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Time-optimal selective pulses of two uncoupled spin-1/2 particles
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We investigate the time-optimal solution of the selective control of two uncoupled spin 1/2 particles. Using the
Pontryagin maximum principle, we derive the global time-optimal pulses for two spins with different offsets. We
show that the Pontryagin Hamiltonian can be written as a one-dimensional effective Hamiltonian. The optimal
fields can be expressed analytically in terms of elliptic integrals. The time-optimal control problem is solved for
the selective inversion and excitation processes. A bifurcation in the structure of the control fields occurs for a
specific offset threshold. In particular, we show that for small offsets, the optimal solution is the concatenation
of regular and singular extremals.
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I. INTRODUCTION

Performing efficient and selective quantum state transfer
by external electromagnetic fields remains a challenge of
practical and fundamental interest with applications extending
from atomic physics to magnetic resonance and quantum
information science [1–5]. Different analytical and numerical
methods have been proposed to design control fields [6–17].
Among others, we can mention optimal control techniques [1]
for which the selectivity problem has been addressed nu-
merically with standard iterative algorithms [18–26]. Such
methods are interesting for designing efficient pulses, but
their application is not completely satisfactory since there is
generally no proof of the global optimality of the derived
solution [27–29]. Such a proof can be achieved by using
geometric optimal control theory [5,30,31] and the Pontrya-
gin maximum principle (PMP) [32]. In the case of a low-
dimensional control problem, this geometric analysis allows
us to have a global view of the control landscape from which
we can deduce the structure of the optimal solution and the
physical limits of a given process, such as the minimum
time to reach the target state. The PMP and the geometric
techniques have been recently applied with success to a series
of fundamental problems in quantum control, such as, to cite
a few, the state-to-state transfer [33–38], the implementation
of unitary gates [39–43], the simultaneous control of different
systems [44–48], and the control of two-level quantum sys-
tems or spin systems in the presence of relaxation [49–59].

In magnetic resonance, a benchmark example for the selec-
tive control of spins is given by an inhomogeneous ensemble
of spin 1/2 particles with different offsets [6,8]. In this paper,
we propose to investigate the simplest selectivity problem:
the simultaneous time-optimal control of two uncoupled spins
by means of magnetic fields. The two spins are assumed to
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be initially at the thermal equilibrium state, i.e., the north
pole of the Bloch sphere. We consider in this work both the
selective excitation and inversion processes for which the goal
is to steer one of the two spins towards the equator or the
south pole, while bringing back the other to the initial state.
We derive the global time-optimal solution with a constraint
on the maximum available field intensity. For a large offset
difference, the optimal pulse is regular of maximum intensity.
We show the existence of a bifurcation for a specific offset
threshold. For a smaller offset difference, the optimal solution
is the concatenation of regular and singular arcs, the singular
solution corresponding to a zero field.

The article is organized as follows. In Sec. II we define the
model system and show how to apply the PMP in this case.
Section III is dedicated to the presentation of the results. We
derive the time-optimal solutions for the selective excitation
and inversion of spins. We discuss how this minimum time
varies as a function of the offset difference. A comparison
with a direct numerical optimization is made in Sec. V. A
summary of the different results obtained and prospective
views are presented in Sec. VI. Technical computations are
reported in Appendices A, B, and C.

II. TIME-OPTIMAL CONTROL OF TWO
UNCOUPLED SPINS

A. The model system

We consider two uncoupled spin-1/2 particles with differ-
ent offsets whose dynamics are described by the Bloch equa-
tion [60,61]. If we neglect the relaxation effects, then the dy-
namics of the spins are governed in a given rotating frame by

�̇Mi =
⎛
⎝ 0 ωi −uy

−ωi 0 ux

uy −ux 0

⎞
⎠ �Mi, (1)

where i = {1, 2} is the index of the spins. The vector
�Mi = t (xi, yi, zi ) is the Bloch vector associated to spin i, ux
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and uy are the components of the magnetic field along the x

and y directions, and ωi is the offset. By a judicious choice
of the rotating frequency, we can set ω1 = −ω and ω2 = +ω

without loss of generality. We consider that the control fields
are bounded so that u2

x + u2
y � 1. The initial states of the

dynamics are the two north poles of coordinates t (0, 0, 1).
In the time-minimum case, the PMP allows us to derive

necessary conditions that the control fields must satisfy to
realize the fastest state to state transfer. We introduce the
pseudo-Hamiltonian Hp = �p1 · �̇M1 + �p2 · �̇M2, where the �pi

are the adjoint states associated with each spin [30,32]. They
satisfy Hamilton’s equations �̇pi = −∂Hp/∂ �Mi [32]. Substi-
tuting Eq. (1) into the pseudo-Hamiltonian and introducing
the vectors �Li = �pi × �Mi , we can show that

Hp = ux

(
Lx1 + Lx2

) + uy

(
Ly1 + Ly2

) − ω
(
Lz1 − Lz2

)
.

The PMP states that the pulses ux and uy are optimal if they
maximize HP . Using the constraint u2

x + u2
y � 1, we deduce

that the control fields are in the regular case of the form

ux = 1

r

(
Lx1 + Lx2

)
, uy = 1

r

(
Ly1 + Ly2

)
, (2)

with

r =
√(

Lx1 + Lx2

)2 + (
Ly1 + Ly2

)2
.

Note that if r (t ) �= 0, we get the relation u2
x + u2

y = 1, which
is characteristic of regular fields. A singularity appears if r =
0. This latter case is associated to singular control fields that
we will study in Sec. III. Using Hamilton’s equations, it can
be shown that the angular momenta �Li satisfy a differential
system of the form

�̇Li =

⎛
⎜⎝

0 ωi −Ly1 +Ly2
r

−ωi 0
Lx1 +Lx2

r
Ly1 +Ly2

r
−Lx1 +Lx2

r
0

⎞
⎟⎠ �Li. (3)

In the general case, any solution of this system is completely
determined by the six initial conditions �Li (0). Since the
control fields can be expressed in terms of �Li through Eq. (2),
the optimal pulses ux and uy are also parameterized by six
parameters. The problem is then to adjust these parameters in
order to realize a state-to-state transfer in the system (1). In
Sec. II B, we will see that the number of parameters can be
reduced to two, allowing us to describe the control landscape
of the system and to determine the global optimum solution
for any specific transfer, at least in the regular situation.

