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We investigate dissociative single and double ionization of HeH" induced by intense femtosecond laser pulses.
By employing a semiclassical model with nuclear trajectories moving on field-dressed surfaces and ionization
events treated as stochastical jumps, we identify a strong-field mechanism wherein the molecules dynamically
align along the laser polarization axis and stretch towards a critical internuclear distance before dissociative
ionization. As the tunnel-ionization rate is larger for larger internuclear distances and for aligned samples,
ionization is enhanced. The strong dynamical rotation originates from the anisotropy of the internuclear distance-
dependent polarizability tensor, which features a maximum at certain internuclear distances. Good qualitative
agreement with our experimental observations is found. Finally, we investigate under which experimental
conditions isotope effects of different isotopologues of HeH™ can be observed.
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I. INTRODUCTION

The ionization and dissociation of small molecules in
intense laser fields is of fundamental interest and has captured
the attention of physicists for many years [1-3]. When the
ratio of the laser frequency to the peak electric field is suffi-
ciently small, the ionization process can be considered as an
electron tunneling through the instantaneous barrier formed
by the field and the Coulomb potential of the system [4]. In
molecules, such tunnel-ionization rates depend on the spatial
separation between the nuclei [5-9], as well as the molecular
orientation with respect to the laser polarization axis, where
the ionization rate follows the shape of the highest-occupied
molecular orbital [10-12]. In addition to these fixed-nuclei
properties, the molecules will dynamically rotate and stretch
in the field, potentially leading to fragmentation [8]. Here, we
theoretically identify a fragmentation pathway that involves
the combination of the aforementioned strong-field dynamics.
Namely, due to the force resulting from the internuclear
distance-dependent polarizability tensor, the molecule is si-
multaneously aligned and stretched towards a specific inter-
nuclear distance in the field-dressed ground state before being
ionized. We denote it as polarizability-enhanced dissociative
ionization (PEDI). We support our theoretical analysis with
experimental data.

Polarizability effects have been explored extensively in
strong-field physics, e.g., it has regularly appeared in the
interpretation of strong-field ionization experiments [13,14],
and the anisotropic polarizability is often exploited in molec-
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ular alignment experiments [15—-17]. In dissociative ionization
studies involving short laser pulses (tens of femtoseconds
duration), often only the vibrational degrees of freedom are
considered, while the rotational dynamics are disregarded.
This is based on the intuition that the field-free rotational
timescale of picoseconds is much greater than the vibrational
timescale of femtoseconds and thus rotational motion can be
safely neglected. However, as several works employing semi-
classical methods [7,18,19] have shown, rotational dynamics
are crucial for the understanding of the angular distribution of
the final ion fragments. Even at lower intensities, where ion-
ization is negligible and pure dissociation is the dominating
fragmentation process, it was shown that molecular rotations
play a role [20-24] for pulses as short as ~5 fs.

For our studies, we choose to focus on the simplest stable
polar molecule, HeH" [Fig. 1(d)]. Aside from HeH" being
a reference system for polar molecules, the two lowest elec-
tronic states, X! =+ and A'S7 [see Fig. 1(a)], have a large
energy separation of 13-39 eV in the Franck-Condon region
and a small dipole coupling which goes to zero at large R.
This highly limits the effect of the excited states and leads to
the essential physics occurring in the field-dressed electronic
ground state. Recent quantum calculations with vibrating
HeH' also confirm the dominance of ionization from the
ground state [25]. This is in stark contrast to homonuclear
ions such as H,™, where the two lowest charge-resonance
states [26] are energetically separated by a few IR photons
at intermediate R, and degenerate and strongly coupled at
large R. Indeed, most of the prominent breakup processes
first discovered in H,* depend on the efficient population
of the first excited state. These processes include above-
threshold dissociation [27-30], bond hardening and bond
softening [31-34], electron localization [6,35-38], above-
threshold Coulomb explosion [39], and charge-resonance
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FIG. 1. (a) Field-free Born-Oppenheimer curves for HeH" and
its daughter ions. The Franck-Condon region is indicated by the
shading. (b) Polarizability tensors as a function of R. The electron
densities (isosurface value 0.04) of HeH' (X'X¥) are plotted for
R = 1.0, 2.6, and 6.0. (c) Cycle-averaged field-dressed potential for
F = 0.53. (d) Sketch of HeH™.

