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Generation of high-fidelity quantum control methods for multilevel systems
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In recent decades there has been a rapid development of methods to experimentally control individual quantum
systems. A broad range of quantum control methods has been developed for two-level systems; however, the
complexity of multilevel quantum systems make the development of analogous control methods extremely
challenging. Here we exploit the equivalence between multilevel systems with SU(2) symmetry and spin-1/2
systems to develop a technique for generating new robust, high-fidelity, multilevel control methods. As a
demonstration of this technique, we develop adiabatic and composite multilevel quantum control methods and
experimentally realize these methods using a 171Yb+ ion system. We measure the average infidelity of the process
in both cases to be around 10−4, demonstrating that this technique can be used to develop high-fidelity multilevel
quantum control methods and can, for example, be applied to a wide range of quantum computing protocols,
including implementations below the fault-tolerant threshold in trapped ions.
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I. INTRODUCTION

Quantum control methods are essential in many areas of
experimental quantum physics, including trapped atoms, ions
and molecules, and solid state systems [1–3]. Although the
focus is often on two-level systems, in nearly all experimental
realizations a larger number of states need to be taken into
consideration, for example, to prepare a qubit in a two-level
subspace of the system or to read out the state at the end of
an experiment. In addition, the unique features of multilevel
systems have led to new fields of research, including elec-
tromagnetically induced transparency [4] and single-photon
generation [5]. Multilevel systems are also widely used in
quantum computing, with applications such as the preparation
and detection of dressed-state qubits [6,7]. A variety of multi-
level methods including stimulated Raman adiabatic passage
(STIRAP) [8], multistate extensions of Stark-chirped rapid
adiabatic passage (SCRAP) [9], and other adiabatic methods
involving chirped laser fields [10–12] have been developed, in
addition to numerical algorithms for optimized quantum con-
trol [13]. However, the development of new control methods
for multilevel systems (especially for high-fidelity operations)
is challenging and often inhibited by the mathematical com-
plexity of such higher-dimensional Hilbert spaces. Previous
investigations into multilevel dynamics have studied coherent
excitation of multilevel systems under the action of SU(2)
Hamiltonians [14–18]. They showed that for a Hamiltonian
with this symmetry there exists an equivalent Hamiltonian
acting on a two-level system, and the dynamics of this two-
level Hamiltonian can then be used to find solutions for the
dynamics of the higher-dimensional system.
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Here we apply this insight to find states in a two-level
system that are equivalent to the states we wish to transform
between in the multilevel system. This is key for practical
quantum control methods where it is often necessary to trans-
fer population between two particular states with high fidelity
[1]. If such states exist, any method to move between them can
be transformed into the multilevel case. Thus, we can trans-
form robust, high-fidelity two-level methods into multilevel
methods which also possess these desirable properties. We
experimentally implement two control methods for trapped
ions generated using the technique, demonstrating their high-
fidelity and robustness.

The paper is organized as follows. In Sec. II we introduce
the Majorana decomposition and detail how to design multi-
level control methods using equivalent two-level methods. In
Sec. III we introduce a three-level example system in 171Yb+

and discuss the mapping to a two-level system for this specific
case. In Secs. IV and V we demonstrate adiabatic and com-
posite control methods based on the Majorana decomposition
in our trapped ion system. Finally, in Sec. VI we present a
measurement of the fidelity of the two control methods.

II. MAJORANA DECOMPOSITION

The Majorana decomposition was originally devised as a
way of simplifying the dynamics of a spin-j system in an
inhomogeneous magnetic field, by reducing the dynamics to
that of an effective two-level system [14,15,19,20]. Consider
a Hamiltonian that takes the same form as a spin in a magnetic
field, Hj = �(t ) · J, where J = Jx x̂ + Jy ŷ + Jzẑ, Ji being
the angular momentum operators of a spin-j particle, and
�(t ) is a three-component vector specifying the control fields
that we apply to our system. Such a system can be said to have
SU(2) symmetry [17]. Majorana showed that the dynamics of
such a system can be mapped exactly onto the dynamics of
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FIG. 1. Use of an effective two-level system to generate three-level control methods. (a) We wish to implement a control method which
transforms an initial state |ψ1/2〉i on the effective two-level Bloch sphere (which here we take to be |↓〉) into a final state |ψ1/2〉f = e−iθ û·S|ψ1/2〉i,
where û is the axis of rotation and θ is the angle (equivalent to |ψj 〉f = e−iθ û·J|ψj 〉i in the real multilevel system). (b) In the effective two-level
system, most control methods are implemented by applying a single control field of Rabi frequency �1/2(t ), instantaneous detuning δ1/2(t ), and
phase χ (t ). (c) By inverting the Majorana decomposition, we derive the control fields that we must apply to our real physical system, namely,
two fields of equal Rabi frequency �(t ) and equal and opposite detunings and phases ±δ(t ) and ±χ (t ), respectively.

a spin-1/2 particle, acted upon by the Hamiltonian H1/2 =
�(t ) · S, S being the spin-1/2 angular momentum operator.
This decomposition has been used to develop analytical solu-
tions for the dynamics of a multilevel system [16,17]. Here we
apply these ideas to generate high-fidelity multilevel quantum
control methods. First, we use the Majorana decomposition
to transform a multilevel problem into its much simpler two-
level equivalent, for which a multitude of control methods
are readily available. By then inverting the Majorana decom-
position, we obtain the control fields for a new equivalent
multilevel method.