B. The control landscape

At time t = 0, the spins are in their initial state �Mi (0) =
t (0, 0, 1). Since �Li = �pi × �Mi , we obtain that Lz1 (0) =
Lz2 (0) = 0, reducing the number of parameters of Eq. (3)
to four. We introduce the angles ϕ1 and ϕ2 so that �Li (0) =
(Li cos ϕi, Li sin ϕi, 0) where Li ≡ ±| �Li (0)|. Moreover, in

the regular case, we can set
√

L2
1 + L2

2 = 1 without loss of

generality by noting that a rescaling of the �Li does not affect
Eq. (3) and the control fields of Eq. (2). The number of
parameters is therefore reduced to three. We will consider in
this work some control problems in which only the relative

phase of the two spins in the equatorial plane is relevant.
This degree of freedom allows us to choose arbitrarily the
initial phase of the pulse. We assume that uy (0) = 0, that is,
Ly1 (0) + Ly2 (0) = 0. Since Ly1 (0) = L1 sin ϕ1 and Ly2 (0) =
L2 sin ϕ2, we get that L2/L1 = − sin ϕ1/ sin ϕ2. Finally, we
obtain that the control landscape depends only on two param-
eters ϕ1 and ϕ2. The initial conditions of the system (3) are
given in terms of these parameters by

Lx1 (0) = cos ϕ1√
1+ sin2 ϕ1

sin2 ϕ2

, Lx2 (0) = −
sin ϕ1

tan ϕ2√
1+ sin2 ϕ1

sin2 ϕ2

,

(4)
Ly1 (0) = sin ϕ1√

1+ sin2 ϕ1

sin2 ϕ2

, Ly2 (0) = − sin ϕ1√
1+ sin2 ϕ1

sin2 ϕ2

,

and Lz1 (0) = Lz2 (0) = 0. Each pair of angles {ϕ1, ϕ2} leads
to a solution of Eq. (3) and then to the corresponding control
fields ux (t ) and uy (t ). This pulse is then substituted in Eq. (1),
which is integrated in order to obtain the Bloch vectors �M1(t )
and �M2(t ) as a function of time. In general, only a finite
number of angles {ϕ1, ϕ2} in [0, 2π ] × [0, 2π ] allows us to
realize a desired transfer. Among these pairs of values, the one
which brings the system to the target state in minimum time
corresponds to the global time-optimal solution of the control
problem.

III. ANALYTICAL DESCRIPTION OF THE
OPTIMAL CONTROL FIELDS

A. The regular case

We show next that the dynamics generated by the Pon-
tryagin Hamiltonian can be written as a one-dimensional
effective mechanical Hamiltonian of a pseudoparticle moving
in a potential energy landscape [62,63]. This gives a geometric
interpretation of the solutions of the time-optimal control
problem. We focus on regular extremals in this section. We
define the following coordinates:

�� = �L1 + �L2, �m = �L1 − �L2.

The components of the control pulse are then ux = �x/r and
uy = �y/r with r =

√
�2

x + �2
y . It is straightforward to show

that �z is a constant of motion. Moreover, since L1z(0) =
L2z(0) = 0 we have �z(t ) = 0 for any time t . The dynamics
of �� and �m can be written as

�̇x = −ωmy,

�̇y = ωmx,

ṁx = −
(
ω + mz

r

)
�y, r =

√
�2

x + �2
y. (5)

ṁy =
(
ω + mz

r

)
�x,

ṁz = 1

r

(
�ymx − �xmy

)
,

This system has three additional constants of motion given by

r − ωmz = r0, �� · �m = s, r2 + | �m|2 = 2. (6)

We set �x = r cos α and �y = r sin α. The variable α is thus
the phase of the control pulse, i.e., ux = cos α and uy = sin α.
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Using Eq. (6) and the relation α = arctan(�y/�x ), we arrive at

r2α̇ = ωs, (7)

which can be interpreted as the law of equal areas in the
two-body problem with a central force. The same relation
holds for the Kepler’s second law of planetary motion [63].
We deduce that the vector �� sweeps out equal areas in equal
times. Moreover, the dynamics of the system can be viewed
as the motion of a pseudoparticle in a potential well. Indeed,
if we define the kinetic energy term as ṙ2/2, then it can be
shown that

E = 1
2 ṙ2 + U (r ), (8)

where the potential energy U and the mechanical energy E

are given by

U (r ) = 1

2
(1 + ω2)r2 − r0r + ω2s2

2r2
(9)

E = ω2 − r2
0

2
.

Thus any regular time-optimal solution of the control of two
uncoupled spins is associated to a trajectory of a particle
of energy E in a potential U (r ). However, note that this
mechanical analogy does not directly give information about
the dynamics of the original Bloch vectors �Mi governed by
Eq. (1), but only about the optimal control fields through
Eq. (7). The dynamics of the Bloch vectors will be detailed
in Sec. III C. Using Eq. (8), the general solution r (t ) is given
by the integral equation

t =
∫ r

r0

dr ′
√

2E − 2U (r ′)
. (10)

The right-hand side of Eq. (10) can be expressed in terms
of a linear combination of elliptic integrals of first and third
kinds together with simple analytical functions as shown in
Appendix A 1. Only a qualitative description is given in this
section. For a fixed value of ω, the potential U and the energy
E depend on the two constants of motion s and r0, which
can be connected to the two parameters ϕ1 and ϕ2 defined in
Sec. II through the relations

s = sin(ϕ2 − ϕ1) sin(ϕ2 + ϕ1)

1 − cos(ϕ2 − ϕ1) cos(ϕ2 + ϕ1)
(11)

r2
0 = sin2(ϕ2 − ϕ1)

1 − cos(ϕ2 − ϕ1) cos(ϕ2 + ϕ1)
.