enhanced ionization [5]. Although PEDI should be present in
H,* as well as in other more complicated molecules, more
prominent population and coupling of excited states may lead
to other processes dominating, making an identification of
PEDI difficult. It should be mentioned that the first excited
state in HeH™ has received attention in terms of the enhanced
ionization (EI) phenomenon in polar molecules [9,40]: at
a critical internuclear distance, due to the crossing of the
two lowest Stark-shifted energy levels, enhanced population
and ionization of the first excited state occurs. However, the
EI description was based on a fixed-nuclei picture, and we
find for a more realistic scenario, i.e., with moving nuclei
and a molecule initially prepared close to the equilibrium
R, the dominating effect is that ionization is enhanced due
to the joined dynamics of rotation and stretching of the
molecule.

II. THEORETICAL AND EXPERIMENTAL METHODS

In this article, strong-field dissociative single and double
ionization (SI and DI) of HeH™ is simulated employing
a semiclassical approach with classical nuclear trajectories
moving on field-dressed surfaces and ionization treated as
stochastical jumps. Such an approach allows us to treat ro-
tation, stretching, and single and double ionization while
keeping the computational effort manageable to perform scans
over an extensive laser-parameter space with inclusion of the
initial rotational temperature, vibrational- and intensity-focal-
volume-averaging effects. A full quantum treatment at the
laser intensities considered in this work (<10 W/cm?) is
computationally prohibitive.

In the HeH™ sketch in Fig. 1(d), R denotes the internuclear
distance and 6 the angle between the field polarization and
the molecular axes. The field-dressed energy surfaces read

[Fig. 1(a)], F the electric field, E(()S) the Born-Oppenheimer

curves, u'* the permanent dipole moments, and ot(f) (aﬁs))
the molecular-frame perpendicular (parallel) components of
the polarizability tensors (obtained on the CASSCF(15/2)/aug-
cc-pVQZ [41] level of theory calculated with MOLCAS [42]).
For HeH" (X' %), the anisotropic polarizability a(‘s) — a(f)
exhibits a distinct maximum at R. = 2.6 [Fig. 1(b)], which
leads to distinct wells at R, and cosf = =1 in the cycle-
averaged field-dressed energy surface [Fig. 1(c)]. The peak
in a‘(‘y) is understood in terms of the density isosurfaces in
Fig. 1(b): For R — 0 and R — oo, the electron cloud is
spatially confined and resides almost completely on a single
nucleus, resulting in small polarizabilities, while at interme-
diate R’s the density is spatially extended, resulting in large
polarizabilities. Recent quantum chemistry calculations on
alkali dimers have also noticed the polarizability maximum
and its possible implications for alignment experiments [43].

Each trajectory moves classically on the instantaneous
field-dressed surface [Eq. (1)], with ionization treated as
stochastical jumps [18,44]. For the pulses considered in
this work, the Keldysh parameter is y < 1, indicating
the tunneling regime of strong-field ionization [4]. We
employ the lowest-order many-electron weak-field asymp-
totic theory [45], where the ionization rate I'®)(F,9; R) =