In order to describe this technique, we introduce the fol-
lowing mathematical framework, which expresses each step
of the process in simple, geometrical terms. First, consider
an initial and final state in a multilevel system which we
require to be related by a rotation |ψj 〉f = e−iθ û·J|ψj 〉i, where
û and θ specify the axis and angle of rotation, respectively.
The Majorana decomposition tells us that there will be an
equivalent transformation in the spin-1/2 system: |ψ1/2〉f =
e−iθ û·S|ψ1/2〉i [Fig. 1(a)], where the choice of |ψ1/2〉i is ar-
bitrary. At this point we can use any of the many robust
two-level control methods to carry out the transformation
|ψ1/2〉i → |ψ1/2〉f . To transform this two-level method into
the new multilevel control method we apply the inverse
of the Majorana decomposition. Noting that any two-level
Hamiltonian can be written in the form H1/2 = �(t ) · S, we
obtain the multilevel method by producing a Hamiltonian Hj

with the same control vector �(t ). This will perform the
required multilevel state transformation |ψj 〉i → |ψj 〉f . The
new multilevel method will share desirable properties with
the original two-level method, such as robustness to certain
parameter errors that also have SU(2) symmetry.

As an example, suppose that we want to transfer popu-
lation between eigenstates of two different angular momen-
tum operators in different directions. The initial and final
states |ψj 〉i and |ψj 〉f are eigenstates of the projection an-
gular momentum operators along the directions r̂i and r̂f ,
respectively, with the same eigenvalue mJ . Any rotation
that transforms r̂i to r̂f will suffice. The simplest rotation
(smallest rotation angle) is given by θ = sin−1(|ri × rf |),
û = ri × rf /|ri × rf |. For example, consider the Jz and Jx

eigenstates for the j = 1 three-level system. The Jz eigen-

states are the basis states |+1〉, |0〉, and |−1〉, with eigenval-
ues +1, 0, and −1, respectively, while the three eigenstates
of Jx are |u〉 = 1

2 |+1〉 + 1
2 |−1〉 + 1√

2
|0〉, |D〉 = (|+1〉 −

|−1〉)/
√

2, and |d〉 = 1
2 |+1〉 + 1

2 |−1〉 − 1√
2
|0〉, again with

eigenvalues of +1, 0, and −1. We can consider the effect
of consecutive rotations of π/2 about the y axis, that is,
applications of the rotation operator e−i(π/2)Jy . If we start in
the state |0〉, then ignoring global phases we get the following
sequence of states:

|0〉 → |D〉 → |0〉 → |D〉 → |0〉, (1)

where the ion is alternating between the m = 0 eigenstates
of the two angular momentum operators Jz and Jx , since the
mJ = 0 eigenstates of a projection operator and its inverse are
equal. If instead we start in |+1〉 we get the sequence

|+1〉 → |u〉 → |−1〉 → |d〉 → |+1〉, (2)

where the ion is moving between the ±1 eigenstates of the Jz

and Jx operators. Any two-level control method that rotates
by an angle π/2 about the y axis can therefore be used to
transform between states in the three-level system linked in
Eqs. (1) and (2).

The method described in this section is a general technique
to derive robust quantum control methods for multilevel sys-
tems based on the Majorana decomposition. In the follow-
ing sections we will describe a specific physical system of
interest, a three-level system in the ground state of a single
trapped ion, and demonstrate the application of this method to
robustly perform a specific desired state transformation within
this system.