Note that the parameters s and r0 are well defined for any
value of the angles ϕ1 and ϕ2. The left panels of Fig. 1 show
the dynamics of a pseudoparticle of energy E in the potential
U .

B. Regular-singular arcs

According to Eq. (2), we recall that the singular fields occur
when r = 0 over a finite time duration [30,49]. However, the
effective potential of Eq. (9) has a repulsive contribution given
by ω2s2

r2 , which prevents r from reaching 0. Thus, the singular
fields are likely to occur only if s = 0. As shown in Fig. 1, s =
0 is associated to a potential with a particular shape having a

0 r
min

r
max

E
0

t=0

U

r 0 r
max

E=0

t=0

U

r

t=0 t=0

FIG. 1. Trajectories of the pseudoparticle in the effective poten-
tial U in the regular (left) and singular (right) cases. The upper panels
show the potential U as a function of the radius r in black, and the
motion of the particle in blue (or in dark gray). The middle panels
display the potential U as a function of �x = r cos α and �y = r sin α.
The red dot in the right panel depicts the singular point at which
the particle halts during a finite time. While the particle is stuck
on this point, the control fields are singular (see Sec. III B), i.e.,
ux = uy = 0. The lower panels show a projection of this motion in
the plane (�x, �y ), providing a better view of the variation of α(t ),
the phase of the pulse. Dimensionless units are used.

nondifferentiable point at r = 0 (�x = �y = 0). Note also that
if s = 0, Eq. (7) implies that α is constant for r �= 0. The case
s = 0 involves three different types of behavior (see Fig. 1):

(1) If E < 0 (r0 > ω
√

2), the particle oscillates in the
potential without reaching the singular point, leading to a
constant control phase α for any time t .

(2) If E > 0 (r0 < ω
√

2), the particle crosses the singular
point but does not stop on it. Its direction is not modified. As a
consequence, α jumps �α = π when the particle crosses the
singularity.

(3) If E = 0 (r0 = ω
√

2), the singular arc appears. In this
situation, the particle reaches the point r = 0 with a zero
velocity and then halts on it over a finite duration. While the
particle is stuck on this point, the control fields are singular.

We focus now on the case E = 0. As shown in Ap-
pendix B, the singular control fields are such that

us
x (t ) = us

y (t ) = 0.

Note that since r0 is bounded by
√

2 [Eq. (11)], the singularity
cannot occur for ω > 1. The exact time from which the control
starts to be singular can be computed analytically. Indeed,
Eq. (10) can be easily integrated for s = 0. When r0 = ω

√
2,
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Regular Singular Regular

Undefined

FIG. 2. From top to bottom: Plot of the radius r , the amplitude

of the control pulse
√

u2
x + u2

y and its phase α as a function of time

for a regular-singular solution. The two regular components have the
same duration Tr = arccos(−ω2 )√

1+ω2
and the singular arc lasts during time

Ts . Dimensionless units are used.

we have (see Appendix A 3)

r (t ) = ω
√

2

1 + ω2
[1 − cos(u)],

with u = √
1 + ω2t − arccos(−ω2). Thus, r (t ) is zero and

singular for t � tS with tS = arccos(−ω2 )√
1+ω2 . A remaining funda-

mental question about the structure of the control protocol
concerns the transition from singular to regular arcs and the
number of singular arcs of the optimal trajectory. In other
words, we have to compute at which time the system can
exit from the singularity, and what is the corresponding phase
variation. In this paper, we conjecture that the global time-
optimal solutions are composed only of one singular arc.
This assumption is corroborated by numerical computations
as shown in Sec. V. In summary, the optimal control field
is the concatenation of a regular control of phase α = 0, a
zero-amplitude pulse, and another regular part with a phase
�α. These pulses are time symmetric, i.e., the two regular
components are of equal duration. We deduce that they depend
on two parameters, namely, the duration of the singular arc,
denoted Ts and the variation �α of the phase. The regular-
singular fields are represented in Fig. 2.

C. Dynamics of the Bloch vector

In the regular case, since �Li = �pi × �Mi , we deduce that
the Bloch vector �Mi is orthogonal to �Li and rotates about it

with the angle ψi whose time evolution can be computed. The
momenta �Li being related to �m and ��, the Bloch vectors can
be expressed as a function of the coordinates of Eq. (5). As
shown in Appendix C 1, the Bloch vectors can be written as
follows:

x1 = − mz(�x + mx ) sin ψ1√
2(1 + s)

√
2(1 + s) − m2

z

− (�y + my ) cos ψ1√
2(1 + s) − m2

z

,

y1 = − mz(�y + my ) sin ψ1√
2(1 + s)

√
2(1 + s) − m2

z

+ (�x + mx ) cos ψ1√
2(1 + s) − m2

z

,

z1 =
√

1 − m2
z

2(1 + s)
sin ψ1, (12a)

x2 = mz(�x − mx ) sin ψ2√
2(1 − s)

√
2(1 − s) − m2

z

− (�y − my ) cos ψ2√
2(1 − s) − m2

z

,

y2 = mz(�y − my ) sin ψ2√
2(1 − s)

√
2(1 − s) − m2

z

+ (�x − mx ) cos ψ2√
2(1 − s) − m2

z

,

z2 =
√

1 − m2
z

2(1 − s)
sin ψ2, (12b)

where the angles ψi are solutions of

ψ̇1 = − (r2 + s)ω2√2(1 + s)

r[2(1 + s)ω2 − (r − r0)2]
, (13a)

ψ̇2 = − (r2 − s)ω2√2(1 − s)

r[2(1 − s)ω2 − (r − r0)2]
, (13b)

with the initial conditions ψ1(0) = ψ2(0) = π/2. It is gener-
ally not possible to compute analytically ψ1 and ψ2 due to the
complexity of the radius r (t ), which can be expressed in terms
of the inverse of elliptic integrals [Eq. (10)].

