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Multicenter three-distorted-wave approach to three-dimensional images
for electron-impact-ionization dynamics of molecules: Overall agreement with experiment
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We report on a multicenter three-distorted-wave (MCTDW) approach to describe the electron-impact-
ionization dynamics of molecules. In MCTDW, both the scattered projectile and the ejected electrons are
described by distorted waves. The continuum wave functions of the incident and the two outgoing electrons are
solved in the multicenter potential of neutral molecule and molecular ion, respectively. The fully differential
cross section is then obtained for a given molecular orientation. Here, we present the spherically averaged
triple-differential cross sections of water molecule by 81 eV electron impact. The results show good agreement
with experiment in three-dimensional kinematics concerning both the angular dependence and the relative
magnitude of the cross sections over a large range of analyzed angle and energy conditions.
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I. INTRODUCTION

Atomic and molecular collision processes have played
fundamental roles in the development of quantum mechanics
since its early stage. In particular, electron-initiated processes
are of great importance due not only to the many-body na-
ture of the collision given ground to theoretical efforts, but
also to the variety and subtlety of applications ranging from
plasma physics and chemistry of planetary atmospheres to
nuclear reactor technologies and ionizing radiation in medical
radiation therapy [1–3]. The water molecule (H2O) is of great
interest in this regard and has attracted much attention over the
years [4]. It is one of the most abundant molecules on earth
and plays an important role in life science. As an example,
precise cross-section data for energy depositions and angular
distributions resulting from electron collisions with water are
essential in charged-particle track structure analyses to model
radiation damage in a biological system [5].

The full information about the ionization dynamics can be
obtained in kinematically complete experiments, or so-called
(e, 2e) studies [6,7]. In such experiments, the energy and
momenta of all final-state particles are determined, giving
a triple-differential cross section (TDCS). The (e, 2e) dy-
namics has been extensively studied experimentally as well
as theoretically for a broad range of targets and kinematic
conditions [8–10]. The mostly studied experimental kinematic
condition is the so-called coplanar geometry in which both
final-state electrons move in a plane that also contains the
incoming projectile. Over the past few decades, theory has
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made tremendous progress in describing the electron-impact-
ionization dynamics, which is now considered to be well
understood for the simple atomic systems such as H and He;
see, e.g., [11–15]. Moreover, electron-impact ionization of the
simplest H2 molecule has also been well described by several
theoretical models even in the frame of a H2 molecular axis;
see, e.g., [16–20].

Molecular targets larger than H2 provide a significant chal-
lenge to theory due to their multicenter nature and complex
electronic structures. A key challenge in modeling electron
collisions with molecules is hence in developing accurate
multicenter wave functions. The ionization dynamics of wa-
ter have been previously studied by the determination of
TDCS [21–29]. At 250 eV impact energy, theories can nicely
reproduce the binary lobe of the experimental TDCS, while
there are discrepancies between theory and experiment in the
recoil lobe which is originated from the nuclear backscattering
process [21–25]. The situation becomes worse for results at
lower impact energy, where the (e, 2e) ionization dynamics
are more sensitive to the effects such as postcollision interac-
tion (PCI), exchange, and polarization [26–28].

With the emergence of the state-of-the-art reaction mi-
croscope, it became possible to image the electron emission
in electron-impact ionization in all three spatial dimensions
and the fully differential cross sections can be obtained for
many kinematic arrangements. It thus provides benchmark
experimental data of the (e, 2e) process for comprehensive
tests of theoretical models [29–32]. Recently, an internormal-
ized TDCS of water has been reported at low impact energy
(81 eV) using a reaction microscope [29]. It covers a large
fraction of the entire solid angle and a broad range of energies
of the continuum electrons in the final state. The typical
molecular three-body distorted-wave (M3DW) theory [33–36]
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has been applied to reproduce the experimental TDCS. It
was found that M3DW, using a proper average (PA) over
orientation-dependent cross sections, produces more accu-
rate results than the orientation-averaged molecular orbital
(OAMO) method [29]. The computational cost of the PA
method, however, is much more expensive than the OAMO
and therefore only the TDCS by OAMO was presented for
an overall comparison in all three spatial dimensions. In our
recent works, a multicenter distorted-wave (MCDW) method
has been developed to calculate the (e, 2e) cross sections of
molecules, which is generally limited to the relatively higher
impact energy (above 100 eV) and asymmetric kinematics
due to the fact that the projectile was considered as a plane
wave [24,37,38].

