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Field ionization in short and extremely intense laser pulses

I. Yu. Kostyukov* and A. A. Golovanov†

Institute of Applied Physics, Russian Academy of Science, 46 Ul’yanov Street, 603950 Nizhny Novgorod, Russia

(Received 22 August 2018; published 4 October 2018)

Modern laser systems are able to generate short and intense laser pulses ionizing matter in the poorly
explored barrier-suppression regime. Field ionization in this regime is studied analytically and numerically.
For analytical studies, both the classical and the quantum approaches are used. Two approximations to solve
the time-dependent Schrödinger equation are proposed: the free electron approximation, in which the atomic
potential is neglected, and the motionless approximation, in which only the external field term is considered. In
the motionless approximation, the ionization rate in extremely strong fields is derived. The approximations are
applied to several model potentials and are verified using numeric simulations of the Schrödinger equation. A
simple formula of the ionization rate both for the tunnel and the barrier-suppression regimes is proposed. The
formula can be used, for example, in particle-in-cell codes for simulations of the interaction of extremely intense
laser fields with matter.
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I. INTRODUCTION

Field ionization is one of the first processes which come
into play at ultrahigh-intensity laser-matter interaction. The
peak power of some laser facilities exceeds the 5-PW level
and will be doubled soon [1]. High-intensity laser radiation
is generated in the form of very short (less than a hundred
femtoseconds) laser pulses so that atoms and molecules are
already ionized at the pulse front. There are also proposals for
secondary radiation sources which provide even higher inten-
sities. For example, an attosecond pulse can be generated at
the laser-solid interaction in the relativistic oscillating mirror
regime [2,3]. The intensity of such attosecond pulses can be
even higher than that of the driving PW laser pulse, while
the pulse duration is shorter [4]. At the PW level of laser
intensity, the electric field in the focal spot is several orders
of magnitude higher than the characteristic atomic field, Ea =
m2

ee
5h̄−4 ≈ 5.1 × 109 V/cm, where e and me are the absolute

charge and the mass of an electron, and h̄ is the reduced
Planck constant. This leads to the multi-ionized states of ions
in the plasma being produced at laser-matter interaction. The
ionization-induced mechanisms can play an important role in
many high-field phenomena and applications like ionization-
induced self-injection in laser-plasma accelerators [5–7] or
triggering of QED cascades by seed electrons produced at the
ionization of high-Z atoms [8,9].

The regimes of the field ionization in a strong elec-
tromagnetic field can be roughly classified as follows:
the multiphoton ionization regime E � EK, the tunnel
ionization (TI) regime EK � E � Ecr, and the barrier-
suppression ionization (BSI) regime E � Ecr, where E is
the external electric field strength, EK = ωL(2meIi )1/2/e is
the field threshold associated with the Keldysh parameter
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γK = ωL(2meIi )1/2/(eE) = EK/E, Ii is the ionization poten-
tial of the atom (ion), ωL is the laser frequency, and Ecr

is the critical field above which the barrier of the atomic
potential is suppressed. The first two regimes are investigated
theoretically in detail starting from the milestone paper by
Keldysh [10]. It is generally believed [11–13] that for short
and intense laser pulses the field ionization occurs in the
tunnel regime while the multiphoton ionization is negligible.
The static field tunnel ionization rate (without averaging in
time over the laser period) based on the Perelomov-Popov-
Terent’ev theory [11,14] is

wlm = ωaκ
2C2

κl × 2(2l + 1)

(
2

F

)2n∗−|m|−1

× (l + |m|)!
2|m|(|m|)!(l − |m|)! exp

(
− 2

3F

)
, (1)

C2
κl = 22n∗−2

n∗�(n∗ + l + 1)�(n∗ − l)
, (2)

where F = E/(κ3Ea ) is the normalized electric field strength,
κ2 = Ii/IH, n∗ = Z/κ is the effective principal quantum num-
ber of the ion, Z is the ion charge number, l and m are the
orbital and magnetic quantum numbers, respectively, IH =
mee

4/(2h̄2) ≈ 13.6 eV is the ionization potential of hydro-
gen, ωa = mee

4h̄−3 ≈ 4.1 × 1016 c−1 is the atomic frequency,
and �(x) is the � function [15]. In the limit n∗ � 1, formula
(1) reduces to the ionization rate given by Ammosov et al. in
Ref. [16].

The probability of the electron with the minimum ioniza-
tion potential to leave the atom or ion within the time period
[−∞, t] is equal to

Wi(t ) = 1 − exp

{
−

∫ t

−∞
w[E(t ′)]dt ′

}
, (3)

where w(E) is the field ionization rate as a function of the ex-
ternal field. The tunnel ionization formulas are no longer valid
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if the strength of the external field exceeds the atomic critical
field, Ecr = Eaκ

4/(16Z), corresponding to suppression of the
atomic potential by the external field. In this case, the initial
energy level of the electron is higher than the maximum of the
potential barrier resulting from the superposition of the atomic
field and the external field. In the barrier-suppression regime,
the electron becomes unbound and propagates above the
barrier instead of tunneling. In real conditions, a strong elec-
tromagnetic field, E � Ecr, cannot turn on instantaneously,
and there is a finite period of time needed for the laser field
to reach the maximum at the atom location. If such a time
period is long enough, then the electron with the minimum
ionization potential can reach the continuum with the 90%
probability at the front of the laser pulse where the tunnel
ionization model is valid. Therefore the validity of this model
for strong laser fields depends not only on the field strength,
but also on the field rise time. For simplicity, we assume
that the laser field takes a form E(t ) = E0 exp(−4t2/T 2),
where the carrier signal is neglected, E0 > Ecr is the field
maximum, and T is the pulse duration. In this case, the
tunnel ionization model does not break for hydrogen before
90% ionization is reached if T � 1.6 ps (see Appendix A for
details). Interestingly enough, the peak field value E0 is not
very important in this estimate as long as it exceeds the critical
value.