In the regular-singular case, the dynamics of the Bloch
vectors are simple. The two vectors �M1 and �M2 are transferred
from the north pole to the equator of the sphere between t = 0
and t = arccos(−ω2 )√

1+ω2 with the first regular arc. Then they move
along the equator during time Ts , and finally go to the target
states driven by the second regular arc until time tf . We can
show that the components of �M1(tf ) and �M2(tf ) are given by
(see Appendix C 2)

x1(tf ) = 1

4ω
[cos(2�α − ωTs − γ ) + cos(ωTs + 2γ )

− cos(2�α − ωTs ) − cos(ωTs + γ )]

y1(tf ) = 1

4ω
[sin(2�α − ωTs − γ ) + sin(ωTs + 2γ )

− sin(2�α − ωTs ) − sin(ωTs + γ )]

z1(tf ) = − cos(2�α − ωTs − γ ), (14a)

x2(tf ) = 1

4ω
[− cos(2�α + ωTs + γ ) − cos(ωTs + 2γ )

+ cos(2�α + ωTs ) + cos(ωTs + γ )]

y2(tf ) = 1

4ω
[− sin(2�α − ωTs − γ ) + sin(ωTs + 2γ )

+ sin(2�α + ωTs ) − sin(ωTs + γ )]

z2(tf ) = − cos(2�α + ωTs + γ ), (14b)
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with γ = arctan ( 2ω
√

1−ω2

1−2ω2 ). Note that γ is well defined since
the singularity can play a role only if ω � 1 (see Sec. III B).

IV. APPLICATION TO THE SELECTIVE CONTROL
OF TWO UNCOUPLED SPINS

This section presents some results for the time-optimal
selective excitation (Sec. IV A) and selective inversion
(Sec. IV B) processes. In each case, the global optimum is
associated to regular control fields if ω is larger than a certain

threshold ωl = 1
2

√
2 − √

2 � 0.38 for the selective excitation
and ωl = 1/

√
2 for the selective inversion. When ω is smaller

than this value, the optimal control field is the concatenation
of regular and singular arcs as shown in Fig. 2. In this latter
case, we have no proof of the optimality of the solution.
However, a smooth transition occurs for ω = ωl between the
two control protocols. The numerical analysis of Sec. V also
strongly suggests that these solutions are the optimal ones.
The regular solutions are obtained by integrating numerically
the systems (1) and (3).

A. Selective excitation

We consider the problem of transferring in minimum time
spin 1 to the equatorial plane of the Bloch sphere, while bring-
ing back spin 2 to its initial state at t = tf . More precisely, the
control problem can be defined as

�M1(0) =
⎛
⎝0

0
1

⎞
⎠ → �M1T

=
⎛
⎝xf

yf

0

⎞
⎠,

�M2(0) =
⎛
⎝0

0
1

⎞
⎠ → �M2T

=
⎛
⎝0

0
1

⎞
⎠,

where xf and yf are free. We introduce the figure of merit
J (t ) at time t :

J (t ) = z2
1 + (1 − z2)2.

We denote by tf the time for which J is minimum. We have
J (tf ) = 0 when the transfer is exactly realized.

Regular case (ω > 0.38). To solve the regular control
problem, we proceed as follows:

(1) Choose a value ω and a maximum control duration T .
Initialize the angular momenta �Li (0) according to Eq. (4).

(2) Integrate the system (3) from t = 0 to t = T and
compute ux and uy using Eq. (2).

(3) Substitute the control fields ux and uy in Eq. (1) and
integrate it from 0 to T .

(4) Compute J (t ) for t ∈ [0, T ] and determine tf for
which J (t ) is minimum.

(5) Repeat the operation for every couple of values
{ϕ1, ϕ2}.

Since the figure of merit depends on the control fields
which depend themselves on the two parameters ϕ1 and
ϕ2, we can visualize all the possible optima in the (ϕ1, ϕ2)
plane. Figure 3 shows J (tf ) and tf in this plane for ω = 1
(ω1 = −1 and ω2 = +1). Note that the control landscape is π

periodic. Using Eq. (11), we also plot the figure of merit in
the plane {r0, s}. Among all the local optimal solutions, the

FIG. 3. Figure of merit J (tf ) (left) and final time tf (right) of the
selective excitation process as a function of ϕ1 and ϕ2 (up) and r0 and
s (down), for ω = 1. The dark blue (or black) regions are associated
with different optima. The white cross depicts the global optimal set
of parameters {ϕ∗

1 , ϕ
∗
2 } and (r∗

0 , s∗). The black dotted lines are the
lines of equations ϕ1 = ±ϕ2 mod π and s = 0. Dimensionless units
are used.

global one is depicted by a cross in Fig. 3. The optimal set of
parameters is {ϕ∗

1 , ϕ∗
2 } = {0.1886π, 0.7548π}, and the mini-

mum time is t∗f = 0.6155π . This duration can be compared to
the minimum time needed for a standard excitation, which is
equal to π/2 in the units of this paper. We plot in Fig. 4 the
phase of the optimal pulse α∗(t ) associated to {ϕ∗

1 , ϕ∗
2 }. The

same approach can be used for any other offset value. Figure 5
shows the position of the global optima {ϕ∗

1 , ϕ∗
2 } and {r∗

0 , s∗}

0 0.5 1 1.5 2 2.5 3
0  

0.5

1  

1.5

2  
=0.38
=0.50
=1.00
=1.94
=3.00
=3.97

FIG. 4. Time evolution of the phase α∗ of the time-optimal
control pulse for different offsets ω in the regular case of the selective
excitation process. Dimensionless units are used.
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FIG. 5. Evolution for the selective excitation process of the posi-
tion of the global optimum {ϕ∗