In the present work, we report a theoretical approach
named multicenter three-distorted-wave method (MCTDW)
to describe the single-ionization dynamics of molecules. Un-
like the previous MCDW, the continuum-wave functions of
incident and two outgoing electrons in MCTDW are solved
under the multicenter potential of neutral molecule and molec-
ular ion, respectively, which can be used to calculate TDCS
at relatively low impact energy for all kinds of kinematics.
Here, as a demonstration, three-dimensional (3D) TDCSs of
water molecule as well as the cutting planes by MCTDW are
compared with the internormalized cross sections of water
mentioned above. We obtain an overall good agreement with
the experimental data; in particular, when the PCI effect was
considered in the method with a Gamow factor for the cutting
planes of different kinematic conditions. When comparing at
certain planes, it was found that the calculation accuracy of the
MCTDW theory is at a similar level or, in some cases, better
than the PA method concerning both the angular dependence
and the relative magnitude of the cross sections. In particular,
the low computational cost of the present approach enables us
to obtain 3D TDCSs for molecular target with only dozens of
processors within a couple of days.

II. THEORETICAL METHOD

A. General formulation

The electron-impact single-ionization process of a
molecule (M) can be described as

e0(
⇀
ki ) + M → M+ + e1(

⇀
ks ) + e2(

⇀
ke ), (1)

where e0, e1, e2 represent the incident, scattered, and ejected
electrons, respectively.

⇀
ki ,

⇀
ks , and

⇀
ke are the corresponding

momentum vectors. According to the scattering theory, we
can calculate the probability of the electron-scattering process
quantum mechanically by evaluating a quantity called the T
matrix. The transition matrix Tfi describes the transition of
the scattering system from the initial stationary state �i to
the final stationary state �f through the interaction potential
V . In the present calculation model, approximated three-body
potentials are employed,

V = 1

|⇀r0 − ⇀r1| − 1

N

∑
n

Zn

|⇀r0 − ⇀
Rn|

. (2)

The first term of Eq. (2) represents the interaction between
the projectile and active electron, while the second term is the

approximated interaction from the residual ion. ⇀r0 and ⇀r1 are
the coordinates of the projectile and target active electrons.

⇀
Rn

is the position of the nth nucleus and Zn indicates its charge.
N is the total electron number of the molecular system. The
initial and final states of the system are written as

�i = ψtargetF (+)
i , (3)

�f = F (−)
e F (−)

s ψion, (4)

where ψtarget is the total bound wave functions of the molec-
ular target, and F (+)

i is the distorted wave of the incident
electron in the multicenter neutral molecular potential. F (−)

e

and F (−)
s represent the distorted waves of the ejected and

scattered electrons, respectively, and will be solved in the
multicenter potential of the molecular ion. ψion is the total
wave functions of the residual ion. So the standard T matrix
gives rise to

T dir
fi (�) = 〈

F (−)
e F (−)

s ψion

∣∣ 1

|⇀r0 − ⇀r1|
− 1

N

∑
n

Zn

|⇀r0 − ⇀
Rn|

〈
ψtargetF (+)

i

〉
. (5)

The Dyson orbitals for the ionized electron can be applied,

〈ψion({⇀r2, . . . ,
⇀rN })|ψtarget ({⇀r1, . . . ,

⇀rN })〉 = ϕα (⇀r1). (6)

Then formula (5) can further be simplified as

T dir
fi (�)

= 〈
F (−)

e

(⇀
ke;R−1

�
⇀r1

)
F (−)

s

(⇀
ks ;R−1

�
⇀r0

)∣∣ 1

|⇀r0 − ⇀r1|
− 1

N

∑
n

Zn

|⇀r0 − ⇀
Rn|

∣∣ϕα

(
R−1

�
⇀r1

)
F (+)

i

(⇀
ki ;R−1

�
⇀r0

)〉
. (7)

The molecular orientation is defined by the Euler angle
�= (α,β,γ ). R−1

� represents the rotation of the target. The
treatment of formula (7) is very similar to the distorted-wave
Born approximation (DWBA) [39,40] for an atomic system;
the main difference is that we solve the distorted waves of the
three electrons in the multicenter potential. Equation (7) is the
direct-transition amplitude for the MCTDW model.