IG©@; R)*WE(F; R) is given by the structure factor
|G“)(0; R)|” and the field factor

o K [ 4e»? S 2%’
we =2 exp | — . @
2 F 3F

with k® = /2157, Z©) the nuclear charge seen by the out-
going electron asymptotically, and 1 ,(f) the ionization poten-

tials. An additional empirical factor exp[—14Z®>F /] is
applied to counteract the overestimation of the rates at large
F [11]. The structure factors for R = 14 are obtained using
the method in Ref. [46] and extrapolated to the values of the
relevant atoms for R — 00. As shown in Fig. 2, the electron
favorably tunnels from the hydrogen side, in agreement with
earlier works [9,12,47]. The initial conditions of R and pg
are chosen randomly according to a Husimi distribution of
a given vibrational state, and the molecules are chosen to
be randomly oriented. The initial angular momenta are dis-
tributed according to a Boltzmann distribution to account for
the high experimental rotational temperature in the ion source,
T = 3400 %+ 300 K [48,49]. The laser wavelength is 800 nm
and the pulse has a sin® envelope with FWHM t = 34 fs. For
each intensity and initial vibrational state, 10° trajectories are
released. The results are averaged over the initial vibrational-
state distribution [48], the laser beam focal volume [50], and
the carrier-envelope phase, unless stated otherwise.
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FIG. 2. Calculated structure factors |G (6; R)|* for single ion-
ization of HeH* and HeH?*, showing the orientation dependence of
the ionization rates.

The experimental setup is identical to that described in
Ref. [51]. Briefly, the HeH™ ions are synthesized in a duo-
plasmatron ion source, accelerated to 10-keV kinetic energy,
and focused towards the laser interaction region, where a
tabletop Ti:sapphire laser system provides 800-nm pulses with
peak intensities 7 of up to 10'7 W/cm? and intensity FWHM
duration T ~ 34 fs. Due to the low target density and the laser
focal volume effect, much lower intensities are responsible for
the ionization signal, and we therefore expect our simulation
results with somewhat lower intensities (<10'® W/cm?) to be
adequately comparable to our experiment.

III. RESULTS AND DISCUSSIONS

Figure 3 shows the kinetic energy release (KER) and angu-
lar distributions of the nuclear fragments from SI and DI. Due
to the high number of optical cycles, the directional ionization
asymmetry for 6 =0 and 6 = 7 (Fig. 2) is averaged out,
resulting in symmetric yields in the intervals cos@ € [0, 1]
and [—1, 0], of which we only consider the former.
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FIG. 3. KER- and orientation-dependent fragmentation yields
from single (upper panels) and double dissociative ionization
(lower panels) of HeH for A =800 nm, I = 9x10" W/cm?,
and T = 34 fs. (e), (j) Experimental results at laser peak intensity
(~10'7 W /cm?), with the shaded area denoting absolute zero counts
due to the experimental setup (see text). Ps; and Pp; denote the
ionization probabilities. Results in the panels (a), (b), (f), (g) are with
T=0K.
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FIG. 4. Simulated distribution of R and cos6 for the singly
ionized molecules at the instant of ionization for I = 9x 10" W /cm?
and T =0 K: (a) t=49 fs, (b) t =34 fs, and (¢c) T =34 fs
with rotation disabled. The vertical dashed line indicates R.. The
horizontal line approximately traces the enhanced ionization region
from [40] (not included in our simulations). The upper (blue) axis
shows the kinetic energy by the reflection principle.

The SI experimental result in Fig. 3(e) shows that the
fragments have KERs of 7-17 eV with the angular distribution
aligned along the laser polarization direction (cos 8 = 1). Due
to the Faraday cup used in the experimental setup to block
the nonfragmented HeH™ beam, the yields at cos@ ~ 1 are
not fully detected. Also, due to the finite size of the detector,
the measurable range of cosf is limited, resulting in zero
counts in the grayed region in Fig. 3(e). Our simulation results
with T = 3500 K in Fig. 3(d) agree well with the experiment,
with the fragments aligned along the laser polarization axis
and having KER 7-18 eV, corresponding to ionization at R ~
1.5-3.5 (see Fig. 4). Compared with Fig. 3(c), a nonzero tem-
perature is seen to broaden the angular distribution. Three in-
tertwined effects lead to the final aligned ion distribution: dy-
namic alignment during the laser pulse, geometric alignment
[8,22] denoting the orientation-dependent ionization (Fig. 2),
and postionization alignment [19]. By artificially disabling
the molecular rotation in the simulations, we see in Fig. 3(b)
that the angular distribution is quasiflat and cannot mimic
the experimental results; thus geometric alignment plays a
lesser role for the final ion angular distribution. Simulation
results where we disabled the molecular stretching shown in
Fig. 3(a) have too high KER (peaked at 17 eV) compared to
the full result in Fig. 3(d), corresponding to ionization events
occurring at smaller R’s.