III. THREE-LEVEL TRAPPED ION SYSTEM

To illustrate the technique described in Sec. II, we generate
control methods for the coherent manipulation of a three-level
V-system. We demonstrate these methods experimentally us-
ing a single trapped 171Yb+ ion, where the three levels |+1〉,
|0〉, and |−1〉 correspond to the states |F = 1,mF = +1〉,
|F = 0〉, and |F = 1,mF = −1〉 of the 2S1/2 ground-state hy-
perfine manifold, respectively. The ion is confined in a linear
Paul trap, details of which are described in Refs. [21,22]. A
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magnetic field of B0 = 8.8305(4) G is applied using perma-
nent magnets inside the vacuum system and external current
coils. The magnetic field splits the energies of the states mak-
ing up the F = 1 manifold. The transitions from |0〉 to | ± 1〉
are driven by two microwave fields generated using an RF ar-
bitrary waveform generator, which creates a waveform with a
bandwidth of ≈30 MHz centered around 100 MHz. Typically
we set the Rabi frequencies �1 and �2 of these applied fields
to be equal, so that the dark state |D〉 will be an eigenstate
of the dressed Hamiltonian [Eq. (4)]. The waveform is then
frequency mixed with a signal near 12.5 GHz, before being
amplified to 2 W and sent to a microwave horn positioned
near a viewport of the vacuum system, approximately 2 cm
from the ion. The ion is prepared in |0〉 using optical pumping,
and a fluorescence measurement distinguishes between |0〉
and {|−1〉, |0′〉, |+1〉}, where |0′〉 ≡ |F = 1,mF = 0〉 is an
additional state in the F = 1 manifold that is not used. A max-
imum likelihood method is used to normalize the data against
independently measured state detection errors (Appendix A).

We would like to transfer the system from |0〉 to the
superposition state |D〉 ≡ (|+1〉 − |−1〉)/

√
2, which can be

protected against decoherence caused by fluctuating magnetic
fields by the application of a pair of dressing fields [6,7]
and has been shown to be useful for quantum computation
[6,7,23–26] and magnetometry [27]. Previous methods to
transfer population between these states either are susceptible
to errors from fluctuating magnetic fields [6,7] or require the
use of the |0′〉 state, which would ideally be reserved to form
a qubit along with |D〉 [23]. It would therefore be desirable to
design a robust method to transfer between these states with
low infidelity. The required population transfer corresponds to
the unitary transformation Uj=1 = e−i(π/2)Jy , a rotation about
the y axis by π/2. Due to the Majorana decomposition, this
is equivalent to the transformation |↓〉 → 1√

2
(|↓〉 + |↑〉) in a

spin-1/2 system, as shown in Sec. II [Fig. 1(a)].
There are many ways to carry out this two-level process,

such as a simple π/2 pulse, or more robust methods such as
composite pulses and adiabatic passage. The vast majority of
two-level methods that can be implemented use a single con-
trol field, with possibly time-varying amplitude, frequency,
and phase [Fig. 1(b)]. Moving to an interaction picture rotat-
ing at the frequency of the field, and after making the rotating
wave approximation, this corresponds to a Hamiltonian

H1/2 = h̄

2

( −δ1/2(t ) �1/2(t )eiχ (t )

�1/2(t )e−iχ (t ) δ1/2(t )

)
(3)

(with the states ordered |↓〉, |↑〉), which can be writ-
ten as H1/2 = h̄{�1/2(t ) cos[χ (t )]Sx + �1/2(t ) sin[χ (t )]Sy +
δ1/2(t )Sz}, where �1/2(t ), δ1/2(t ), and χ (t ) are the time-
varying Rabi frequency, instantaneous detuning, and phase,
respectively. Once the forms of �1/2(t ), δ1/2(t ), and χ (t )
have been chosen to perform the required transformation
|↓〉 → 1√

2
(|↓〉 + |↑〉), we can invert the Majorana decom-

position to determine what real-world control fields we
must apply to our physical three-level system to move
between the initial and final states |0〉 and |D〉. The
resulting three-level Hamiltonian is obtained by replac-
ing the Pauli matrices in H1/2 above with the three-
level spin matrices Ji : Hj=1 = h̄{�1/2(t ) cos[χ (t )]Jx +

�1/2(t ) sin[χ (t )]Jy + δ1/2(t )Jz}. This Hamiltonian can be
written as

Hj=1 = h̄

2

⎛
⎝ −δ(t ) �(t )eiχ (t ) 0

�(t )e−iχ (t ) 0 �(t )eiχ (t )

0 �(t )e−iχ (t ) δ(t )

⎞
⎠ (4)

(with the states ordered |−1〉, |0〉, |+1〉), which corresponds
to a pair of control fields, each of Rabi frequency �(t ) =√

2�1/2(t ), with opposite phases ±χ (t ) and opposite detun-
ings ±δ(t ) = ±2δ1/2(t ) [Fig. 1(c)].

Now that we have derived a transformation between the
effective two-level system and our physical three-level sys-
tem, we can design new control methods to achieve the desired
mapping based on existing two-level control methods. Quan-
tum control methods for two-level systems are often designed
to protect against errors caused by fluctuating parameters,
such as detuning and Rabi frequency. These errors in a two-
level system will also have equivalents in the multilevel case,
and any protection offered will carry over. In the 171Yb+

system used here, two main sources of error are caused by
magnetic field noise and common mode Rabi frequency noise,
the effects of which both have SU(2) symmetry and can
therefore be countered by the appropriate choice of two-level
control method. In the following sections, we design and
demonstrate two such methods.