1 , ϕ
∗
2 } (left) and (r∗

0 , s∗) (right) for ω ∈
[0, 5]. The regular solutions are plotted in blue (or dark gray) and
the singular ones in red (or light gray). The offset is increased by 0.2
between each cross. The dashed lines of the left panel represent the
lines ϕ1 = ±ϕ2 mod π , associated to s = 0. Dimensionless units
are used.

for any value of ω. Figure 6 displays the inverse of the optimal
time of the process 1/tf as a function of ω. Note that tf = π/2
for some specific values of ω given by ω = 1

2

√
16n2 − 1 with

n ∈ N. These values are associated to a sinusoidal pulse of
the form ux = cos(ωt ) and uy = sin(ωt ) in resonance with
spin 1. A time π/2 is needed with this pulse to bring spin
1 to the equator. Spin 2 exactly goes back to the north pole
when spin 1 reaches the equator. Since π/2 is the minimum
time for spin 1, this time is also the minimum time for the
control of the two spins. These particular pulses correspond to
the parameters s = r0 = 1 and are standard solutions in NMR
(see, e.g., Ref. [64]).

In the singular case (ω < 0.38), we conjecture that the con-
trol pulse is regular-singular-regular as shown in Fig. 2. The
optimal pulse and the dynamics of the Bloch vector are the
ones described in Secs. III B and III C. We point out that we
do not have a rigorous proof of this statement. We have tested
more complicated control structures with several singular arcs
without improving the minimum time to reach the target. A
numerical optimization procedure as discussed in Sec. V gives
the same optimal solution. The time symmetry of the control
strategy can be understood from the dynamics of spin 2.
The first regular arc transfers the spins to the equator of the
Bloch sphere. The two spins remain on the equator during
the singular arc. At the end of the singular arc, spin 2 must
come back to the north pole of the sphere. The two regular
components having the same amplitude 1, they must be of
equal duration for bringing spin 2 to its initial position.

The selective excitation is obtained by solving z1(tf ) = 0
and z2(tf ) = 1 in Eq. (14). We get

�α − ωTs − γ = ±π

2
(15)

�α + ωTs + γ = ±π.

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 0.38

FIG. 6. Plot of the inverse of the optimal time t∗ as a function
of ω. The minima (tf = π/2) are given for some specific offsets ω =
1
2

√
16n2 − 1 with n ∈ N. The regular solutions are plotted in blue (or

dark gray) and the singular ones in red (or light gray). Dimensionless
units are used.

Note that the + sign has to be chosen in order to have a time-
minimum process. The pulse is then characterized by

�α = 3π

4

Ts = π

4ω
− 1

ω
arctan

(
2ω

√
1 − ω2

1 − 2ω2

)
(16)

tf = 2 arccos(−ω2)√
1 + ω2

+ Ts.

It is straightforward to show that the duration Ts of the

singular arc is zero if ω = ωS = 1
2

√
2 − √

2, which implies
that the singularity does not play a role if ω > ωS . The fact
that the singular arc occurs for r0 = ω

√
2 and s = 0 allows

us to determine the position of the global optimum in the
plane (s, r0) and (ϕ1, ϕ2). These values are indicated in Fig. 5
and 6. We observe the smooth continuity of the transition
between the singular and the regular regimes. Figure 7 shows
the trajectory of each spin �Mi for ω > ωS (regular), ω < 0.38
(singular), and ω = ωS .

FIG. 7. Time-optimal trajectories of the Bloch vectors for the
selective excitation process. The left and the right panels represent,
respectively, spins 1 and 2. The solid-blue (or solid dark gray),
dotted-black, and solid-red (or solid light gray) lines correspond to
ω = 0.7 (regular case), ω = ωS = 0.38 (limit case), and ω = 0.2
(singular case), respectively. Dimensionless units are used.
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FIG. 8. Same as Fig. 7 but in the case of the selective inversion
process. The solid-blue (or solid dark gray), dotted-black, and solid-
red (or solid light gray) lines correspond to ω = 0.8, ω = ωS =
1/

√
2, and ω = 0.5, respectively. Dimensionless units are used.

B. Selective inversion

For the selective inversion, the goal is to bring spin 1 to the
south pole of the Bloch sphere, while keeping the position of
spin 2 unchanged. We proceed as in Sec. IV A. The figure of
merit to minimize is

J (t ) = (1 + z1)2 + (1 − z2)2.

In the singular case, we solve z1(tf ) = −1 and z2(tf ) = 1
using Eq. (14). We get

�α = π

2

Ts = π

2ω
− 1

ω
arctan

(
2ω

√
1 − ω2

1 − 2ω2

)

tf = 2 arccos(−ω2)√
1 + ω2

+ Ts.

Figure 8 shows the dynamics of the Bloch vectors for a regular
solution, a singular one, and for ω = ωS = 1/

√
2. Figure 9

displays the inverse of the final time as a function of ω. For
some specific offsets defined by ω = 1

2

√
4n2 − 1 with n ∈ N,

0 1 2 3 4 5
0

0.1

0.2

0.3

FIG. 9. Inverse of the optimal time of the selective inversion
process as a function of ω. The red (light gray) and blue (dark gray)
curves are associated to the singular and regular cases, respectively.
The minima tf = π are obtained for ω = 1

2

√
4n2 − 1 with n ∈ N.

Dimensionless units are used.

4 4.5 5 5.5

-9

-7

-5

-3

-1

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

-0.5

0   

0.5 

1   

1.5 

FIG. 10. Numerical result obtained with GRAPE for a selective
excitation process. The offset ω is set to ω = 0.2. Upper panel:
Minimum figure of merit J (tf ) as a function of tf . The red (light
gray) dashed lines represent the optimal time obtained analytically
with the singular solution [Eq. (16)]. Lower panels: Amplitude and
phase of the control fields obtained numerically (blue or dark gray)
and analytically (dashed-red or light gray). Dimensionless units are
used.

we observe that the minimum time is π . This corresponds to
a resonant inversion of spin 1 [64].