The measured DI yields in Fig. 3(j) are also aligned,
with KER 8-25 eV, corresponding to the second ionization
event occurring between R ~ 5-25 [51]. The simulation with
T =3500 K in Fig. 3(i) agrees with these observations.
The angular distributions for SI and DI are similar, because
after a molecule is singly ionized, it will dissociate and its
moment of inertia MR? (M the reduced mass) increases,
effectively freezing 6 before DI. For both SI and DI, the
ionization probabilities Pg; = 0.192 [Fig. 3(d)] and Pp; =
0.071 [Fig. 3(1)] are larger when the molecules are allowed
to stretch and rotate, indicating increased ionization due to
dynamical alignment and stretching towards R = R..

We estimate the rotational timescale as the time it takes a
trajectory to reach from half of the well depth in Fig. 1(c) to
the potential minima, i.e., T,y = \/ﬁh(R)/F, with A(R) ~
2.62R/ /oy —ay. At R., with Myey+ = 1469 and F = 0.37,
we have 1,oc = 12.8 fs, which is comparable to the field-free
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FIG. 5. Simulated time evolution of the nuclear densities for the
artificial case with ionization turned off, for I = 5x 10" W/cm?
and T =0 K: (a) t=49 fs, (b) t =34 fs, and (¢c) T =34 fs
with rotation disabled. The results are vibrational averaged, but not
intensity-focal-volume averaged.

vibrational period 7,;, = 11.5 fs and 37 times shorter than that
of the field-free rotational period of 478 fs. Dynamical rota-
tion is expected to be prominent when the rotational timescale
T;ot 1S comparable to or shorter than the pulse duration t,
which is the case for T = 34 fs used in the experiment.

Figure 4 shows the (R;,6;,) distribution of the singly
ionized molecules at the instant of ionization. For the results in
Fig. 4(c) with rotation artificially disabled, ionization occurs
over a broad range of cosf;. With increasing cosé;,, the
ionizations are seen to be shifted towards larger R} , e.g., we
have R; ~ 1.8 forcosf; =0,and R; ~ 2.2forcosf; = 1.
Also, more ionization events occur for the aligned molecules
(cos 6 = 1). The reason is clear: without rotation, the aligned
molecules need to stretch towards larger R [see Fig. 1(c)],
where the lower I, and the favorable structure factor in Fig. 2
leads to more ionization. The projected R;; distribution in the
upper panel of Fig. 4(c) peaks at R; ~ 1.9, corresponding to
Exn = 14 eV by reflection. This is in disagreement with the
experimental KER maximum in Fig. 3(e) at Ey ~ 11 eV. For
the simulation results in Fig. 4(b) where rotational motion is
included, most molecules ionize after they are dynamically
aligned, with the projected R, distribution peaked at R ~ 2.1,
corresponding to a reflected KER Ey ~ 12.5 eV, in
better agreement with the experiment. For the short pulse
=49 fs < 1, in Fig. 4(a), the molecules do not have
much time to rotate and stretch, resulting in smaller R;’s
and thus much higher KERs. We have not taken the EI effect
[9,40,47] into account in our ionization rates, which will take
place at R 2 3 (horizontal dashed lines in Fig. 4). Since most
ionization events occur before this region, we expect its effect
to be small.