Since one cannot distinguish the outgoing two electrons,
we have to evaluate the exchange amplitude as well,

T exc
fi (�)

= 〈
F (−)

e

(⇀
ke;R−1

�
⇀r0

)
F (−)

s

(⇀
ks ;R−1

�
⇀r1

)∣∣ 1

|⇀r0 − ⇀r1|
− 1

N

∑
n

Zn

|⇀r0 − ⇀
Rn|

∣∣ϕα

(
R−1

�
⇀r1

)
F (+)

i

(⇀
ki ;R−1

�
⇀r0

)〉
. (8)

The nonrelativistic TDCS can therefore be obtained by
averaging over all molecular orientations as

d3σ

d�ed�sdEs

= Ne

1

(2π )5

kske

ki

1

8π2

×
∫ (

1

4

∣∣T dir
fi + T exc

fi

∣∣2 + 3

4

∣∣T dir
fi − T exc

fi

∣∣2
)

d�, (9)
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where Ne is the electron occupation number of the ionized
molecular orbital. In this standard MCTDW model, the cor-
relation of the final two electrons is ignored. The full final-
state Coulomb interaction can be included through the famous
Gamow factor (Nee) [41] in the expression of TDCS,

Nee = ∣∣e− πγ

2 �(1 − iγ )
∣∣2 = π/kab

eπ/kab − 1
, (10)

where �(1 − iγ ) is the gamma function, kab = μνab, μ =
1/2 is the reduced mass for the two electrons, νab is the
relative velocity between the two electrons, and γ = 1/νab is
the Sommerfeld parameter.

B. Multicenter distorted waves

The wave functions of the ejected, scattered, and incident
electrons can be obtained by solving the effective Schrödinger
equations in the distorted or model potentials:

[− 1
2∇2 + V m

e − Eke

]
F (−)(

⇀
ke; ⇀r1) = 0, (11)

[− 1
2∇2 + V m

s − Eks

]
F (−)(

⇀
ks ;

⇀r0) = 0, (12)

[− 1
2∇2 + V m

i − Eki

]
F (+)(

⇀
ki ;

⇀r0) = 0. (13)

The V m
e , V m

s , and V m
i are the corresponding multicenter model

potentials:

V m
e;s;i = V st

e;s;i + V
cp

e;s;i + V model-exc
e;s;i , (14)

where V st
s , V st

e are the electrostatic potentials of the residual
molecular ion for scattered and ejected electrons, while V st

i is
the electrostatic potential of the neutral molecule for incident
electron. V

cp
e , V

cp
s , V

cp

i and V model-exc
e , V model-exc

s , V model-exc
i

are the corresponding correlation-polarization and model ex-
change potentials, respectively.

In order to solve the Schrödinger equations, the single-
center expansion (SCE) techniques [42–44] are employed to
expand the wave functions and potentials. In order to take
advantage of the point-group symmetry of the molecule, a
symmetry-adapted angular function X

pμ

hl (θ, ϕ) [42–44] was
employed to do the expansion, where p and μ label one of
the relevant irreducible representations and one of its compo-
nents, respectively. Index h labels a specific basis, at a given
angular momentum l, for the pth irreducible representations
considered [42–44]. Then the continuum-wave functions of
ejected, scattered, and incident electrons are obtained with the
partial-wave expansion,

〈F (−)(
⇀
ke ) | ⇀r1〉 =

∑
pμe

∑
h1�1;h2�2

4πi−�1e
iδc

�1
1

ker1

×f
(−);pμe

h1�1;h2�2
(ke, r1)Xpμe

h1�1
(k̂e )Xpμe

h2�2
(r̂1), (15)

〈F (−)(
⇀
ks ) | ⇀r0〉 =

∑
pμs

∑
h3�3;h4�4

4πi−�3e
iδc

�3
1

ksr0

×f
(−);pμs

h3�3;h4�4
(ks, r0)Xpμs

h3�3
(k̂s )Xpμs

h4�4
(r̂0), (16)