At the PW level of laser intensity, the field strength
exceeds Ecr for the majority of atoms, at least for the
outer electron shells. The ionization dynamics of the hy-
drogen atoms in the electromagnetic field is shown in
Fig. 1. The ionization is modeled with tunnel formula (1)
for two pulses: (i) for a laser pulse with the Gaussian en-
velope E(t ) = a0(mcωL/e) exp (−4t2/T 2) cos (ωLt ), where
a0 = eEL/(mcωL) = 10 is the normalized amplitude of the
laser field typical for focused sub-PW laser pulses [17], T =
60 fs is the pulse duration, and λL = 2πc/ωL = 0.9 μm is
the laser wavelength; (ii) for an attosecond pulse with the
Gaussian envelope E(t ) = 10Ea exp (−4t2/T 2), where T =
200 as. It is seen from Fig. 1 that, even for the laser pulse
with the parameters which are typical for existing sub-PW
laser systems, the vast majority of the atoms are ionized when
E > Ecr. This supports our previous estimate that the tunnel
approximation is invalid for sub-ps pulses.

Accurate analytical models of the barrier-suppression
regime are absent, since most of the perturbation methods
do not work in this regime. Several formulas for the barrier-
suppression ionization rate have been proposed. The estimate
for the barrier-suppression ionization rate based on the clas-
sical approach has been derived in Ref. [18]. In the limit
of infinitely strong external electric field, the rate goes to
a constant which does not depend on the strength of the
external field. This result is in contradiction with the nu-
merical simulations that predict an increase in the ioniza-
tion rate when increasing the field strength [19–21]. The
barrier-suppression ionization rate has also been derived in the
framework of the Keldysh-Faisal-Reiss theory [22]. However,
this model predicts an unphysical decrease in the ionization
rate when increasing the field strength in the strong-field
limit. Another option for estimating the ionization rate in
extremely strong electric field is the empirical approach based
on the results of numerical integration of the time-dependent

Schrödinger equation (TDSE). In Ref. [20], a quadratic rate
dependence on the field strength is proposed for E > E′ ∼
Ecr and the tunnel ionization formula is used for E < E′.
The proposed model demonstrates good agreement with the
results of numerical simulations for E ∼ Ecr, but the discrep-
ancy between the model prediction and the numerical results
becomes significant in the limit E � Ecr. There are also
difficulties with extending the model beyond hydrogenlike
atoms [9]. Another empirical formula providing continuous
transition between the tunnel and the barrier-suppression
regimes is presented in Ref. [19]. The model is restricted
by the description of ionization of some external shell elec-
trons and of only several chemical elements. In the limit
E � Ecr, it predicts unphysical suppression of the ionization
rate.

Numerical simulations are a very powerful and, in some
cases, the only tool for the exploration of ultrahigh-intensity
laser-matter interaction. Therefore there is strong demand for
a simple formula for the field ionization rate which can be
incorporated in particle-in-cell (PIC) codes and can describe
a wide range of electromagnetic field strengths. One of the
simplest numerical models of the strong-field ionization is
based on the tunnel model for E < Ecr, while the electron
is assumed unbound if E � Ecr. This model significantly
overestimates field ionization for E > Ecr. A more accurate
formula for the rate assuming linear field dependence for
E > Ecr has been proposed in Ref. [9]. We will discuss it
in more detail below. Numerical models can also include
the energy losses associated with ionization [23,24] and can
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FIG. 1. Time dependencies of the electric field E(t ) and the
tunnel ionization probability Wi (t ) for hydrogen for a 60-fs Gaussian
laser pulse with a wavelength of 0.9 μm and the value of a0 =
eE/(mcωL ) = 10, and a 200-asec Gaussian video pulse with a
maximum field of 10Ea. The areas where E > Ecr and the tunnel
formula is not applicable are shaded. All values are normalized to
the atomic units.
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simulate multiple ionization within the time step of the PIC
code [9,24–26].

The paper is organized as follows. In Sec. II, the ionization
rate formulas in the BSI regime are derived both in the
classical and quantum approaches. The TDSE is analytically
integrated in the free electron approximation when the atomic
potential is neglected, and in the motionless approximation
when the Hamiltonian contains only the external field term.
In Sec. III, the ionization rate is calculated for several model
potentials: the one-dimensional (1D) δ potential, the 1D soft-
core potential, and the three-dimensional (3D) Coulomb po-
tential. The obtained results are verified by numerical integra-
tion of TDSE in Sec. IV. Various formulas for the BSI rate and
the validity conditions of the approximations are discussed in
Sec. V.

II. CALCULATION OF IONIZATION RATE

In order to estimate the ionization in extremely strong
external electric field, we first use the classical approach [9].
We assume that (i) the external field is much stronger than
the atomic field at the position of the atomic electron with the
ionization potential Ii; (ii) the external field turns on instan-
taneously: E = 0 for t < 0 and E = const for t � 0; (iii) the
electron is ionized at the time instance ti when it reaches the
continuum εfree = mc2. For t � 0, the atomic potential can be
neglected, and the electron will be accelerated in the external
field. The initial condition is ε0 = mc2 − Ii at t = 0. If the
atomic forces are neglected, the electron’s momentum grows
linearly so that ε(t ) =

√
m2c4 + (ecEt )2 − Ii. The ionization

rate can be estimated as the inverse time ti needed for the
electron to reach the continuum ε(ti ) = mc2:

w ≈ t−1
i = eE√

2mIi

(
1 + Ii

2mc2

) ≈ eE√
2mIi

= ωa

(
E

Ea

)√
IH

Ia
, (4)

where (Ii/mc2) � 1 is assumed. It follows from this estimate
that electrons first become ionized before becoming relativis-
tic. The relativistic corrections are important only for the
inner electrons of high-Z atoms, with very high ionization
potentials when the ratio Ii/mc2 cannot be considered small.