V. COMPARISON WITH A DIRECT
NUMERICAL OPTIMIZATION

Specific attention must be paid to the singular solutions
of the selective control of two spins. Since we do not have a
proof of the optimality of these optimal solutions, we propose
a numerical analysis with the GRAPE algorithm, which is
based on the PMP [27]. This algorithm is able to deal with a
large number of spins. The control of two spins can be treated
very rapidly due to the low dimension of the control problem.
A good estimation of the optimal trajectory can be achieved
by running the algorithm with many different initializations.
The goal of the optimization procedure is to minimize the
figure of merit J (tf ) = z2

1(tf ) + [1 − z2(tf )]2, where tf is
the final time, for an offset value ω = 0.2. We repeat the
operation for different final times tf in a certain range in
order to determine the minimum time tf for which J (tf ) � 0.
The result is shown in Fig. 10. We can see that the figure of
merit “falls” towards zero around t = 5.07, which is the time
corresponding to the singular analytical solution [Eq. (16)
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with ω = 0.2]. We observe in Fig. 10 that the numerical
solution approaches the analytical one. The lack of precision
is due to the used numerical optimization procedure in which
the field is assumed to be a piecewise constant pulse. We refer
the interested reader to Ref. [55] for a complete discussion on
this point.

VI. DISCUSSION AND PROSPECTIVE VIEWS

We have applied geometric optimal control techniques to
the selective control in minimum time of two spins with
different offsets. We have shown that the PMP leads to an
illuminating interpretation of the optimal control problem
in terms of a pseudoparticle whose dynamics are governed
by an effective one-dimensional Hamiltonian. A geometric
classification of regular and singular arcs is provided. We
have described the time-optimal solution as a function of the
offset parameters. Numerical results are presented for both the
excitation and inversion processes. We have also recovered
standard solutions used in NMR which are valid only for some
specific offsets. Note that the same formalism and the same
Pontryagin Hamiltonian can be used for other initial and final
conditions. However, the fact that the two spins are initially
on the north pole of the Bloch sphere greatly simplifies the
analytical computations.

These results can be viewed as a first step toward the
optimal selective control of spin systems. They also pave the
way for other studies using the same approach, such as the
selective excitation or inversion of three or more spins. In
this case, the Pontryagin Hamiltonian may not be integrable,
and numerical shooting techniques [30] have to used to find
the optimal trajectory. The derivation of robust time-optimal
control fields for three and four spins (the initial and final
states are the same for all the spins) has been made in
Ref. [48]. State-to-state transfers are investigated in this work.
It would be interesting to generalize this analysis to universal
rotations, i.e., transfers which do not depend on the initial state
of the system. Another interesting study would be to combine
selectivity for some spins and robustness for the others. These
two aspects will be addressed in a forthcoming paper [67].
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APPENDIX A: DERIVATION OF THE REGULAR ARCS

This aim of this Appendix is to show how to derive
analytically the regular arcs which are solutions of Eqs. (7)
and (10).

1. Analytical expression

We define u(t ) = 1/r (t ). The integrals (7) and (10) be-
come

ωst = ±
∫ u

u0

du′

u′√P4(u′)
, α = ±

∫ u

u0

u′ du′
√

P4(u′)
, (A1)

where

P (u′) = −u′4 + Au′2 + Bu − C,

A = 2ω2 − r2
0

ω2s2
, B = 2r0

ω2s2
, C = 1 + ω2

ω2s2
.

We denote by β1, β2, γ1, γ2 the four roots of P (u′). β1 and β2

are real and ordered such that β1 < u(t ) < β2. γ1 and γ2 can
be real or complex. These roots can be computed numerically
or analytically by solving a four-order polynomial. In both
cases, the solution is the sum of two elliptic integrals and a
simple function. We set

ωst = A0I0 + A1I1 + A2I2,
(A2)

α = B0J0 + B1J1 + B2J2.

The solution is given in Table I. The elliptic integrals are
defined by

F(u,m) =
∫ u

0

dθ√
1 − m sin2 θ

,

�(n, u|m) =
∫ u

0

dθ

(1 − n sin2 θ )
√

1 − m sin2 θ
,

where the modulus m belongs to [0,1].
The parameters λ1 and λ2 are given by

λ1 =
(β1 + β2)2 + 2

(
β1β2 + C

β1β2

) − 2
√

δ

(β1 + β2)2 − 4 C
β1β2

(A3)

λ2 =
(β1 + β2)2 + 2

(
β1β2 + C

β1β2

) + 2
√

δ

(β1 + β2)2 − 4 C
β1β2

with δ = [β1β2 − C/(β1β2)]2 + 2(β1 + β2)2[β1β2 +
C/(β1β2)]. In the problem under study, we have λ2 > 1
in the real case and λ2 < −1 in the complex case, while
λ1 ∈ [0, 1] in both cases.

2. Main steps of the demonstration

We give in this section the main steps to obtain the results
given in Table I. We focus on the case (γ1, γ2) ∈ R2 for sake
of simplicity. The other case can be derived along the same
lines. The method is described in Refs. [65,66]. First, we
express the four-order polynomial P as the product of two
polynomials of degree 2. We set P (u′) = Q1(u′)Q2(u′) with

Q1 = −u2 + u(β1 + β2) − β1β2

Q2 = u2 + u(β1 + β2) + C

β1β2
,

where we have used the relations γ1γ2 = C/(β1β2) and β1 +
β2 = −(γ1 + γ2). Then we express Q1 and Q2 as a sum of
perfect squares. We compute the discriminant of Q1 − λQ2,
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TABLE I. Explicit expression of integrals (A1).