〈F (+)(
⇀
ki ) | ⇀r0〉 =

∑
pμi

∑
h5�5;h6�6

4πi−�5
1

kir0

× f
(+);pμi

h5�5;h6�6
(ki,r0)Xpμi

h5�5
(k̂i )X

pμi

h6�6
(r̂0), (17)

where δc
l(1;3)

is the Coulomb phase shift. The coupled equations
can be obtained:[

d2

dr2
1

− �2(�2 + 1)

r2
1

+ 2

r1
+ k2

e

]
f

(−);pμe

h1�1;h2�2
(ke, r1)

=
∑
h′�′

U
pμe

h1�1;h′�′ (ke; r1)f (−);pμe

h′�′;h2�2
(ke, r1), (18)

[
d2

dr2
0

− �4(�4 + 1)

r2
0

+ 2

r0
+ k2

s

]
f

(−);pμs

h3�3;h4�4
(ks, r0)

=
∑
h′�′

U
pμs

h3�3;h′�′ (ks ; r0)f (−);pμs

h′�′;h4�4
(ks, r0), (19)

[
d2

dr2
0

− �6(�6 + 1)

r2
0

+ k2
i

]
f

(+);pμi

h5�5;h6�6
(ki, r0)

=
∑
h′�′

U
pμi

h5�5;h′�′ (ki ; r0)f (+);pμi

h′�′;h6�6
(ki, r0), (20)

where the potential matrix element is

U
pμe

h1�1;h′�′ (ke; r1) = 2
〈
X

pμe

h1�1
(r̂1)

∣∣V m(ke; ⇀r1)
∣∣Xpμe

h′�′ (r̂1)
〉

+ 2

r1
δh1h′δ�1�′, (21)

U
pμs

h3�3;h′�′ (ks ; r0) = 2
〈
X

pμs

h3�3
(r̂0)

∣∣V m(ks ;
⇀r0)

∣∣Xpμs

h′�′ (r̂0)
〉

+ 2

r0
δh3h′δ�1�′ , (22)

U
pμi

h5�5;h′�′ (ki ; r0) = 2
〈
X

pμi

h5�5
(r̂0) |V m(ki ;

⇀r0)|Xpμi

h′�′ (r̂0)
〉
. (23)

The coupled equations can further be written as a Volterra
equation [45] and solved with the standard Green’s function
technique [44]. In order to solve the equation numerically,
the radial wave functions f

(−);pμe

h1l1;h2l2
, f (−);pμs

h3l3;h4l4
, and f

(+);pμi

h5l5;h6l6
must

match the physical asymptotic conditions of the K matrix [46],

f
(−);pμe

h1l1;h2l2
(ke, r1)

r1→∞→ Fl1 (ker1)δh1l1;h2l2 + Gl1 (ker1)Kpμe

h1l1;h2l2
,

(24)

f
(−);pμs

h3l3;h4l4
(ks, r0)

r0→∞→ Fl3 (ksr0)δh3l3;h4l4 + Gl3 (ksr0)Kpμs

h3l3;h4l4
,

(25)

f
(+);pμi

h5l5;h6l6
(ki, r0)

r0→∞→ jl5 (kir0)δh5l5;h6l6 + nl5 (kir0)Kpμi

h5l5;h6l6
,

(26)

where Fl and Gl are the regular and irregular Coulomb
functions, and jl and nl are the Riccati-Bessel and Riccati-
Neumann functions. The radial wave functions for ejected and
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scattered electrons satisfy the ingoing boundary condition,
while the incident electron is solved with outgoing boundary
condition. In the present calculations, the diagonal terms
of the potential matrix are considered dominant. Thus, in
practice, we will ignore the off-diagonal terms and solve the
decoupled partial-wave equations.