In order to study the BSI regime in the quantum approach,
we consider a single-particle nonrelativistic quantum system
of an electron in the atomic potential and external uniform
varying electric field E(t ). We will not consider ionization of
electrons with very large Ii ∼ mc2 in order to limit ourselves
to the nonrelativistic approximation. From here and below,
we will use atomic units. The system is described by a wave
function ψ (t, r) and a Hamiltonian [27]

Ĥ = Ĥ0 + E(t )r = −∇2

2
+ V (r) + E(t )r, (5)

where V (r) is the potential created by the atom. The influence
of the external magnetic field is neglected. The evolution of

the wave function satisfies the TDSE

i
∂ψ (t, r)

∂t
= Ĥψ (t, r). (6)

The static Hamiltonian Ĥ0 in the absence of the electric
field has the bound states ψn(r) with energies εn. In this
case, assuming that all wave functions are normalized, the
probability of the electron to be ionized, i.e., to be found in
the continuum above all the discrete states, is

Wi(t ) = 1 −
∑

n

|〈ψn|ψ (t )〉|2. (7)

In general, solving the TDSE analytically is not possible.
However, we consider the case of extremely strong electric

fields when the tunnel ionization approximation is invalid. In
this case, we can use the free electron approximation implying
that the potential V (r) is neglected, which is similar to the
wave-packet spreading model used to study the evolution of
the wave function of an unbound electron in the laser field
[28,29]. Hence, the TDSE in the momentum representation is

∂ψ̃

∂t
− E(t )

∂ψ̃

∂p
= −i

p2

2
ψ̃, (8)

where

ψ̃ (t, p) = 1

(2π )3/2

∫∫∫
ψ (t, r) exp(−ip · r)d3r (9)

is the wave function in the momentum representation. Using
the method of characteristics, it is possible to obtain the
solution

ψ̃ (t, p) = ψ̃[0, p − A(t )]

× exp

(
−i

∫ t

0

[p − A(t ) + A(t ′)]2

2
dt ′

)
, (10)

where A(t ) = − ∫ t

0 E(t ′)dt ′.
In order to determine the probability of the electron to be

ionized, Eq. (7) can be used. We assume that initially, at t = 0,
the electron is located in the ground state of Ĥ0, ψ̃ (0, p) =
ψ̃0(p). For simplicity, we introduce the quantities

αn(t ) = 〈ψn|ψ (t )〉, Cn(t ) = |αn(t )|2, (11)

C(t ) =
∑

n

Cn(t ). (12)

Here, Cn(t ) is the probability of the electron to be found in
the nth state, and C(t ) is the probability of the electron to not
be ionized. At t = 0, C0 = 1, and all other Cn = 0. Therefore
it is obvious that C0(t ) has the biggest overall contribution to
C(t ). The corresponding α0 is calculated as

α0(t ) =
∫∫∫

d3pψ̃∗
0 (p)ψ̃0(p − A)

× exp

(
−i

∫ t

0

[p − A(t ) + A(t ′)]2

2
dt ′

)
. (13)

If the field is strong enough and A rapidly grows, then the
motionless approximation can be used in which the exponent
in this integral can be neglected (see Sec. V for the details).
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This means that the same exponent is neglected in (10),

ψ̃ (t, p) = ψ̃[0, p − A(t )], (14)

which corresponds to the evolution of a wave function de-
scribed by the Hamiltonian Ĥ = Er. In other words, in the
total Hamiltonian (5) not only the atomic potential but also
the kinetic energy term p̂2/2 = −∇2/2 is neglected. In a
bound state, the potential V (r) and the kinetic energy term
−∇2/2 are in balance, so that the squared modulus of the
wave function remains constant in time, and are typically of
the same order. So the condition for neglecting V (r) should be
the same as for neglecting −∇2/2. As will be demonstrated by
numeric simulations in Sec. IV, the motionless approximation
is even more accurate than the free electron approximation in
the limit of strong external field.

In the coordinate representation, the evolution of the wave
function is simply phase rotation:

ψ (t, r) = ψ (0, r) exp[iA(t )r]. (15)

This explains our choice of calling this approximation motion-
less, as the electron probability density (equal to |ψ |2) in the
coordinate space does not change due to the kinetic energy
being neglected.

In the motionless approximation, the probability Cn(t ) to
find the electron in the nth state is

Cn(t ) =
∣∣∣∣
∫∫∫

d3pψ̃∗
n (p)ψ̃0(p − A)

∣∣∣∣
2

(16)

and is determined only by A(t ). If we are able to calculate
C(t ) = ∑

n Cn(t ), the instantaneous ionization rate is given
by

winst (t ) = −C ′(t )

C(t )
. (17)

The ionization rate winst (t ) inherently depends on A(t ) =
− ∫ t

0 E(t ′)dt ′ and thus on the time evolution of the electric
field rather than the instantaneous strength of the field. Know-
ing the initial state of the electron is required as well. For use
in numerical simulations, such a model might be too complex;
also, it cannot describe the transition between the different
regimes of ionization.

A simpler model relies on the use of the field ionization rate
w(E). In this case, the instantaneous ionization rate winst (t ) =
w[E(t )] depends on the instantaneous strength of the electric
field E(t ) at the same time moment. Using w(E) instead of
solving the TDSE may be very useful for practical applica-
tions, e. g., for taking ionization into account in particle-in-cell
codes. In order to do so, the validity of this model needs to
be verified first and an appropriate function w(E) has to be
found.

For simplicity, we consider the constant field. In the mo-
tionless approximation, according to Eq. (16), the probability
C(t ) of the electron to be bound depends on A = Et , where
E = |E|, A = |A|. Therefore we can introduce a new function
C̃(A) so that C(t ) ≡ C̃(Et ), and the exact probability Wexact

of the electron to be ionized is

Wexact (t ) = 1 − C̃(Et ). (18)

The function C̃(A) is determined solely by the properties of
the quantum system and its initial state (and possibly by the

direction of the field if the potential is not symmetric). Mean-
while, if we use the w(E) model, the ionization probability is
exponential in time:

Wi(t ) = 1 − exp[−w(E)t]. (19)

Equations (18) and (19) can give the same answer only if
C̃(Et ) is exponential in time, which is not the case as will be
shown later. Therefore our goal is to find such a dependence
w(E) that it describes the ionization process in the best
possible way.

In order to find this function, the difference �W (t ) =
Wexact (t ) − Wi(t ) should be minimized according to some
criterion. Naturally, the choice of such criterion is ambiguous.
Here we propose the following procedure of minimization.
According to Eq. (19), there is a typical ionization time ti =
w−1. To find w(E), we demand that Wexact (t ) reach the same
value of 1 − exp(−1) at t = ti. This criterion leads to

C̃

[
E

w(E)

]
= exp(−1), w(E) = E

C̃−1[exp(−1)]
. (20)

Here, C̃−1 is the inverse function to C̃, and the denominator is
a constant value independent of E. Similarly to the classical
approach, we come to the conclusion that the ionization
rate is linear in the electric field strength E. Other criteria
for minimizing �W and determining w(E) are discussed in
Sec. V. It turns out that all of them lead to a linear dependence
in E and differ only in the coefficients of the said dependence.

