%|1ﬂ(f)>

where the determinant

D(g, 1) = (Y (1) sin® p| Y ())) (W (1)| cos® [y (1))

— (¥ ()| sing cos p| Y (1)))* > 0 13)

is positive semidefinite due to the Cauchy-Schwarz inequality
between the two vectors cos |y (¢)) and sing|¥(z)) (.e.,
(@11¢1)($21¢2) > {d1¢2)|> between two arbitrary vectors
|¢1), |¢2)). Although this circumstance eliminates the chance
that D(¢, t) could change sign, singularities could still appear
in the rare event of the equality D(gp, t) = 0. To eliminate this
possibility as well, the condition

(Y ()l cos @y (1)) + (¥ (1) sin |y (1))* € (0, 1)

must be met, as this condition renders D(g, t) to be strictly
positive. As a practical matter, the tracks (O,(¢)); and
(O, (t))q must remain within (but not touching the boundaries
of) the unit circle; this restriction assures the strictly positive
character of D(¢, 1), and as a result the fields found from
Eq. (12) will be smooth and free of singularities.

(14)

III. NUMERICAL ILLUSTRATIONS

In this section we provide three simulation examples that
highlight the capability to simultaneously track the * and y
orientations of a linear molecular rotor in a singularity-free
manner. In particular, we consider a planar OCS rigid rotor
(see Fig. 1). The magnitude of the dipole moment of OCS
is u = 0.709 Debye [37] and its rotational constant is B =
0.203 cm™! [38]. For all simulations, the rotor is initialized in
its ground rotational state |m) = |0).

[
A. Gaussian tracks

We begin by showing the utility of the quantum tracking
control based on Eq. (12) to track two perpendicular Gaussian
trajectories, defined as

2
(0x0)g = ae” (7)),
15)
_(ﬂ)z
(Oy(1))a = e N T/
along the * and y axes, respectively, where the pulse length
T =507/B and o = 0.9 [i.e., note that o must satisfy o < 1
to ensure consistency with Eq. (14)].

Figure 2(a) shows the two Gaussian profiles given in
Eq. (15), well separated by a time interval 0.4T = 522 ps,
which is more than twice their individual full width at half-
maximum, o = 241 ps. Figure 2(b) shows the two compact

v

FIG. 1. Diagram of the planar molecular rotor considered in this
work. O, oxygen; C, carbon; S, sulfur. The rotor’s center of mass is
shifted towards the sulfur bond.
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FIG. 2. (a) Time evolution of (O, (¢)) and (O, (¢)) when the &, (¢)
and ¢&,(¢) fields shown in (b) are applied to the rotor. Designated
tracks (O, (t))q and (O,(t)), are also shown (dotted black curve),
which superimpose on the actual time evolution.

tracking control fields that appear in succession to alternately
steer (O, (t)) and (O,(¢)) along these two Gaussian tracks.
The designated tracks are followed, and the peak positions of
the tracking fields coincide with those of the respective Gaus-
sian trajectories. Importantly, the control fields are smooth and
free of singularities as expected.

B. Spiral track

Here we show that the orientation tracking protocol also
enables following complicated curves in the X-j plane based
on following coordinated paths for (O, (7)) and (O,(#)). Be-
low, we consider a spiral function generated by the tracks
[see Fig. 3(a)], given by

(Ox(1))a = Bt sin(wt) f (1),

(16)
(Oy(t))a = Bt cos(wr) f (1),
where 8 = 0.95/T and w = B/2h, and
1
f)= (17)

(1 + Clefczt)l/q

with T = 150A/B, ¢; = T /4, ¢, = 0.0002, and ¢3 = 0.2. In
Eq. (16), the sigmoid function f(¢) is included to ensure a
smooth start for the spiral. The tracks in Eq. (16) terminate at
t = T, which prevents violation of the condition in Eq. (14).
Figure 3(b) shows that &,(7) and &,(¢) oscillate in ever-
growing amplitude with increasing time such that the expec-
tation values (dashed red and solid blue curves) track the
functions given in Eq. (16) (dotted black curve), indicated
by the trajectories given in Fig. 3(a). These two individual
tracks are then plotted as (O, (z)) versus (O.(t)) in the two-
dimensional (2D) plane in Fig. 4(a), which shows that they
trace out a spiral, as designed. Furthermore, we note that
as the track spirals outwards, more rotational states become

Observable track (a)

2000

Time (ps)
2 x 10° Control fields ( b)
§ 4 — — & (1)
:)/ 9 gy(t) A
rg 0 ,7,771—,7~»_—-—"‘/\/\/A\‘/\
£ ‘
¥
< 0 1000 2000 3000

Time (ps)

FIG. 3. (a) Time evolution of (O, (¢)) and (O, (t)) when the &, (¢)
and &,(¢) fields shown in (b) are applied to the rotor. Designated
tracks (O, (t))s and (O,(t)), are also shown (dotted black curve),
which superimpose on the actual time evolution.

involved in the dynamics, which is illustrated in Fig. 4(b).
The behavior likely arises as (¢|¥(¢)) needs to become an
ever narrower wave packet in ¢ when the spiral approaches its
boundary limits of the unit circle. This increasing involvement
of higher rotational states also occurs (not shown here) when
approaching the apex of the Gaussian tracks in Sec. III A;
when each track later slopes downwards, the number of states
involved decreases.