C. Numerical process of transition amplitude

The initial bound orbital ϕα is also expanded with the
symmetry-adapted angular function,

ϕα (⇀r1) = 1

r1

∑
h7l7

uh7l7 (⇀r1)Xαμ

h7l7
(r̂1). (27)

Consider the expansions below,

1∣∣⇀r1 − ⇀r0

∣∣ =
∑
l8m8

4π

2l8 + 1

rl8
<

r
l8+1
>

Sl8m8 (r̂1)Sl8m8 (r̂0), (28)

1∣∣⇀Rn − ⇀r0

∣∣ =
∑
l8m8

4π

2l8 + 1

rl8
<

r
l8+1
>

Sl8m8 (R̂n)Sl8m8 (r̂0), (29)

where the Sl8m8 is the real spherical harmonic function [47],
r< = min(r0, r1), r> = max(r0, r1) or r< = min(r0, Rn),
r> = max(r0, Rn). Then we can get the final expression of the
transition amplitude Tfi(�),

Tfi(�) = M1 − M2, (30)

where M1 and M2 are defined as

M1 ≡ 〈
F (−)

s (R�

⇀
ks ;

⇀r0)F (−)
e (R�

⇀
ke; ⇀r1)

∣∣ 1∣∣⇀r0 − ⇀r1

∣∣ ∣∣F (+)
i (R�

⇀
ki ;

⇀r0)ϕα (⇀r1)
〉
, (31)

M2 ≡ 〈
F (−)

s (R�

⇀
ks ;

⇀r0)F (−)
e (R�

⇀
ke; ⇀r1)

∣∣∑
n

Zn/N

|⇀r0 − ⇀
Rn|

∣∣F (+)
i (R�

⇀
ki ;

⇀r0)ϕα (⇀r1)
〉
. (32)

Then the numerical results of M1 can be expressed as

M1 = (4π )4

kekski

∑
pμe

∑
pμs

∑
pμi

∑
h1l1

∑
h3l3

∑
h7l7

∑
h5l5

∑
l8m8

i−l1−l3+l5

2l8 + 1
e
i
(
δc
l1

+δs
l1

+δc
l3

+δs
l3

−δs
l5

)

×
[ ∫ ∞

0

∫ ∞

0
f

pμs

h3l3
(ks, r0)f pμi

h5l5
(ki, r0)f pμe

h1l1
(ke, r1)uh7l7 (r1)

rl8
<

r
l8+1
>

dr0dr1

]
X

pμe

h1l1

(
R�k̂e

)
X

pμs

h3l3

(
R�k̂s

)
X

pμi

h5l5

(
R�k̂i

)

×
[∫

dr̂1X
pμe

h1l1
(r̂1)Xαμ

h7l7
(r̂1)Sl8m8 (r̂1)

][∫
dr̂0X

pμs

h3l3
(r̂0)Xpμi

h5l5
(r̂0)Sl8m8 (r̂0)

]
, (33)

where δs
l(1;3;5)

is the short-range phase shift inherited from the radial wave functions f
(−);pμe

h1l1;h2l2
, f

(−);pμs

h3l3;h4l4
, and f

(+);pμi

h5l5;h6l6
. For M2, if

⇀
Rn = 0, then

M2 = (4π )4

kekski

∑
n

Zn

Ne

{∑
pμe

∑
h1l1

∑
h7l7

i−l1e
i
(
δc
l1

+δs
l1

)[∫ ∞

0
dr1f

pμe

h1l1
(ke, r1)uh7l7 (r1)

][∫
dr̂1X

pμe

h1l1
(r̂1)Xαμ

h7l7
(r̂1)

]
X

pμe

h1l1

(
R�k̂e

)}

×
{∑

pμs

∑
pμi

∑
h3l3

∑
h5l5

i−l3+l5e
iδc

l3
+iδs

l3
−iδs

l5

[∫ ∞

0
dr0f

pμs

h3l3
(ks, r0)f pμi

h5l5
(ki, r0)/r0

]

×
[∫

dr̂0X
pμs

h3l3
(r̂0)Xpμi

h5l5
(r̂0)

]
X

pμs

h3l3

(
R�k̂s

)
X

pμi

h5l5

(
R�k̂i

)}
. (34)

If
⇀
Rn 	= 0, then

M2 = (4π )4

kekski

∑
n

Zn

Ne

{∑
pμe

∑
h1l1

∑
h7l7

i−l1e
i
(
δc
l1

+δs
l1

)[∫ ∞

0
dr1f

pμe

h1l1
(ke, r1)uh7l7 (r1)

][∫
dr̂1X

pμe

h1l1
(r̂1)Xαμ

h7l7
(r̂1)