If (γ1, γ2) ∈ R2 If (γ1, γ2) ∈ C2

Solution Solution

A0 = − 4(1+λ1 )(λ2−λ1 )
(β1+β2 )2 (1−λ1 )2 (1−na )

√
kλ2

A1 = 2
√

1+λ1(1+λ2 )3/2

(β1+β2 )2 (λ2−1)
√

λ2

A2 = − 4
√

(1+λ1 )(1+λ2 )(λ2−λ1 )
(β1+β2 )2 (1−λ1 )(λ2−1)

√
λ2

I0 = arctan(
√

kx ) − arctan(
√

kx0 )

I1 = F
(
σ, λ1

λ2

) − F
(
σ0,

λ1
λ2

)
I2 = �

(
na ; σ, λ1

λ2

) − �
(
na ; σ0,

λ1
λ2

)

A0 = − 4(1+λ1 )(λ1−λ2 )
(β1+β2 )2 (1−λ1 )2 (1−na )

√−kλ2

A1 = − 2
√

1+λ1(−1−λ2 )3/2

(β1+β2 )2 (1−λ2 )
√

λ1−λ2

A2 = 4
√

(1+λ1 )(λ1−λ2 )(−1−λ2 )
(β1+β2 )2 (1−λ1 )(1−λ2 )(1−n)

I0 = arctan(
√

kx ) − arctan(
√

kx0)

I1 = F
(
σ, λ1

λ1−λ2

) − F
(
σ0,

λ1
λ1−λ2

)
I2 = �

(
na

na−1 ; σ, λ1
λ1−λ2

) − �
(

na

na−1 ; σ0,
λ1

λ1−λ2

)
B0 = −1

B1 = 1−λ2
2
√

λ2

√
1+λ1
1+λ2

B2 = λ2−λ1√
λ2 (1+λ2 )(1+λ1 )

J0 = arctan(
√

λ2x ) − arctan(
√

λ2x0 )

J1 = F
(
σ, λ1

λ2

) − F
(
σ0,

λ1
λ2

)
J2 = �

(
nb; σ, λ1

λ2

) − �
(
nb; σ0,

λ1
λ2

)

B0 = 1

B1 = (λ2−1)
√

1+λ1
2
√

(λ2−λ1 )(1+λ2 )

B2 = −λ2 (1+λ1 )√
(λ2−λ1 )(1+λ2 )(1+λ1 )

J0 = arctan(
√−λ2x ) − arctan(

√−λ2x0)

J1 = F
(
σ, λ1

λ2

) − F
(
σ0,

λ1
λ2

)
J2 = �

(
nb; σ, λ1

λ2

) − �
(
nb; σ0,

λ1
λ2

)
Variables and parameters Variables and parameters

σ = arcsin z

x =
√

λ1(1−z2 )
λ2−λ1z2 ,

z =
√

λ2 (1+λ1 )
λ1(1+λ2 )

(
u− β1+β2

2
1−λ1
1+λ1

u− β1+β2
2

1−λ2
1+λ2

)
na = λ1(1−λ2 )2 (1+λ1 )

λ2 (1−λ1 )2 (1+λ2 )

nb = λ1(1+λ2 )
λ2 (1+λ1 )

k =
λ2
λ1

na−1

1−na

σ = arccos z

x =
√

λ1(1−z2 )
−λ2+λ1z2 ,

z =
√

λ2 (1+λ1 )
λ1(1+λ2 )

(
u− β1+β2

2
1−λ1
1+λ1

u− β1+β2
2

1−λ2
1+λ2

)
na = λ1(1−λ2 )2 (1+λ1 )

λ2 (1−λ1 )2 (1+λ2 )

nb = λ1(1+λ2 )
λ2 (1+λ1 )

k = 1− λ2
λ1

na

1−na

and we determine the values of λ which nullify this discrimi-
nant. We find λ1 and λ2 of Eq. (A3). We thus get an expression
for Q1 − λ1Q2 and Q1 − λ2Q2. We arrive at

Q1 = −λ2(1 + λ1)

λ2 − λ1

[
u − β1 + β2

2

1 − λ1

1 + λ1

]2

+ λ1(1 + λ2)

λ2 − λ1

[
u − β1 + β2

2

1 − λ2

1 + λ2

]2

Q2 = − 1 + λ1

λ2 − λ1

[
u − β1 + β2

2

1 − λ1

1 + λ1

]2

+ 1 + λ2

λ2 − λ1

[
u − β1 + β2

2
1−λ2
1+λ2

]2

.

Finally, the change of variables

z =
√

λ2(1 + λ1)

λ1(1 + λ2)

(
u− β1+β2

2
1−λ1
1+λ1

u− β1+β2

2
1−λ2
1+λ2

)

allows us to write Q1 and Q2 in a simpler form. This change
of variables is made in the integrals of Eq. (A1). For example,
the first integral becomes

ωst = 2
(1 + λ1)(1 + λ2)

√
λ1

(β1 + β2)2(1 − λ1)λ2

∫ z

z0

z−
√

λ2(1+λ1 )
λ1(1+λ2 )

(1+z
√

na )
√(

1− λ1
λ2

z2
)

(1−z2 )
.

Multiplying the nominator and denominator by 1 − z
√

na ,
we can express this integral as a linear combination of three
integrals, two of them are elliptic and the other one can be
expressed with simple functions. More precisely, we obtain

the following three integrals:

F0 =
∫ z

z0

zdz

(1 − naz2)
√(

1 − λ1
λ2

z2
)
(1 − z2)

,

F1 =
∫ z

z0

dz√(
1 − λ1

λ2
z2

)
(1 − z2)

,

F2 =
∫ z

z0

dz

(1 − naz2)
√(

1 − λ1
λ2

z2
)
(1 − z2)

.

Making the change of variables x =
√

λ1(1−z2 )
λ2−λ1z2 in F0 and z =

sin σ in F1 and F2, we get the result of Table I.