III. MODELS FOR ATOMIC POTENTIAL

A. 1D δ potential

First, the atomic potential is modeled by the 1D δ poten-
tial. The Hamiltonian of an electron in this potential in the
presence of external electric field E(t ) = −E(t )x0 is

Ĥ = Ĥ0 − Ex = −1

2

∂2

∂x2
− κδ(x) − E(t )x. (21)

If κ is positive, Ĥ0 has only one bound state with energy of

ε0 = −I0 = −κ2

2
. (22)

If κ = 1, the energy level −1/2 is equal to the energy level
of the ground state in a hydrogen atom. However, unlike the
Coulomb potential, there is no critical value of the electric
field which completely suppresses the barrier. The wave func-
tion of the bound state is

ψ0(x) = √
κ exp(−κ|x|), (23)

ψ̃0(p) =
√

2κ3

π

1

κ2 + p2
, (24)

in the coordinate and momentum representations, respec-
tively.

In the motionless approximation (14), the evolution of the
wave function is described by ψ̃ (t, p) = ψ̃0[p − A(t )], where
A(t ) = ∫ t

0 E(t ′)dt ′. As there is only one bound state, the
probability C(t ) of an electron initially in the bound state to
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not be ionized is calculated as

C(t ) = C0(t ) =
∣∣∣∣
∫ ∞

−∞
ψ̃∗

0 (p)ψ̃0[p − A(t )]dp

∣∣∣∣
2

=
[(

A(t )

2κ

)2

+ 1

]−2

. (25)

The estimate for the ionization rate according to Eq. (20) is

w(E) = E

2κ
√√

exp(1) − 1
≈ 0.44

E√
I0

. (26)

Or, in the physical units,

w(E) = 0.62ωa
E

Ea

√
IH

Ii
. (27)

This formula is almost the same as the classical ionization
rate (4), which shows that the motionless approximation is
conceptually similar to the classical approach in which the
electron is accelerated in constant field from the energy of −Ii

to 0.

B. 1D soft-core potential

It is known that the 3D Coulomb potential can be approxi-
mated by the so-called soft-core potential [30]

V (x) = Z√
2Z−2 + x2

, (28)

where Z is the ion charge number. The properties of the
potential V (x) are very similar to the 3D Coulomb potential:
it is long range, it has an infinite number of bound states,
and its ground-state energy is equal to −Z2/2. By the scaling
transform, the corresponding Hamiltonian can be reduced to a
Hamiltonian with Z = 1. Similarly to the Coulomb potential,
it has the critical field

Ecr ≈ 0.067Z3, (29)

above which an electron with the energy of the ground state
can pass over the barrier instead of tunneling. Unlike the
1D δ potential, the probability of ionization is determined
by an infinite sum C(t ) = ∑

n Cn(t ) as there are multiple
eigenstates. However, the contribution of the eigenstates with
a higher number n quickly drops, so taking several lowest-
energy functions into account is sufficient.

The eigenfunctions in this potential have been calculated
numerically; the first four eigenfunctions are shown in Fig. 2.
Using numerical simulations (see Sec. IV), the ionization
rate according to Eq. (20) in the soft-core potential can be
estimated as

w(E) ≈ 0.87
E

Z
. (30)

In the physical units, it corresponds to

w(E) ≈ 0.87ωa
E

Ea

√
IH

Ii
. (31)

Again, as with the δ potential, this ionization rate is similar to
the classical ionization rate.
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FIG. 2. Wave functions in the soft-core potential with Z = 1.
The phase of the wave functions is chosen to make the imaginary
part equal to zero.

C. Coulomb potential

Some analytical formulas can also be derived for the 3D
Coulomb potential

V (r) = −Z

r
, (32)

which corresponds to a point-charge ion with the charge
Z. By the scaling transform, the problem can always be
reduced to Z = 1, so only Z = 1 is considered from now on.
The bound states in the Coulomb potential are characterized
by three quantum numbers n, l,m, where n > 0, 0 � l < n,
−l � m � l. The energy of a bound state depends only on n:

εn = − 1

2n2
. (33)

The eigenfunctions in the spherical coordinates are [27]

ψn,l,m(r) = Rn,l (r )Yl,m(θ, ϕ), (34)

where Yl,m are the spherical harmonics, and Rn,l are defined
as

Rn,l = 2

n2

√
(n − l − 1)!

(n + l)!
e− r

n

(
2r

n

)l

L
(2l+1)
n−l−1

(
2r

n

)
, (35)

where L(α)
n are the generalized Laguerre polynomials [15].

It is assumed that a uniform electric field is applied to this
system, and initially the system is in the ground |ψ1,0,0〉 state.
Under the motionless approximation, the evolution of the
wave function can be described by Eq. (15). If we assume that
the direction of the electric field always corresponds to the z

axis, the evolution of the function in the spherical coordinates
is

ψ (t, r) = ψ1,0,0(r) exp[iA(t )r cos θ ]. (36)

The probability of the electron to be found in a bound state is
thus

C(t ) =
∑
n,l,m

Cn,l,m(t ) =
∑
n,l,m

∣∣∣∣
∫ ∞

0
dr

∫ π

0
dθ

∫ 2π

0
dϕ

×r2 sin θψ∗
n,l,m(r)ψ1,0,0(r) exp[iA(t )r cos θ ]

∣∣∣∣
2

. (37)
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FIG. 3. Dependencies of C̃1,0,0, C̃2,0,0, C̃2,1,0, and the total sum
C̃ = ∑

n,l C̃n,l,0 on the integral field A according to model (36) for
the Coulomb potential with Z = 1.