]
X

pμe

h1l1

(
R�k̂e

)}

×
{∑

pμs

∑
pμi

∑
h3l3

∑
l5m5

∑
l8m8

i−l3+l5

2l8 + 1
e
iδc

l3
+iδs

l3
−iδs

l5

[∫ ∞

0
dr0f

pμs

h3l3
(ks, r0)f pμi

h5l5
(ki, r0)

rl8
<

r
l8+1
>

]

×
[∫

dr̂0X
pμs

h3l3
(r̂0)Xpμi

h5l5
(r̂0)Sl8m8 (r̂0)

]
X

pμs

h3l3

(
R�k̂s

)
X

pμi

h5l5

(
R�k̂i

)
Sl8m8

(
R�R̂n

)}
. (35)

For the radial integration of M1, it is hard to achieve convergence due to the large radial scale of continuum-wave functions. Let
RM1 denotes the final result of radial integration of M1,

RM1 =
∫ ∞

0

∫ ∞

0
f

pμs

h3l3
(ks, r0)f pμi

h5l5
(ki, r0)f pμe

h1l1
(ke, r1)uh7l7 (r1)

rl8
<

r
l8+1
>

dr0dr1. (36)

042710-4



MULTICENTER THREE-DISTORTED-WAVE APPROACH TO … PHYSICAL REVIEW A 98, 042710 (2018)

The radial bound wave function ul7m7 (r1) will approach to zero when r1 is larger than R0,

uh7l7 (r1)
r1�R0→ 0, (37)

where R0 is defined as the critical integration point. Then the following radial integration expression can be obtained:

RM1 =
∫ R0

0
dr0f

pμs

h3l3
(ks, r0)f pμi

h5l5
(ki, r0)

[∫ r0

0
dr1f

pμe

h1l1
(ke, r1)uh7l7 (r1)

r
l8
1

r
l8+1
0

+
∫ R0

r0

dr1f
pμe

h1l1
(ke, r1)uh7l7 (r1)

r
l8
0

r
l8+1
1

]

+
∫ ∞

R0

dr0f
pμs

h3l3
(ks, r0)f pμi

h5l5
(ki, r0)

∫ R0

0
dr1f

pμe

h1l1
(ke, r1)uh7l7 (r1)

r
l8
1

r
l8+1
0

. (38)

After testing the program, when the critical integration point
R0 � 30 a.u., TDCS could achieve a good convergence. In
practice, we use R0 = 40 a.u. to do the calculations.

In the present work, the bound wave functions of the
molecular orbitals (MOs) of H2O are calculated using the
GAUSSIAN 09 [48] program with the density functional theory
employing the B3LYP functional and cc-pVTZ basis set. For
the present calculation of H2O, let lbmax, lemax, lsmax, and limax
denote the upper limits of the angular momentum in the
partial-wave expansions for the bound orbital, continuum-
wave functions of ejected, scattering, and incident electrons,
respectively. Convergence is achieved with up limits lbmax = 2,
lemax = 6, lsmax = 35, and limax = 40. The spherical average of
cross sections for different molecular orientations is com-
pleted with Euler angle mesh Nα = 8, Nβ = 6, and Nγ = 8,
where Nα , Nβ , and Nγ represent the number of points for
Euler angle α, β, and γ .

III. RESULTS AND DISCUSSION

Figure 1 presents the summed TDCSs for the ionization
of 1b1 and 3a1 orbitals of the water molecule by 81 eV
electron impact as three-dimensional (3D) surface plots for
a projectile scattering angle of θs = −10◦ as a function of the
emission direction of a slow ejected electron with Ee = 10 eV
energy. Figure 1(a) corresponds to the calculated result by
the present MCTDW, while Fig. 1(b) shows the experimental

sθ

x

z
y

sk qik

(a) (b)

Expt.