IV. ADIABATIC CONTROL METHOD

The first method is an adiabatic method following on from
the work of Hioe [16], which is the three-level equivalent of
the well-known two-level process of rapid adiabatic passage
described by the Landau-Zener-Stuckelberg-Majorana model
[28,29]. Here population is transferred between two states by
adiabatically moving their energies to an avoided crossing.
If the field is adiabatically varied from the regime where
�1/2/δ1/2 = 0, to �1/2/δ1/2 = ∞ with χ = 0 by turning the
field on slowly while chirping the frequency, the population
will be transferred from the initial eigenstate |↓〉 to (|↓〉 +
|↑〉)/

√
2 [see Figs. 2(a) and 2(b)]. If we translate this into

the three-level picture, we obtain a Hamiltonian of the form
shown in Eq. (4). This describes an adiabatic process in-
volving chirped pulses and amplitude shaping which transfers
population from |0〉 to |D〉, similar to the analytical solution
derived by Hioe [16].

A Blackman function [30] is used to define the form of
the time-varying detuning δ(t ). This pulse shape was chosen
because in numerical simulations it produced the lowest infi-
delity due to nonadiabaticities. For a Blackman chirp profile
starting at δ0 and finishing at zero detuning, the required
“instantaneous” detuning is

δ(t ) = δ0

50

[
21 + 25 cos

(
πt

tδ

)
+ 4 cos

(
2πt

tδ

)]
, (5)

where tδ is the detuning chirp time [Fig. 2(d)]. Due to the
choice of interaction picture chosen to derive Eqs. (3) and (4),
where the interaction frame is rotating at the time-dependent
frequency of the field, this is the detuning used in these
equations. In the laboratory frame, the required frequency
of the physical field is given by ω0 + �(t ), where ω0 is the
resonant frequency and �(t ) is the detuning. However, �(t )
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FIG. 2. Adiabatic transfer to the dark state of a dressed three-level system. (a) Energy eigenvalues and (b) eigenstates {|ξ1〉, |ξ2〉} of H1/2

as a function of δ/� for χ = 0. (b) Analytically calculated amplitudes of these eigenstates, all of which can be defined as real numbers in this
case. An avoided crossing is present at δ/� = 0, at which point the eigenstates are the dressed states (|↓〉 ± |↑〉)/

√
2, which are separated in

energy by h̄�/
√

2. Therefore, by adiabatically varying the detuning and Rabi frequency, the population can be coherently transferred from
{|↓〉, |↑〉} to (|↓〉 ± |↑〉)/

√
2. (c–e) Demonstrating the method using a single 171Yb+ ion. In the three-level system, the adiabatic procedure will

transfer population from |0〉 to the dark state |D〉 = (|+1〉 − |−1〉)/
√

2. (c, d) The temporal profiles for the Rabi frequency � (solid green line
in c) and the instantaneous detuning δ (solid red line in d), where the relevant parameters are given in the text. (e) Measured probability for
the ion to be in the 171Yb+ F = 1 state given by P (F = 1) = 1 − P0 as a function of time. Each point is the average of 300 repetitions. The
theoretical probability for the ion to be in F = 1 as a function of time (solid red line) is obtained from a numerical simulation of the system
with no free parameters, which can be seen to agree well with the measured data.

is not equal to this instantaneous detuning of the field. The
instantaneous frequency of a sinusoidal function at any given
time is given by the time derivative of its overall phase, which
in our case is equal to δ(t ) = d(�(t )t )/dt for χ (t ) = 0. The
required profile for �(t ) is therefore given by

�(t ) = 1

t

∫ t

0
δ(τ ) dτ

= δ0

50t

{
21t + tδ

π

[
25 sin

(
πt

tδ

)
+ 2 sin

(
2πt

tδ

)]}
.

(6)

The amplitude of the driving fields are also changed during
the first part of the detuning chirp. We again use a Blackman
function, giving a Rabi frequency profile

�(t ) = �0

50

[
29 − 25 cos

(
πt

t�

)
− 4 cos

(
2πt

t�

)]
, (7)

where t� is the amplitude ramp time [Fig. 2(c)]. The Rabi
frequency is then kept constant at �0 until the detuning chirp
is complete.

We implement this procedure experimentally in our 171Yb+

ion system. Figure 2(e) shows the probability of measuring
the system in the 171Yb+ F = 1 level (1 − P0) as a function
of time during the adiabatic procedure. First, the transfor-
mation |0〉 → |D〉 is performed. Next, the system is left in
the state |D〉, which is protected by the control fields, for a
“hold” time th = 400 μs. Finally, the inverse transformation
|D〉 → |0〉 is performed by reversing the amplitude-shaping
and chirped frequency profiles of the forward process. The
optimal parameters for the Blackman profiles were found by

simulations to be �0/2π = 40 kHz, δ0/2π = 60 kHz, t� =
200 μs, and tδ = 300 μs. Compression in the microwave am-
plifiers slightly alters the amplitude envelope of the applied
microwave radiation compared with that generated by the
arbitrary waveform generator. This effect, which has been
included in the numerical simulation, has a negligible impact
on the simulated fidelity. Plots of �(t ) and δ(t ) in Figs. 2(c)
and 2(d) include these effects of compression.