Due to the properties of the spherical harmonics, Cn,l,m ≡ 0
for m �= 0. All other integrals can in principle be calculated
analytically, as integrands are just polynomials multiplied by
an exponent. For reference, we write down several lowest-
order terms,

C1,0,0(t ) =
[

1 +
(

A(t )

2

)2
]−4

, (38)

C2,0,0(t ) = 8192

6561

(
2A(t )

3

)4
[

1 +
(

2A(t )

3

)2
]−6

, (39)

C2,1,0(t ) = 8192

6561

(
2A(t )

3

)2
[

1 +
(

2A(t )

3

)2
]−6

. (40)

The probabilities are fully described by the functions
C̃n,l,m(A) so that Cn,l,m(t ) = C̃n,l,m(A(t )). The first three of
these functions as well as their total sum are shown in Fig. 3.
It is seen that the term C̃1,0,0 is the most dominant factor in
C̃, while the influence of the higher-order states is low. The
estimate for the ionization rate in the Coulomb potential given
by Eq. (20) is

w(E) ≈ 0.8
E

Z
. (41)

In the physical units, it corresponds to

w(E) ≈ 0.8ωa
E

Ea

√
IH

Ii
. (42)

Once again, like in the considered 1D model potentials, this
ionization rate is similar to the classical rate derived in Sec. II.
As the numerical constant in hydrogen equal to 0.8 is close to
unity, the classical approach gives a rather accurate descrip-
tion of the ionization rate for extremely strong fields.

IV. NUMERICAL SIMULATIONS

In order to demonstrate the applicability of the used ap-
proximations, numerical integration of the 1D TDSE was
performed for different values of static electric field E(t ) = E

0.5

1.0

C
0

E = 0.3

0.5

1.0

C
0

E = 1

0 1 2 3 4
t

0.0

0.5

1.0

C
0

E = 5

TDSE

Motionless

Free electron

FIG. 4. Time dependencies of the probability C0 of the electron
to be found in the bound state in the δ potential with κ = 1 for
different values of the electric field E in the numerical integration
of the 1D TDSE, in the motionless approximation (25), and in the
free electron approximation (10).

and the 1D δ potential with κ = 1. The Crank-Nicolson
method was used for the integration [31]. The results of the
simulations and their comparison both to the free electron
approximation (10) and the motionless approximation (25)
are shown in Fig. 4. For κ = 1, our approximations correctly
describe the observed behavior for large fields E > 1. For
small fields, our models significantly overestimate the ioniza-
tion rate. As already mentioned in Sec. II, the Hamiltonian
Ĥ = −Ex̂ corresponding to the motionless approximation
even better describes the behavior of the initial system than
Ĥ = p̂2/2 − Ex̂ corresponding to the free electron approxi-
mation. This can also be understood from the fact that, in the
limit t → 0, the value of C0(t ) predicted by the motionless
approximation is always the same as the exact value of C0(t )
for the total Hamiltonian (see Appendix B). This behavior
is observed in Fig. 4, where the curves for the numerical
solution of the TDSE and for the analytical solution in the
motionless approximation coincide for small times, even for
small values of the electric field, when this approximation is
not applicable, while the free electron approximation always
results in a lower value of C0.

The numerical integration of the 1D TDSE was also per-
formed for the soft-core potential with the use of the split-
operator spectral solver [32,33]. Using the ground state as the
initial value, the TDSE is integrated for Z = 1 and various
values of stationary electric field. Figure 5 shows the numeri-
cally calculated probabilities Cn(t ) of the electron to be in the

043407-6



FIELD IONIZATION IN SHORT AND EXTREMELY … PHYSICAL REVIEW A 98, 043407 (2018)

0.5

1.0

C
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Free electron
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C2
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t

0.0

0.5

1.0

C

Motionless

FIG. 5. Time dependencies of C0, C1, C2, and the total sum C =∑
n Cn in the numerical integration of the TDSE, the free electron

approximation (10), and the motionless approximation (14) for the
soft-core potential with Z = 1 and the external electric field strength
of E = 0.2.

lowest three bound states as well as the total probability C(t )
of the electron to be bound for the values of the electric field of
E = 0.2 > Ecr. The corresponding predictions of models (10)
and (14) are also shown. Both the simulations and the models
demonstrate similar behavior. The ground-state probability
contributes the most to the overall probability of the electron
to be in a bound state. The probabilities of the higher-order
states reach their maxima during the process of the electron
leaving the atom, but their contribution quickly decreases with
the level number.

Figure 6 demonstrates the applicability of our models for
different values of stationary electric field for Z = 1. For
E = 0.05 < Ecr, ionization happens in the tunnel regime,
and our approximations are obviously incorrect. When the
external field significantly exceeds the critical field, better
correspondence between the simulations and the model is
observed. Again, the Hamiltonian Ĥ = −Ex̂ corresponding
to the motionless approximation is better suited for the de-
scription of the process than Ĥ = p̂2/2 − Ex̂ corresponding
to the free electron approximation.

To better illustrate the correspondence between the approx-
imations and the exact solution according to the TDSE, we
plot probability densities |ψ (x)|2 and |ψ̃ (p)|2 of the wave
function in the coordinate and the momentum spaces (see
Fig. 7 and the videos in the Supplemental Material [34]) at
different moments in time for two different values of the
electric field: E = 0.05 < Ecr, when the ionization happens

0.5

1.0

C

E = 0.05

0.5

1.0

C

E = 0.1

0 5 10 15 20
t

0.0

0.5

1.0

C
E = 0.2

TDSE

Motionless

Free electron

FIG. 6. Time dependencies of the probability C(t ) of the electron
to be found in a bound state in the soft-core potential with Z = 1 for
different values of the electric field E in numerical simulations of
the 1D TDSE, in the motionless approximation (14), and in the free
electron approximation (10).