FIG. 1. (a) The 3D image is the MCTDW calculation of the
low-impact-energy (81 eV) summed TDCSs for 1b1 and 3a1 orbitals
of H2O at θs = −10◦ and Ee = 10 eV. (b) The corresponding exper-
imental data carried out with an advanced reaction microscope [29].

data reported in [29]. The projectile (
⇀
ki) enters from the

bottom and is scattered (
⇀
ks) to the left. These two vectors,

whose intersection corresponds to the collision point, define
the scattering plane, as indicated by the solid (red) frame in
Fig. 1(a). In the 3D plots, the TDCS for a particular direction
is defined as the distance from the origin to the surface of
the plot. The momentum transfer to the target is indicated
by the arrow labeled ⇀q. The 3D image shows a typical two-
lobe structure: one is the well-known binary lobe which is
located roughly around the direction of momentum-transfer
vector ⇀q and, in the opposite direction, a recoil lobe can
be found. The binary lobe can be explained as the binary
collision between the projectile and target electrons, while
the recoil lobe results from the backscattering of the ejected
electron by the ionic potential. Regarding the comparison
between theory and experiment, the observed features in the
3D image are very well reproduced by theory, except that the
experimental binary lobe shows a slight minimum roughly
in the direction of ⇀q, while it is more flat in the theory.
Such a minimum or dip in the binary lobe might be the
result of the characteristic momentum profile of the p-type
1b1 and 3a1 orbitals of H2O that has a node for vanishing
momentum [29].

In order to have a complete and comprehensive compari-
son, the cross sections in three orthogonal planes are presented
in Figs. 2 and 3. Those are the xz plane or scattering plane,
the yz plane or half-perpendicular plane, and the xy plane
or full-perpendicular plane, which are cuts through the 3D
image as indicated in Fig. 1(a). The studied kinematics are
(i) Ee = 5 eV, θs = −6◦; (ii) Ee = 10 eV, θs = −6◦; (iii)
Ee = 5 eV, θs = −10◦, and (iv) Ee = 10 eV, θs = −10◦, as
presented in the panels from top to bottom in Figs. 2 and 3.
Since the experimental data are internormalized for different
kinematical situations [29], a single common scaling factor
is sufficient to fix the relative magnitude of the experimental
and theoretical data for all cases. The global scaling factor is
obtained by achieving a good visual fit of experiment and the
MCTDW calculations for the TDCS in the xy plane at θs =
−10◦ and Ee = 10 eV [Fig. 2(d)]. This factor is subsequently
applied to all other kinematics and planes. As can be seen
in Figs. 2(a)–2(d), which show the TDCS data in the full-
perpendicular plane or xy plane, the MCTDW calculations are
in good agreement with the experimental data both in shape
and magnitude.

Figures 2(e)–2(h) show the results of TDCSs for the
ejected electron in the scattering plane, i.e., xz plane. The
momentum-transfer vector ⇀q lies in this plane, which is
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FIG. 2. TDCSs for electron-impact ionization of 1b1 and 3a1 orbitals of H2O under asymmetric kinematics. The incident electron energy
is 81 eV. The panels, from top to bottom (four rows), correspond to four conditions: θs = −6◦, Ee = 5 eV; θs = −6◦, Ee = 10 eV; θs = −10◦,
Ee = 5 eV; θs = −10◦, Ee = 10 eV. The panels, from left to right (three columns), correspond to three cutting planes in the 3D image of
TDCS: full-perpendicular plane (xy plane), scattering plane (xz plane), and half-perpendicular plane (yz plane). The red solid line is the
summed TDCS of 1b1 and 3a1 orbitals for MCTDW results and the green and blue dashed lines are the corresponding TDCS of 1b1 and 3a1

orbitals. The circle points are the experimental data reported by Ren et al. [29].

indicated by an arrow. The binary peak of the MCTDW
calculations is not symmetric about the momentum-transfer
direction, which is evidence of the calculation beyond the first
Born approximation [37,38]. In Figs. 2(e) and 2(f), the binary
peaks of the MCTDW calculations have an obvious shift to
the small ejection angle compared with the experimental data.
This may result from the PCI effect, which is not included in
the MCTDW calculations. In addition, the present MCTDW
calculations overestimate the binary peak of the experiment

for θs = −6◦. For θs = −10◦, shown in Figs. 2(g) and 2(h),
however, the shift of the binary peaks from the experimental
data disappears. Meanwhile, better agreement between the
calculation and the experiment has been achieved for the
binary peaks. The experimental results in the xz plane for all
four kinematic conditions exhibit very strong recoil peaks in
the −⇀q direction. MCTDW calculations well reproduce the
experiments both in shape and internormalized magnitude in
this plane.
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FIG. 3. Same as in Fig. 2, but the red solid line represents the MCTDW-Nee calculation, and the blue dashed line is the reported calculation
of M3DW-PA [29].