V. COMPOSITE CONTROL METHOD

We have shown that our technique can be used to develop
a three-level adiabatic method similar to the two-level method
of rapid adiabatic passage. As a further demonstration of our
technique to develop multilevel control methods, we imple-
ment a resonant control method to transfer population from |0〉
to |D〉. We do this by creating a three-level composite pulse
sequence. A widely used example of a two-level composite
pulse sequence is the BB1 pulse sequence by Wimperis [31],
which consists of four resonant Rabi pulses and can protect
against pulse area errors. The four pulses of the BB1 sequence
carry out four consecutive rotations of the type R(θR, φR ),
each with a particular choice of rotation angle θR and phase
φR (corresponding to a rotation axis û = cos φR x̂ + sin φR ŷ).
For a rotation from θ = φ = 0 to θ = π/2, φ = 0, it con-
sists of four pulses and is given by U (BB1) = R(π/2, π/2) ·
R(π, 3.267) · R(2π, 0.376) · R(π, 3.267), where R(θR, φR )
is a rotation on the Bloch sphere by polar angles θR and φR

[see Fig. 3(a)].
Using our technique, we can produce an analogous control

method for three-level systems which can robustly transfer
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FIG. 3. Robust population transfer to the dark state using the TBB1 composite pulse sequence. (a) The TBB1 composite pulse sequence
represented on the effective two-level Bloch sphere. The sequence consists of four resonant pulses with varying pulse area and phase which can
be written as a sequence of rotations on the Bloch sphere of the form R(θR, φR ). Each of these rotations is represented as a colored line on the
Bloch sphere, in the order red, orange, green, blue (numbered to show ordering). Above is the trajectory in the case of zero Rabi frequency error
and below for the �� = −2π × 10 kHz case. We implement both of these cases experimentally to demostrate the robustness of the method to
pulse area errors. (b) The phase χ as a function of time implementing the TBB1 pulse sequence for a fixed Rabi frequency �0/2π = 40 kHz.
An extra phase change of −π/2 at the end ensures the population remains in |D〉 after the procedure. Therefore the total pulse sequence is
R(∗, 0) · R(π/2, π/2) · R(π, 3.267) · R(2π, 0.376) · R(π, 3.267). (c) The measured population in F = 1 as a function of time with �� = 0
(a, upper sphere; c, light blue line or light gray when printed in grayscale) and for a Rabi frequency error of �� = −2π × 10 kHz (a, lower
sphere; c, black line), showing that the sequence is robust to such errors. (d) Measured population in F = 1 as a function of pulse area for a
square π/2 pulse (black) and the TBB1 pulse sequence (light blue; light gray when printed in grayscale), demonstrating that the TBB1 sequence
maintains the robustness to pulse area error of the original two-level BB1 sequence. The pulse area is normalized such that the nominal pulse
area for a π/2 rotation is 1. The solid lines in panels (c) and (d) correspond to numerical simulations of the sequence with no free parameters.

population from |0〉 to |D〉 (which we call the TBB1 se-
quence). This method consists of a sequence of simulta-
neous microwave pulses on the |0〉 to | ± 1〉 transitions,
with parameters set such that �0t/

√
2 = θR , χ = φR , and

δ = 0. Therefore the three-level TBB1 sequence consists of
four pulses of length 17.7, 35.4, 17.7, and 8.8 μs and phases
±1.63,±0.19,±1.63, and ±0.79 on the |0〉 to | ± 1〉 transi-
tions. Thus a rotation from |0〉 to |D〉 (which again is |↓〉 to
(|↓〉 + |↑〉)/

√
2 in the effective two-level system) is imple-

mented. In order to protect the |D〉 state after the sequence, the
control fields are simply left on, with the relative phase χ set
to 0. Figure 3(c) shows the population in F = 1 as a function
of time during the TBB1 pulse sequence for two cases. In
one case the Rabi frequency is set to the correct value such
that �� = � − �0 = 0, while in the second case the Rabi
frequency is deliberately misset by �� = −2π × 10 kHz,
which corresponds to a 25% error in the applied microwave
amplitude. It can be seen that in both cases the final popu-
lation is almost entirely transferred to the F = 1 manifold,
demonstrating the robustness of the composite sequence to
substantial errors in the pulse area. The TBB1 sequence is
completed in a time of 80 μs compared to 300 μs for the
adiabatic method, but both methods could be sped up by
increasing the applied microwave power (i.e., raising the Rabi
frequency). Figure 3(d) shows the population in F = 1 as a
function of normalized pulse area for a single pulse nominally
driving a rotation R(π/2, π/2) in the effective two-level sys-
tem, as well as when the TBB1 pulse sequence is applied. The
improvement in robustness of the TBB1 sequence compared
to the single pulse can clearly be seen, demonstrating that

composite quantum control techniques developed for two-
level systems give the same advantages in the three-level case.