in the tunnel regime, and E = 0.2 > Ecr, when the ioniza-
tion probability is better described by our models, as shown
in Fig. 6. For both field values, the chosen time moments
correspond to the same values of Et . In the momentum
space, the probability density is the same in both of our
approximations, as the corresponding wave functions (10) and
(14) differ only in their phases. Their evolution corresponds
to the uniform motion of the probability density. The exact
solution behaves similarly for the overcritical field of 0.2: the
wave packet is accelerated by the electric field while being
slightly diffused due to the atomic potential. As expected,
for the tunnel regime in the subcritical field of 0.05, our
approximations fail, as the probability density in the exact
solution remains localized at around p = 0, and only a tiny
fraction of the wave packet is accelerated to higher values
of p. In the coordinate space, the two approximations are
different. As the motionless approximation corresponds to
the phase rotation in the coordinate space, the corresponding
probability density does not evolve at all. Meanwhile, due
to the lack of potential, the probability density in the free
electron approximation dissipates much quicker than in the
exact solution, which explains why the values of C(t ) in
this approximation are always lower (see Fig. 6). However,
despite the fact that the evolution of the wave function is still
considerably different in the approximations compared to the
exact solution according to the TDSE, the effects taken into
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t = 0/E

|ψ
|2

t = 1/E

t = 2/E

t = 0/E

|ψ
|2

t = 1/E

−5 0 5
x

t = 2/E

t = 0/E TDSE

M

FE

|ψ̃
|2

t = 1/E

t = 2/E

t = 0/E

|ψ̃
|2

t = 1/E

−2 0 2
p

t = 2/E

E = 0.05

E = 0.2

FIG. 7. Wave-function probability densities |ψ |2 in the soft-core
potential in the coordinate (left column) and the momentum (right
column) spaces for different external fields E at different times
t in the numerical integration of the TDSE, the motionless (M)
approximation, and the free electron (FE) approximation.

account are sufficient to predict the probability of the electron
to be ionized.

V. DISCUSSION AND CONCLUSIONS

a. Stark effect in the strong field. It is well known [11]
that there is a relation between the Stark effect and the
field ionization. The Stark width can be considered as the
ionization rate in the limit of the stationary external field.
Therefore, the theory of Stark effect can be used as a qual-
itative benchmark for strong-field ionization. For the 1D δ

potential and stationary uniform electric field, the equation for
the quasienergy ε can be derived from Eq. (21) [35],

Ai(ξ )[Bi(ξ ) + i Ai(ξ )] = (2F )1/3

2π
, (43)

where ξ = −2ε(2Fκ3)−2/3, F = Eκ−3. In the weak-field
limit, the imaginary part of ε, or the Stark width, is reduced to

the Keldysh formula for the tunnel ionization rate:

Im[ε(F → 0)] ∼ (2F )−2/3 exp

(
− 2

3F

)
. (44)

In the strong-field limit, the ionization rate is

Im[ε(F → ∞)] ∼ 2−5/3e−iπ/3κ2(F ln F )2/3. (45)

It is interesting to note that the same expression for Im[ε(F →
∞)] is derived for the Coulomb potential [36], and a similar
expression is derived for the 3D δ potential Im[ε(F → ∞)] ∼
0.44eiπ/3κ2F 2/3 [37]. Therefore, in the strong-field limit, the
dependence of the Stark width on the external electric field
is close to linear, similarly to our model. However, the Stark
width and the Stark level are of the same order of magnitude
in the strong-field limit and, strictly speaking, the Stark width
cannot be treated as the ionization rate in this limit.

b. Conditions of applicability of the motionless approxima-
tion. In Sec. II, we derive the evolution of the wave function
in the motionless approximation assuming that the exponent
in Eq. (13) can be neglected, which is equivalent to neglecting
the p̂2/2 term in the Hamiltonian. Here, we discuss when this
assumption is valid.

As the wave function ψ̃0 has the typical width p0 in
the momentum space, the value of the integral in Eq. (13)
remains significant only for |p| � p0 and only while ψ∗

0 (p)
and ψ0(p − A) overlap, so that A = |A| � p0. If the electric
field is constant, E = Ex0, then the integral is significant for
t � p0/E. As both p and A are bound by p0 in the exponent,
the maximum value of the exponent may be estimated as
∼p2

0 t . So, in order to neglect the exponent,

p2
0t ∼ p3

0

E
� 1 (46)

is required. If the field is strong enough, E � p3
0, then the

phase in the exponent is small and it does not change the value
of the integral much. This condition of applicability can be
generalized for time-dependent fields as well. For example,
for a linear-in-time electric field, the condition is E(t0) �
p3

0, where t0 is the moment of time when A(t0) becomes
comparable to p0.

The typical width of the ground-state wave function in the
momentum space is defined as

p2
0 = 〈ψ0|p̂2

x |ψ0〉, (47)

where x is the direction of the electric field. If the potential is
spherically symmetric, which is usually the case, this direction
does not matter. In this section, we discuss the meaning of this
condition for the potentials we have previously considered.

For the 1D δ potential, p0 = κ , where κ is the depth of
the potential. In the physical units, taking into account that
Ii = κ2/2, the condition is

E � Ea

(
Ii

IH

)3/2

. (48)

It is supported by the numerical simulations in Fig. 4, where
E = 1 serves as the threshold value between the tunnel regime
and the motionless approximation regime for κ = 1. As the
critical field does not exist for this potential, no comparison to
it can be made.
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For the 1D soft-core potential, the value of p0 is obtained
numerically:

p0 ≈ 0.39Z. (49)

Therefore, the condition in the physical units is

E � 0.057EaZ
3 = 0.057Ea

(
Ii

IH

)3/2

. (50)

Compared to the 1D δ potential, this condition is much less
strict, which is explained by the fact that the barrier in the
δ-potential case cannot be completely suppressed, no matter
how strong the field is, while there is the critical field of Ecr ≈
0.067EaZ

3 for the soft-core potential. The condition above
essentially means

E � Ecr, (51)

which is to be expected. This conclusion supports the findings
of the numerical simulations in Fig. 6, which also show that
Ecr serves as the threshold value between the tunnel and the
motionless approximation regimes.

For the 3D Coulomb potential, the value of p0 can be found
analytically and is equal to Z/

√
3. Therefore, condition (46)

in the physical units becomes

E �
√

3Z3

9
Ea =

√
3

9
Ea

(
Ii

IH

)3/2

. (52)

The critical field for the Coulomb potential is Ecr = EaZ
3/16,

so this condition can also be approximately written as

E � 3Ecr. (53)

Overall, for all considered potentials, the scaling of the
threshold value (above which the motionless approximation
becomes applicable) with the ionization energy is always the
same. So the general understanding is that the motionless
approximation regime can be observed when the field sig-
nificantly exceeds the critical field. For time-varying fields,
the field must reach such high values before the ionization
probability becomes large in order for this approximation to
be valid.

c. Ionization rate in the motionless acceleration regime. In
Sec. II, we introduce the ionization rate w(E) as a function of
the instantaneous value of the electric field. In order to find the
expression for w(E), we propose a criterion for minimizing
the difference �W (t ) = Wexact (t ) − Wi(t ), where Wexact and
Wi are determined by Eqs. (18) and (19). Here, we discuss
multiple other ways of determining w(E) in detail.