3. Case s = 0

In this case, Eqs. (7) and (10) can be expressed in terms
of simple analytical functions. If E > 0, the pseudoparticle
crosses the singular point r = 0 at some specific times, lead-
ing to a jump of π for the control phase. The solution is given
in Table II.

APPENDIX B: DERIVATION OF THE SINGULAR
CONTROL FIELDS

In this section, we compute the control fields ux and uy in
the singular case, which occurs when r (t ) = 0 over a finite
time. In the coordinates �� = �L1 + �L2 and �m = �L1 − �L2, the
pseudo-Hamiltonian can be expressed as

Hp = ux�x + uy�y − ωmz.
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TABLE II. Solution of Eq. (7) and (10) for s = 0.

If E < 0 (r0 > ω
√

2)

r (t ) = 1
1+ω2

[
r0 − ω

√
2(1 + ω2) − r2

0 cos u
]

α(t ) = 0

u = √
1 + ω2t + ρ,

ρ = − arccos
[ −ωr0√

2(1+ω2 )−r2
0

]
If E > 0 (r0 < ω

√
2)

For t ∈ [tn−1, tn] with n ∈ N\0

r (t ) = 1
1+ω2 [r0 − ω

√
2(1 + ω2) − r2

0 cos u]

α(t ) = (n − 1)π

u(t ) = √
1 + ω2t + ρn−1

ρn = 2n arccos
[

r0

ω
√

2(1+ω2 )−r2
0

] + ρ0

tn = 1√
1+ω2

{
2(n − 1)π − arccos

[
r0

ω
√

2(1+ω2 )−r2
0

] − ρn−1

}
,

ρ0 = − arccos
[ −ωr0√

2(1+ω2 )−r2
0

]
,

t0 = 0

The Hamilton’s equations lead to the following relations:

�̇x = −ωmy − uy�z

�̇y = ωmx + ux�z

�̇z = uy�x − ux�y.

and

ṁx = −ω�y − uymz

ṁy = ω�x + uxmz

ṁz = uymx − uxmy.

The singular set is defined by �x (t ) = �y (t ) = 0 (r =√
�2

x + �2
y = 0). We also know that �z is a constant of motion,

which is zero for the initial point of the dynamics. We deduce
that mx = my = 0 on the singular set. We have therefore two
cases to consider:

(1) mz = 0 and thus Hp = 0. It corresponds to the excep-
tional case, which does not appear in this case.

(2) ux (t ) = uy (t ) = 0 and mz constant, which can be dif-
ferent from zero.

As explained in Sec. III B, the singular case exists only
if s = 0. Thus, a regular-singular solution is a succession of
constant pulses of maximum and zero amplitudes.

APPENDIX C: DYNAMICS OF THE BLOCH VECTOR

1. Regular case

We can show that the Bloch vector �Mi , the angular mo-
mentum �L,i and the adjoint state �pi of the spin i form an
orthogonal basis which can be described by three Euler angles
called θi, φi, and ψi [63]. We define θi and φi such that

Lxi
= Li sin θi cos φi

Lyi
= Li sin θi sin φi (C1)

Lzi
= Li cos θi,

where Li = | �Li |. The third Euler angle describes the motion
of �Mi and �pi . The Bloch vector �Mi is defined as

xi = − cos φi sin ψi cos θi − sin φi cos ψi

yi = − sin φi sin ψi cos θi + cos φi cos ψi (C2)

zi = sin ψi sin θi .

Knowing the dynamics of the Bloch vector [Eq. (1)] and of the
angular momenta [Eq. (3)], we can find the dynamics of each
Euler angle. In particular, the dynamics of ψi can be derived
from

ψ̇i = −ux cos φi + uy sin φi

sin θi

, (C3)

where ux and uy are given by Eq. (2). The angles θi and φi

can be expressed by inverting Eq. (C1), since θi ∈]0, π [. We
arrive at

sin θi =
√

L2
xi

+ L2
yi

Li

, cos θi = Lzi

Li

,

sin φi = Lyi√
L2

xi
+ L2

yi

, cos φi = Lxi√
L2

xi
+ L2

yi

.

The change of coordinates to ��, �m, and �r leads to Eqs. (12)
and (13).

2. Singular case

We recall that, in this case, the pulse is the concatenation
of a regular pulse of phase α = 0, a zero-amplitude pulse, and
a second regular arc of phase �α. The two regular arcs are
of the same duration Tr (see Fig. 2), and the singular arc lasts
during time Ts .

A constant control pulse of duration �t leads to a rotation
of angle

√
u2

x + u2
y + ω2

i �t about �n = t (ux, uy, ωi ). Starting
from t = ta and �Ma = (xa, ya, za ) until time tb with tb −
ta = �t , the explicit solution of the Bloch equation can be
expressed as

xb = uux[xaux + yauy] + za[vux − wuy]

+ ωi

�
ya sin(��t ) + xa cos(��t )

yb = uuyn
[xaux + yauy] + za[vuy + wux]

− ωi

�
xa sin(��t ) + ya cos(��t )

zb = uy[wxa + vya] + ux[vxa − wya] + za (1 − u), (C4)

with

� =
√

ω2
i + u2

x + u2
y, u = 1

�2
[1 − cos(��t )],

v = ωi

�2
[1 − cos(��t )], w = 1

�
sin(��t ).

Thus, the solution of the Bloch equation driven by the
regular-singular control pulse is given by the concatenation
of the solution associated to ux = 1 and uy = 0 from t =
0 to Tr, ux = uy = 0 from Tr to Tr + Ts, ux = cos(�α)
and uy = sin(�α) from Tr + Ts to 2Tr + Ts . Substituting Tr

by arccos(−ω2)/
√

1 + ω2 and γ = arctan[2ω
√

1 − ω2/(1 −
2ω2)], we get the solution of Eq. (14).
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