VI. FIDELITY MEASUREMENTS

Although the data presented in Figs. 2 and 3 show a
good agreement with theory, the fluorescence measurement
scheme used can determine only the values of the quantities
P0 and P+1 + P−1 + P0′ = 1 − P0, where Pj = 〈j |ρ|j 〉 and
ρ is the measured state. This is not sufficient to calculate
the fidelity with which the state |D〉 is prepared. Therefore
a more complex method is required to fully characterize the
state fidelity. The fidelity of |D〉 is given by

FD ≡ 〈D|ρ|D〉 = 1

2
(P+1 + P−1) + |ρ±| cos(φ±), (8)

where we have written the off-diagonal matrix elements in
polar form as ρ+1,−1 ≡ |ρ±|eiφ± = ρ∗

−1,+1. To measure this
fidelity, an additional resonant pulse on the |0〉 to | ± 1〉 tran-
sitions [Eq. (4); Fig. 4(a)] is applied for a time t = π/2�1/2

(we apply this pulse simply by leaving the microwave fields on
after the sequence and stepping the phase by χ ). If the phase
χ is varied, the population in |0〉 is given by

P0(χ ) = 1
2 (P+1 + P−1) + |ρ±| cos(2χ + φ±), (9)

where P+1, P−1, and ρ± are density matrix elements of the
state before the additional pulse is applied. Comparing with
Eq. (8), it can be seen that the offset, amplitude, and phase
offset of the resulting sinusoidal curve can be used to calculate
FD . Figure 4(b) shows the result of such an experiment after
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FIG. 4. Measuring the fidelity. (a) The fidelity with which we
produce the |D〉 state can be obtained by applying two fields resonant
with the |0〉 ↔ |+1〉 and |0〉 ↔ |−1〉 transitions with equal Rabi
frequency �, and varying the phase χ of the two fields in equal
and opposite directions. (b) The measured population in |0〉 as a
function of χ after a single adiabatic operation (black points), which
can be fitted to the function A0 + A cos(2χ + φ0) (solid red curve)
to extract the mapping fidelity using a maximum likelihood fitting
method (Appendix A). Each point is the average of 200 repetitions.
(c) The fidelity as a function of the number of applications of the
adiabatic method (black) and resonant TBB1 sequence (light blue;
light gray when printed in grayscale). For the adiabatic method, the
population transfer back to |0〉 begins immediately after it reaches
|D〉 (th = 0). A linear least-squares fit to the data gives an average
infidelity per operation of 1.4(4) × 10−4 for the adiabatic method
and 1.1(4) × 10−4 for the composite pulse sequence.

a single adiabatic transfer operation from |0〉 to |D〉. The data
is fitted using maximum likelihood estimation (Appendix A)
with the fit function A0 + A cos(2χ + φ0), giving fit param-
eters A0 = 0.500(4), A = 0.500(3), and φ0 = 3.16(3). This
gives a map infidelity of FD = 1.000(7). To obtain a more ac-
curate infidelity estimate we must average over a large number
of operations. The fidelity can be measured after N operations
for multiple values of N , from which the average infidelity
1 − FD can be calculated. This method is used to calculate
the average fidelities of both the adiabatic and composite
quantum control procedures. We measure an average infidelity
per operation of 1.4(4) × 10−4 for the adiabatic method and
1.1(4) × 10−4 for the composite pulse sequence [32].

The experimentally achieved fidelity of the adiabatic con-
trol method is determined by two factors: the first is infideli-
ties introduced during the operation due to nonadiabaticity
of the frequency and amplitude modulation and decoherence,
and the second is the precision with which the parameters of
the applied radiation fields can be set, as they determine the fi-
nal state obtained, which we call |ψdr〉. By repeatedly applying
the forward and reverse adiabatic operations we can determine
the first of these infidelities, because to first order they will be
amplified by the number of repeats to a measurable level. We
do not attempt to measure the second infidelity 1 − |〈D|ψdr|2

as we do not have a process to amplify this infidelity, and
any direct measurement is subject to the same inaccuracies
in parameter setting. Instead we can estimate the size of this
infidelity given the precision we can set the parameters of the
radiation fields. The parameters in question are how equal the
Rabi frequencies of the two fields can be set, and the accuracy
to which the detuning of the two radiation fields can be set
to zero. We determined that we set the fractional accuracy
of the Rabi frequencies |�1 − �2|/(�1 + �2) < 0.0015 and
that each of the detunings is set such that |δ| < 3 Hz. From
simulations, this leads to an infidelity of preparing |D〉 of
<10−4. We also note that for many applications, such as
the use of the |D〉 and |0′〉 states as a qubit, this second
infidelity has only a small effect on the overall fidelity of
qubit operations. This “dressed-state qubit” is used because
the coherence of the qubit is protected against magnetic field
fluctuations [6,7]. In the event of a slight Rabi frequency
mismatch or detuning error, the dressed state produced will
not be exactly |D〉, but this state and |0′〉 will still form a valid
qubit which will still be insensitive to magnetic field noise to
first order.