In Sec. II, the proposed criterion is that both Wexact (t ) and
Wi(t ) reach the value of 1 − exp(−1) at the same moment of
time, which leads to

w(E) = E

C̃−1(exp(−1))
, (54)

so that the ionization rate is linear in E. We consider three
other ways of minimizing �W (t ):

(1) minimizing
∫ ∞

0 �W 2dt (the least-squares method),
(2) minimizing

∫ ∞
0 |�W |dt (the least absolute deviations,

or LAD method), and
(3) minimizing maxt |�W | (the minimum difference

method).

TABLE I. Values of the coefficient α in the dependence w = αE

for different potentials and different minimization methods.

Method 1D δ 1D soft-core 3D Coulomb

1 − exp(−1) level 0.62 0.87 0.80
Least squares 0.63 0.90 0.83
LAD 0.72 1.21 1.04
Min. difference 0.53 0.69 0.66

In all cases, the ionization rate w(E) turns out linear in E,

w(E) = αE, (55)

which is to be expected, considering that Et is a similarity
parameter in Wexact (t ). The coefficient α depends on the
considered quantum system and the minimization method.
The values of this coefficient for the 1D δ potential with
κ = 1, the 1D soft-core potential with Z = 1, and the 3D
Coulomb potential with Z = 1 are shown in Table I for all
of the considered minimization methods. In all cases, the
coefficients are not significantly different from the coefficient
equal to unity obtained from the classical consideration. For
numeric simulations, we propose using the coefficient 0.8 ob-
tained for the 3D Coulomb potential and for the 1 − exp(−1)
level method.

As we have calculated the dependence w(E) = αE assum-
ing the constant field, it is also important to check whether our
model is valid for time-varying fields E(t ). If we assume that
the direction and the sign of the electric field always remain
the same, corresponding to E(t ) > 0, the exact ionization
probability and the probability according to the w(E) model
are

Wexact = 1 − C̃[A(t )], (56)

Wi = 1 − exp[−αA(t )]. (57)

We see that both solutions depend on the integral field A(t ),
which indicates that the typical ionization time will be similar
even for varying electric fields.

d. Other models of ionization. Over the years, several other
methods of correcting the tunnel ionization rate have been
proposed. Here, we consider some of them for hydrogen. For
our model, we use the w = 0.8E formula with the numeric
coefficient from Table I. Additional formulas include:

(1) The classical formula by Posthumus et al. [18]
(2) The empirical formula by Bauer et al. [20]
(3) The empirical formula by Tong and Lin [19]
(4) The empirical formula by Zhang et al. [21] with cor-

rections [The minus sign in the exponent in Eq. (8) of that
paper needs to be removed.]

These formulas, as well as the motionless approximation
regime proposed in this paper, are shown in Fig. 8.

The classical rate by Posthumus et al. overestimates the
ionization rate at E ∼ Ecr and becomes constant for E � Ecr,
which makes it a poor estimate. The three empirical formulas
are obtained from numeric integration of the TDSE. The for-
mula by Bauer et al. introduces the empirical scaling w ∝ E2

in the area above Ecr. The formula by Tong et al. introduces
the empirical correction to the tunnel rate for E ∼ Ecr. For
slightly higher fields, the predicted ionization rate quickly
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FIG. 8. Ionization rates for hydrogen according to different mod-
els: the tunnel model; the models by Posthumus et al. [18], Tong
and Lin [19], Zhang et al. [21], and Bauer et al. [20]; and the
motionless approximation model proposed in this paper. The values
are normalized to the atomic units.

drops. The formula by Zhang et al. provides even better
empirical approximation, supporting the transition from the
model by Tong and Lin to the model by Bauer et al. However,
the drawback of all three models is that they are empirical;
they are based on the results of numerical simulations and
are applicable only to several chemical elements and several
electron shells studied in the corresponding papers. Unlike
that, our formula follows both from classical and quantum
analytic considerations and is therefore more general. It can
also be easily applied to different ions if the ground-state wave
function is numerically calculated.

One of the prominent numeric methods of analyzing laser-
matter interaction is the particle-in-cell method. Among many
other effects, it is possible to take ionization into account in
PIC codes. However, with the amount of different formulas
applicable in different ranges, it is important to introduce a
formula for the ionization rate which covers most applica-
tions. For example, in the EPOCH PIC code [38], the formula
by Posthumus is used, which—in our opinion—is poorly
suitable for the simulations in the BSI regime. In the SMILEI

PIC code [39,40], only the tunnel ionization rate is available
by default; however, user-defined formulas for the ionization
rate may be used instead. One of the problems arising when
making such a choice is that some of the formulas considered
above are obtained by fitting the numerical data, which makes
it difficult to generalize them for different ions. A simple
approach is to introduce a piecewise formula

w(E) =
⎧⎨
⎩

wTI(E), E < E1,

0.8ωa
E

Ea

√
IH

Ii
, E > E1,

(58)

where wTI(E) is the probability of the tunnel ionization of the
specific ion, and E1 is chosen so that w(E) is continuous at
E1. Usually, the linear function crosses the tunnel ionization
rate at two points (see Fig. 8), so two possible values of
E1 satisfy the continuity condition; the lowest such value
has to be chosen. Except for the numeric coefficient of 0.8,
this ionization rate is the same as proposed in Ref. [9].

The numeric coefficient was obtained for the 3D Coulomb
potential, so in principle it is also valid only for hydrogen and
hydrogenlike ions. However, even for 1D model potentials,
the numeric coefficients are of the same order of magnitude
and are reasonably close to unity (see Table I), so we do not
expect a major difference for different ions.