Figures 2(i)–2(l) compare the MCTDW results with the
experimental data in the half-perpendicular plane, i.e., the
yz plane. The TDCSs have bilateral symmetry about 180◦,
which is illustrated in both MCTDW calculations and exper-
imental measurements. The MCTDW calculations reproduce
the experiments with a maximum at 180◦ and two minimums
located approximately at 90◦ and 270◦, but generally over-
estimate the TDCSs near 0◦ and 360◦ where two outgoing
electrons are emitted with the smallest intersection angle. This
deviation may also be attributed to the PCI effect.

As we have mentioned, the PCI effect is not included
in the present MCTDW calculations. In order to investigate
the influence of PCI on the TDCSs of the H2O molecule,
we have carried out MCTDW-Nee calculations where the

PCI effect is taken into account by the Gamow factor [41].
The results are displayed in Fig. 3. The normalization is in
the same way as in Fig. 2. The calculations based on the
M3DW-PA model [29] are also presented for comparison.
The improvements in reproducing experiments for the present
calculations for all cases have been achieved compared with
the M3DW-PA results, especially for the binary peaks in the
xz plane in both shape and peak position, which confirms
the importance of the PCI effect in the low-energy ionization
situation. But the MCTDW-Nee still overestimates the TDCSs
ranging from ∼90◦-270◦ for θs = −6◦ in the recoil region
in the xz plane, while it underestimates those in the region
of ∼0◦-90◦ and ∼ 270◦-360◦ for θs = −10◦ in the yz plane.
Regarding the complexity of the H2O molecule, the final
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FIG. 4. The comparison of low-impact-energy (81 eV) TDCS for
He at Ee = 10 eV, θs = −10◦ for the DWBA-Nee (green short-long
dashed line), MCTDW-Nee (red solid line), and MCDW-Nee models
(purple dashed line), and the experimental data (circle point).

state with the Gamow factor may not be precise enough to
describe the fully correlated two-electron wave function in the
three-center ion.

The MCTDW method aims at developing a universal
calculation model in treating the (e, 2e) process for atoms
and molecules in the perturbative framework. It can also be
regarded as an upgrade of the traditional DWBA [39,40]
method to some extent, although the details of the theoretical
treatment are different. They should be at the same calcula-
tion level for an atomic system. Here, we also present the
theoretical calculations by DWBA-Nee, MCTDW-Nee, and
MCDW-Nee [24] with the experimental results of the He atom
at the kinematic conditions of Ei = 81 eV, θs = −10◦, and
Ee = 10 eV, which were measured simultaneously in the
experiment of H2O [29]. The TDCS distribution as a function
of ejection angle for He in the scattering plane is displayed in
Fig. 4. DWBA-Nee and MCTDW-Nee models predict nearly

the same TDCS distributions, both well reproducing the ex-
periment, while MCDW-Nee significantly underestimates the
intensity of the recoil peak. The good agreement between
MCTDW-Nee, DWBA-Nee, and the experimental data demon-
strates the precision and generality of the present MCTDW
model.

IV. SUMMARY

In conclusion, a multicenter three-distorted-wave method
is developed to study the single-ionization dynamics of
molecules in the perturbative framework. Due to the rela-
tively low computational cost, this method can be used to
calculate the 3D-TDCS of a molecule generally for any kine-
matic arrangement. As one example, the 3D-TDCS for H2O
molecule at kinematic condition Ei = 81 eV, θs = −10◦,
and Ee = 10 eV is calculated. Good agreement is achieved
between the present calculation and the recent experiment
by reaction microscope [29]. In order to have a complete
and comprehensive test of the present theoretical approach,
MCTDW and MCTDW-Nee calculations are performed in
three cutting planes (xy, xz, and yz plane) for four different
kinematics. The results show an overall good agreement with
the experiment using one normalization factor. The precision
and generality of MCTDW is also demonstrated in the case
of He atom at the same incident energy. Both the studies
of H2O and He indicate that the present MCTDW approach
can accurately reproduce the (e, 2e) cross sections in the
low-collision energy for both atoms and complex molecules.
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