The measured infidelities are consistent with the lifetime of
the |D〉 state, which was measured in a separate experiment
to be 2.6(4) s. The lifetime of |D〉 is limited by ambient
magnetic field noise with frequency close to the dressed-
state energy splitting. Since ambient noise generally scales
as ∼1/f , increasing the dressing field Rabi frequency is
expected to improve this result [7]. We have also verified that
the coherence of a {|0′〉, |D〉} qubit is preserved throughout
such an adiabatic transfer (Appendix C).

VII. CONCLUSION

In this article, we have used the Majorana decomposition to
develop a technique for generating coherent control methods
to transform between two desired multilevel states, based
on existing two-level methods. This allows insights gained
into robust control of two-level systems to be harnessed and
applied to multilevel quantum control in a rigorous and analyt-
ical way. We have applied this technique to two well-known
composite pulse and adiabatic methods to create three-level
methods and have implemented these experimentally with
high fidelity. These methods may be particularly important
for the implementation of scalable quantum computing [33].
The technique we use to generate quantum control methods
is general and can be applied to different quantum systems
with arbitrary numbers of levels (Appendix D). Furthermore,
we have shown that the control methods generated can be
robust and applied with high fidelity. Therefore we believe
this approach shows great promise for high-fidelity quantum
control across a broad range of physical systems.
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APPENDIX A: STATISTICAL METHODS

To normalize the data against state detection errors, before
each experiment a histogram of fluorescence measurements
is taken after preparing the ion in both the |0〉 and |0′〉
states, corresponding to dark and bright expected results,
respectively. Using a threshold of two photons, the detection
fidelity is typically measured to be around 97%. A linear
map can then be extracted from the measured errors, which
gives the probability to measure a bright event as pb(p) =
P (b|1)p + P (b|0)(1 − p), where p is the probability that the
population was in the F = 1 manifold and P (b|1) and P (b|0)
are the probabilities for a bright measurement given that the
ion was in the F = 1 and F = 0 manifolds, respectively. The
data are scaled using a maximum likelihood method based
on a binomial distribution. This maximizes the log-likelihood
function for a beta probability density function, given by

fB =
N∑

i=1

log

{
(n + 1)n!pb(pi )ki [1 − pb(pi )]n−ki

ki!(n − ki )!

}
, (A1)

where n is the number of repetitions per data point, N is the
number of data points, and ki is the number of bright events
for the ith data point. For individual data points, N = 1, and
therefore p1 is found by maximizing fB for k1. To fit the
fidelity measurements shown in Fig. 4, the probabilities are
replaced by a fit function pi = A0 + A cos(2χi + φ0). In this
case, fB is maximized over all N data points for different χi ,
and the best fit parameters for A0, A, and φ0 are extracted. The
state fidelity is then given by FD = A0 − A cos(φ0), which
is plotted as a function of the number of maps in Fig. 4(c).
A linear least-squares fit is then applied with the fit function
1 − xεm, where x is the number of maps and εm = 1 − FD is
the average infidelity per map.

APPENDIX B: SPIN- J REPRESENTATION OF
ARBITRARY SPIN-1/2 UNITARIES

As well as the mapping between initial and final states, it is
also useful to derive a theoretical solution for the intermediate
state of the multilevel system during application of the control
fields. One option is to consider at arbitrary times during the
transformation the equivalent rotation matrix in the multilevel
system. However, rather than doing this explicitly, the unitary
operation in the multilevel system can be directly calculated
from the unitary operation in the two-level system. The spin-
1/2 state |�1/2〉 = a|↓〉 + b|↑〉 is obtained by applying the
general unitary

U
1
2 =

(
a −b∗
b a∗

)
(B1)

to the initial state |↓〉. From this unitary, the unitary in the
multilevel system can be calculated directly. For the general
spin-j system, the matrix elements of Uj are given by [15,34]

Uj
rs =

qmax∑
q=qmin

√
Cr−1

q Cs−1
q C

2j+1−r

s−1−q C
2j+1−s

r−1−q

× a2j+2−r−s+q (a∗)qbs−1+q (−b∗)r−1+q, (B2)

where qmin = max[0, r + s − 2j ] and qmax = min[r − 1,

s − 1] and Cn
k = n!/[k!(n − k)!] is the binomial coefficient.