C. Tracking cursive script

The spiral example given in Sec. III B illustrates the capa-
bility to trace out curves in the (O,(t)) versus (O.(¢)) 2D
plane (naturally bounded to remain within the unit circle).
To further explore the flexibility of orientation tracking, we
conclude by considering a particularly complicated track cre-
ated from the words “quantum control” written in cursive
script [see Fig. 5(a)] rather than an analytical function. To
form the tracks, the outline of the scripted words was first
hand-digitized, generating a data set of 812 (X, ) coordinates.
Additional coordinates were subsequently added by interpo-
lating between these points. The ¥ and § coordinates were
then time-ordered and utilized as forming the (O.(¢)); and
(Oy(1))q tracks, respectively, such that following the track
corresponds to tracing out the words. When these tracks are
substituted into Eq. (12), the resultant tracking fields are
capable of precisely tracing out the cursive words successfully
(see Figs. 5(a) and 5(b) and Ref. [39]).

In the current example the data tracking scheme is success-
ful, although we remark that it can still lead to very noisy
control fields, depending on the nature of the data set. As such,
rather than applying the raw fields generated from solving
Eq. (12), all of the results shown in Fig. 5 were obtained after
filtering the high-frequency components out of the raw fields
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FIG. 4. (a) Track followed by the rotor orientation when the fields in Fig. 3(b) are applied, plotted as (O,(t)) versus (O.(t)) in the
two-dimensional (2D) plane. (b) Time evolution of the rotational-state populations as the track is followed.

apparently arising from the digitization of the scripted words.
However, it was found that the filtering had a very minimal
effect on the field’s ability to steer the rotor along the desired
track [i.e., the deviations are not visibly evident in Fig. 5(a)
between the original track of the words and that achieved
numerically].

IV. CONCLUSION

We have demonstrated that quantum tracking control of the
orientation of a single planar molecular rotor is singularity-
free. The coupled tracking control equations in Eq. (12) can
be solved to produce orthogonal fields ¢, (¢) and &, (¢) capable
of steering (¥ (¢)|cose|y¥(t)) and (¥ (¢)|sin@|y(t)) along
prespecified, otherwise arbitrary trajectories. These coupled
equations were shown to yield singularity-free fields due to
the positive definite character of the determinant [see Egs. (13)
and (14)]. Although we consider a 2D rotor only, the formula-
tion presented here could be extended to track the orientation
of a three-dimensional rotor or the orientations of multiple
dipole-dipole coupled rotors. The formulation could also be
useful for studying the control of molecular superrotors [40]

Observable track  (a)

0.5
N
g 0
g
0.5 ‘ ‘
-0.2 0 0.2 0.4 0.6
(cos ¢)

. Control fields (b)

=) »

N

S10l{——=® o
— &y(t) Py

) -

3 e

= ———

E .

2

E R

0 1000 2000 3000 4000 5000 6000
Time (ps)

FIG. 5. (a) The track plotted as (O, (t)) versus (O (t)) in the 2D
plane. (b) Corresponding % and ¥ tracking control fields.

by designing tracks to drive the orientation of a rotor through
very rapid rotational motion.

For illustrations in this work, we have successfully studied
various tracking control scenarios for the orientation of a
rotor, including tracking smooth Gaussian functions, a param-
eterized spiral function, as well as rather arbitrary scripted
curves, among other cases (not shown here). Finally, it is
important to point out that such tracks can drive the rotor to
a maximally oriented state, for example, the Gaussian track
provides a monotonic rise in the maximal value, whereas the
spiral function rotates towards that limit.

We remark that although the tracking control methodology
presented in this paper leads to singularity-free tracking, it
does not eliminate the need to define physically acceptable
tracks. For example, consideration needs to be given to the
rotor’s natural time scales (e.g., moving the track too rapidly
near some time t could lead to a loss of local controllability in
the neighborhood of t and resultant track deviations), as well
as inherent constraints in the system [e.g., remaining within
the unit circle in (¥ (¢)| sin |y (¢)) versus (¥ ()| cos |y (1))
space]. Another numerical issue is the sensitivity of Eq. (12)
with respect to the size of the steps taken in time. In our
work, we found that in many cases very small time steps
were required in order to achieve the desired tracking; similar
demands can arise in many optimal control simulations.

The work presented in this paper is only one step towards
the larger goal of developing a fully general tracking control
procedure yielding smooth, singularity-free fields for arbitrary
observables. To the best of our knowledge, although various
tracking control schemes have been suggested for overcoming
or bypassing the singularities, so far no fully attractive general
procedure has been found. Hopefully, further research will
lead to singularity-free tracking control, applicable to arbi-
trary quantum systems.
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