To sum up, we have considered field ionization in the limit
of extremely strong fields. Using the classical approach, we
have shown that the expected ionization rate is linear with
respect to the external field E. To investigate the problem
using the quantum approach, we have also considered the
single-particle TDSE. In the strong-field limit, two approxi-
mations may be used. One of them is the free electron approxi-
mation in which we assume that the atomic potential might be
neglected. The other one is the motionless approximation in
which we leave only the term corresponding to the external
electric field. However, the motionless approximation is more
accurate in the BSI regime than the free electron approxima-
tion. In the motionless approximation, the ionization rate can
be estimated analytically and is always linear in E. For all
of the considered model potentials—the 1D δ potential, the
1D soft-core potential, and the 3D Coulomb potential—the
estimated ionization rate is of the same order as predicted
by the classical approach. Numeric integration of the TDSE
shows that the motionless approximation is valid when the
field strength significantly exceeds the critical value for barrier
suppression. We have also proposed a piecewise formula for
the ionization rate, both in the tunnel and the BSI regime,
which can be used, for example, in particle-in-cell codes.

The code used for 1D TDSE integration is available on
GitHub [41]. The Jupyter Notebook producing all figures in
the paper is available in the Supplemental Material [34].
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APPENDIX A: APPLICABILITY OF THE TUNNEL MODEL

In order for the tunnel ionization rate wTI(E) to be valid,
most atoms and ions should be ionized before the value of the
electric field reaches the critical value Ecr for the respective
orbitals. In this Appendix, we quantitatively evaluate this
condition.

For hydrogen, the critical field is Ecr = 1/16, while the
ionization rate in the atomic units is

wTI(E) = 4

E
exp

(
− 2

3E

)
. (A1)

To find the condition of applicability, we assume that the
tunnel ionization rate is not applicable if the total probability
of ionization (3) is less than 90% when the field reaches the
critical value. This condition corresponds to∫ tcr

−∞
wTI[E(t )]dt < ln 10, (A2)
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where E(tcr ) = Ecr.
A very rough estimate may be obtained for arbitrary pulses

of full length T . As wTI(E) < wTI(Ecr ) for E < Ecr, then if

wTI(Ecr )T < ln 10, (A3)

the tunnel formula is guaranteed to be invalid, provided the
maximum field strength exceeds the critical value. In physical
units, it corresponds to

T < 37 fs. (A4)

Therefore if the pulse is shorter, the tunnel ionization rate can
no longer be used.

In a more rigorous approach, a Gaussian video pulse (with-
out the carrier frequency) with E(t ) = E0 exp(−4t2/T 2) is
considered. The value of E0 is assumed to be larger than Ecr.
In this case, the critical field is reached at

tcr = −T

2

√
ln

(
E0

Ecr

)
, (A5)

and condition (A2) corresponds to

T

∫ ∞

E−1
cr

1√
ln(E0v)

exp

(
−2

3
v

)
dv < ln 10. (A6)

As a logarithm is a slow function, if E0 is not too close to Ecr,
the approximate value of the left-hand side is

3T

2

[
ln

(
E0

Ecr

)]−1/2

exp

(
− 2

3Ecr

)
. (A7)

In a wide range of values of E0, the value of the square root
of the logarithm can be evaluated as ∼1. Therefore the tunnel
approximation is invalid if

T <
2 ln 10

3
exp

(
2

3Ecr

)
, (A8)

or, in the physical units,

T < 1.6 ps. (A9)

For pulses with the carrier frequency ωL and the envelope
E(t ), the same estimate might be used because

wTI[E(t ) cos(ωt )] � wTI[E(t )]. (A10)

Therefore for attosecond and femtosecond pulses with good
contrast ratios, the tunnel ionization rate is not valid for
hydrogen and the use of a corrected formula is required.

For hydrogenlike ions with charge number Z, the critical
field grows as Z3, and the condition for the pulse duration
time becomes

T <
1.6 × 10−12

Z2
s. (A11)

Therefore for sufficiently short pulses, the tunnel formula is
invalid not only for hydrogen but for more massive ions as
well.

APPENDIX B: PROBABILITY OF IONIZATION
AT SMALL TIMES

In this Appendix, we explain why the motionless approxi-
mation is more accurate than the free electron approximation

at small times (see Figs. 4 and 6). We consider three Hamilto-
nians:

Ĥexact = p̂2

2
+ V̂ + Er̂, (B1)

ĤFE = p̂2

2
+ Er̂, (B2)

ĤM = Er̂. (B3)

The Ĥexact Hamiltonian is the initial exact Hamiltonian used
in numeric simulations, ĤFE corresponds to the free elec-
tron approximation, and ĤM corresponds to the motionless
approximation. The electric field E is assumed to be time
independent. For each Hamiltonian we calculate

C
(i)
0 (t ) = |〈ψ0|ψ (i)(t )〉|2 (B4)

for t → 0. Here, |ψ (i)(t )〉 is the solution for Ĥi with the initial
condition |ψ (i)(0)〉 = |ψ0〉, i ∈ {exact, FE, M}, and |ψ0〉 is
the eigenfunction of Ĥ0,

Ĥ0|ψ0〉 = H0|ψ0〉, Ĥ0 = p̂2

2
+ V̂ . (B5)

The evolution of the wave functions is described by

|ψ (i)(t )〉 ≈
(

1 − iĤi t − Ĥ 2
i t2

2

)
|ψ0〉 (B6)

for t → 0. Hence, C
(i)
0 (t ) in the lowest order in t is

C
(i)
0 ≈ 1 − t2(〈Ĥ 2

i

〉 − 〈Ĥi〉2), (B7)

where 〈Â〉 ≡ 〈ψ0|Â|ψ0〉.
For Ĥexact, we have

〈
Ĥ 2

exact

〉 − 〈Ĥexact〉2 = 〈(Er̂)2〉 − 〈Er̂〉2. (B8)

For ĤFE, we similarly have

〈
Ĥ 2

FE

〉 − 〈ĤFE〉2 = 〈(Er̂ − V̂ )2〉 − 〈Er̂ − V̂ 〉2. (B9)

And for ĤM, we have

〈
Ĥ 2

M

〉 − 〈
ĤM

〉2 = 〈
(Er̂)2

〉 − 〈Er̂〉2. (B10)

For Ĥexact and ĤM the answers are identical. As C0(t ) is the
main contributing factor to C(t ), this explains why the curves
for the numeric solution and the motionless approximation
overlap in Figs. 4 and 6 for small times, even when this ap-
proximation is not applicable, while the free electron solution
is always significantly different. It may also indicate why the
motionless approximation is in general more suitable than the
free electron approximation for the description of the system.
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