For the j = 1 case, this results in the unitary transformation
[16]

Uj=1 =
⎛
⎝ a2 −ab∗√2 b∗2

ab
√

2 |a|2 − |b|2 −a∗b∗√2
b2 a∗b

√
2 a∗2

⎞
⎠. (B3)

APPENDIX C: DRESSED STATE QUBIT MAPPING

In the context of a scalable microwave-driven trapped ion
quantum computing architecture [25,33], it is useful to map
the state of a qubit stored in the {|0〉, |0′〉} basis of an 171Yb+

ion to the {|D〉, |0′〉} basis. This can be done by implementing
either the adiabatic or the resonant method to transfer any
population in state |0〉 to |D〉. While we have verified that
this population transfer process can be implemented with high
fidelity, this does not necessarily indicate that the coherence
of the qubit is maintained throughout the population transfer
process. Therefore we carried out a Ramsey-type experiment
to measure the coherence of the qubit before and after the
mapping, in the case of the adiabatic transfer method.

In these Ramsey experiments, we start with a resonant
π/2 pulse on the |0〉 to |0′〉 “clock” transition to put the
ion in the state (|0〉 + |0′〉)/

√
2. Then we carry out N/2

adiabatic processes to map population back and forth between
|0〉 and |D〉, followed by a spin echo π pulse on the clock
transition, followed by N/2 adiabatic transfers. We then apply
a final π/2 analysis pulse with varying phase and carry out
a fluorescence measurement. As the phase is varied, we will
see fringes in the measured population, just as in a standard
Ramsey experiment. If there is any decoherence of the stored
qubit, the amplitude of the fringes will decay. By fitting the
population in F = 1 as a function of the phase of the final
pulse, we can obtain the fidelity with which the qubit state is
preserved. The decay of the fidelity with increasing N is then
measured in a similar way to before. This allows us to extract
the average infidelity of the qubit mapping process, which is
found to be 1 − F = 1.8(4) × 10−4.

APPENDIX D: APPLICATIONS TO OTHER
D-LEVEL SYSTEMS

The technique described in this paper is general and can be
applied to systems of arbitrary numbers of levels in a variety
of quantum control applications. To illustrate this we provide
two examples of potential applications in different quantum
systems.

First, we refer to the work of Liu et al. [35], who proposed
a method to transfer the state of one d-level superconducting
qudit to another in circuit QED. They illustrate their method
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in detail for the five-level case and show that it can be
generalized to any number of levels. The method involves
successively swapping over the population of different levels
from one qudit to another via a cavity mode. By the end
of step IV of their process (Fig. 2 of Ref. [35]) they have
transferred the population of each individual state to the
second qubit, but the states are in the wrong order. Therefore,
in the final step of their process, Liu et al. apply a succession
of pulses on different transitions within the qudit to rearrange
the state populations so that they are in the exact reverse order
compared to where they started. At this point the qudit transfer
process is complete.

Here we show that, using our technique, a multilevel con-
trol method can instead be found to put the state populations
back in their original order (not reversed) in a single step.
Specifically, one must apply this four-level method to the top
four levels of the second qudit (Fig. 2 of Ref. [35]) so as to
reverse the order of their amplitudes. The required unitary
matrix to carry out this operation is as follows:

Uj= 3
2 =

⎛
⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠, (D1)

and we are looking for a quantum control method to im-
plement this unitary operation. This unitary transformation
is (up to a global phase which can be easily accounted for
by changing the phases of the other pulses in the sequence)
equal to e−iπJx , which is a rotation of exactly the form
we need to derive multilevel quantum control method using
our technique. The equivalent two-level rotation is simply
e−iπSx , which can be achieved by a variety of quantum
control methods: for example, a simple Rabi π -pulse or, if
more robustness is required, more complex composite pulse

or adiabatic schemes. The exact form of the control fields
used to execute this transformation will depend on the exact
control method used to implement the effective two-level
rotation. In general, for a single control field applied to a
two-level system, the two-level Hamiltonian of Eq. (3) must
be transformed into a four-level Hamiltonian using the spin-
3/2 matrices. Physically, this Hamiltonian, which represents
the desired quantum control method, will correspond to three
different control fields on the four-level system, of varying
Rabi frequencies and detunings.

Liu et al. [35] discuss in their work how their method
generalizes to d levels. Our four-level method also has a
d-level equivalent which can reverse the populations of any
number of states. One can verify this by noting that if you
substitute a = 0, b = i into Eq. (B2) one obtains

Uj
rs = id+1δd+1,r+s , (D2)

where d = 2j + 1 is the number of levels and δij is the
Kronecker delta. This is indeed a unitary operation, which
reverses the order of the amplitudes for a d-level system.

Finally we consider the efficient Toffoli gate scheme dis-
cussed in Refs. [36,37]. Here the three-level unitary operation

Xa =
⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠ (D3)

is applied to a qutrit as part of the scheme. It is easy to verify
that Xa is in fact equal to U

j
rs in Eq. (D3) in the case where

d = 3 (up to an irrelevant global phase), showing that this
control operation is also amenable to the techniques described
in this paper.
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