To understand more in detail the bound-state dynamics
before ionization, we consider the artificial case with ioniza-
tion switched off. The time evolution of the bound nuclear
densities is shown in Fig. 5. Since the low-intensity regions
in the focal volume dominate, we consider a single intensity
without performing the focal-volume averaging. For the short
pulse in Fig. 5(a), T < Trot & Tvib, and the trajectories do not
have time to rotate and vibrate, resulting in a minimal change
of the density during the pulse. This is different for the long
pulse shown in Fig. 5(b), where the molecules have time
to align and stretch towards R, and at the field maximum
t = 46.7 fs a substantial part of the density has reached R €
[2, 3]. During the second half of the pulse, the already aligned
molecules contract back towards the equilibrium Ry, with
density oscillations due to the vibrational motion distinctly
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FIG. 6. Alignment parameter (cos>6) for (a), (d) HeH™, (b), (e)
HeD™, and (c), (f) their normalized difference. In (a), (b), the fitted
experimental results at peak intensity, 800 nm and 34 fs for SI and
DI, are given by the (black) circle and (red) square, with the bars
denoting the uncertainty in the fit (see text).

observed in Fig. 5(b). When the molecule is not allowed to
rotate [Fig. 5(c)], similar to the case of a short pulse, the
stretching of the nuclei follows the dressed potential, but
only molecules initially aligned along the laser polarization
direction (cos @ = 1) stretch towards R..

The degree of alignment can be characterized by the
alignment parameter (cos’>#) (equal to 1 for completely
aligned samples and % for randomly oriented samples) and
is given as a function of I for the fragmented HeH™ in
Fig. 6(a). For SI, higher temperature and shorter pulses result
in broader angular distributions. With increasing intensities,
the detected fragments are seen to be less aligned, despite
the rotational timescale ., < 1/F being shorter. This is
indeed a characteristic of dynamical rotation: with increasing
1, ionization will occur earlier during the pulse, leaving the
molecule with less time to rotate [8]. The experimental values
for (cos®>6) are shown in Fig. 6(a) as a circle and square
for SI and DI, respectively. To avoid inaccuracies resulting
from the properties of the experimental setup, we consider
only the counts in the interval Ey € [0, Enax] in Figs. 3(e)
and 3(j), with Eyx = 7 €V, and fitted the missing yields at
cos @ ~ 1 with a function f(cosf) = a cos? 6 + b cos® H. The
bars belonging to the data points are for the extremal values
of (cos? 8) for Emax € [4, 9] eV and are seen to be consistent
with the simulation results.

Since o VM , the dynamical rotation is influenced by
the specific isotope. Indeed, recently the isotope effect in
tunneling ionization of molecules has attracted considerable
attention [52,53]. We investigate whether an isotope effect
can be observed in the ion angular distributions of HeH™
and HeD™. Figure 6(b) presents the simulated and exper-
imental results for HeD". With the employed experimen-
tal laser parameters, however, this isotope effect cannot be
conclusively resolved. To experimentally identify this would
require shorter pulses, as depicted in Fig. 6(c), showing
the normalized difference between the curves in Figs. 6(a)
and 6(b), S = ((cos? ) pen+ — (€082 8) gepy+ )/ ({€0S? 0) jrers
+(cos? 0)yep+ )- For the 34-fs, 3500-K case, S < 0.014, while
for the 9.7-fs pulse, S has more than doubled to 0.033. In
Figs. 6(d)-6(f) we show (cos? ) for HeH™, HeD* and their
relative differences over an extensive pulse regime. It is seen
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that the isotope effect for dynamical rotation is pronounced
for pulse durations of less than 10 fs, potentially allowing for
an experimental detection.

IV. CONCLUSION

In conclusion, we have identified polarizability-enhanced
dissociative ionization, a strong-field molecular breakup path-
way where the molecules dynamically align and stretch to-
wards a specific internuclear distance before ionization, with
geometric alignment playing a lesser role. For our studies, we
have focused on the fundamental polar molecules HeHt and

HeD™, and we believe that the effect is general, though more
pronounced for polar diatomics. Indeed, the maximum in the
anisotropy polarizability is present in all diatomics, except for
odd-charged molecular ions where the parallel polarizability
will monotonically increase with R [26].
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