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Positronium collisions with rare-gas atoms: Free-electron gas plus
orthogonalizing pseudopotential model
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Positronium collisions with rare-gas atoms are treated using the free-electron-gas approximation for exchange
and correlation potential. The results confirm the absence of the Ramsauer-Townsend minimum in elastic
scattering cross sections, but show lower cross sections in the lower-energy region when compared to previous
pseudopotential calculations. This is explained by a more attractive ab initio correlation potential as compared to
the previously used empirical potential. The results in the thermal-energy region agree very well with most swarm
measurements for all rare-gas atoms. At higher energies, the results are compared with beam experiments and
agreement for heavier rare-gas atoms Ar, Kr, and Xe is found to be very good. For He and Ne, some discrepancies
with beam measurements are observed. This is explained by a poorer performance of the free-electron-gas
potentials, based on the statistical Thomas-Fermi model, for systems with fewer electrons.
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I. INTRODUCTION

Studies of positronium (Ps) collisions with atoms and
molecules reveal interesting phenomena. In particular, experi-
ments of Laricchia et al. [1–6] performed during the last eight
years have shown that electron scattering and Ps scattering
cross sections, when plotted as functions of the projectile
velocity, are very similar for a variety of targets at energies
above the Ps ionization or breakup threshold at 6.8 eV (v =
0.5 a.u.). More recent experiments [5] on Ps scattering from
Ar and Xe show a small cross section below the threshold,
which led to a speculation that there might be a Ramsauer-
Townsend minimum in scattering of Ps from these rare-gas
(Rg) atoms that is similar to that for electron scattering by
heavy Rg atoms [7].

The similarity above the ionization threshold has been
explained using the impulse approximation [8]. Calculations
[9,10] using a pseudopotential model have also been suc-
cessful in reproducing the agreement above the threshold,
but exhibit a larger cross section than experiment at lower
velocities for the heavier rare-gas atoms. Other recent cal-
culations in which the Ps-atom system is enclosed in a hard
spherical wall have also led to larger cross sections below the
ionization threshold for Rg atoms [11]. A number of other
calculations [12–16] for Ps scattering by the Rg atoms have
been done and these have been summarized in Ref. [11].
These calculations all have resulted either in positive scat-
tering lengths or in no indication of the Ramsauer-Townsend
minimum. The Ramsauer-Townsend minimum usually occurs
when the scattering length is negative, so that the s-wave
scattering phase shift grows initially, then bends down due
to a long-range attractive interaction and passes through 0
modulo π . This is what happens in electron scattering by
heavy Rg atoms Ar, Kr, and Xe, and positron scattering from
all Rg targets. However, because of the relative weakness of
the van der Waals interaction compared to the polarization

interaction, the scattering lengths for Ps scattering by these
atoms is positive and the Ramsauer-Townsend minimum does
not occur for these targets [9]. Therefore, the overall picture
of Ps-atom scattering is quite different from the electron scat-
tering in the low-energy region. This is in stark contrast to the
intermediate-energy range from the Ps ionization threshold up
to projectile velocities of about 2 a.u. Here the Ps-A scattering
is mostly controlled by the electron-atom exchange, which
makes its cross section very similar to that for electron-atom
scattering.

It appears that there is some discrepancy between exper-
iment and theory for Ps scattering by Rg atoms below the
ionization threshold. On the other hand, recent calculations
[11,16] indicate that perhaps previous pseudopotential calcu-
lations [9] overestimate the Ps cross section in the low-energy
region, and more calculations, incorporating more accurately
exchange and correlations, are required.

A substantial deficiency of the pseudopotential calculations
is that they do not include short-range correlation effects in an
ab initio way. To account for the long-range correlation, the
van der Waals potential with a short-range cutoff is usually
introduced in the form

Vcorr = −CW

R6
{1 − exp[−(R/Rc )8]}, (1)

where CW is the van der Waals constant and Rc is an
adjustable cutoff radius. While the long-range Ps-atom in-
teraction is included properly in this way, the short-range
correlations could be significantly underestimated. The total
potential for the Ps-atom interaction might become therefore
too repulsive, which would lead to a too rapid decrease of the
scattering phase shifts at low energies.

In order to correct this deficiency, in the present paper we
apply recently developed free-electron-gas (FEG) exchange
and correlation energies [17] to calculate local scattering po-
tentials for Ps collisions with Rg atoms. The FEG correlation
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potential is free of adjustable parameters and exhibits a strong
attraction at short distances. We have previously used this
model to investigate Ps-N2 scattering [18] and were able to
reproduce the resonance structure seen experimentally there
and obtained good agreement with experiment above the
ionization threshold, although, again, at lower velocities the
calculated cross sections seem to be substantially larger than
the experimental.

Such local model exchange and correlation potentials
have been used fairly extensively in electron-atom and
electron-molecule scattering. One of the most common is
the Hara free-electron-gas exchange potential (HFEGE) used
first for e−-H2 scattering [19]. The FEG model for the
Ps-molecule scattering potential in Refs. [17,18] is similar
to the HFEGE model except that there is an additional
contribution to the exchange potential due to the positron
interaction with the target electrons. The correlation potential
of Refs. [17,18] is similar to the correlation potential for
electron scattering derived by O’Connell and Lane [20].

These local approximations can take into account the at-
tractive nature of the exchange potential [21] which occurs
due to the Pauli exclusion principle and the creation of a
Fermi hole [22,23]. However, the local potentials cannot take
into account the antisymmetric character of the total wave
function with respect to interchange of the projectile and
target electrons. This feature is often incorporated by enforc-
ing orthogonality between the scattering wave function and
the bound orbitals of the target atom or molecule. Morrison
and Collins [24] have investigated the effect of enforcing
orthogonality when using the HFEGE potential in electron-
molecule scattering. In general, it was found that enforcing or-
thogonality gave better agreement with exact static-exchange
calculations. Based on this result, it might be expected that
the orthogonality requirement should also have an effect on
Ps scattering by atoms and molecules. In fact, it was the
main goal of Refs. [9,10] to model this orthogonality require-
ment through the use of a repulsive pseudopotential that is
found by reproducing electron and positron scattering phase
shifts.

Another method of enforcing orthogonality in electron or
Ps scattering has been proposed by Mitroy et al. [25,26]
through the use of an orthogonalizing pseudopotential (OPP)
first introduced by Krasnopolsky and Kukulin [27,28]. In
the present paper, we develop the OPP for Ps scattering by
Rg atoms and add it to our FEG exchange and correlation
potentials. In this way, we can attempt to take into account
and study the effect of the Pauli principle on Ps-Rg scattering
at low to intermediate velocities.

The rest of the paper is organized as follows. In Sec. II, we
briefly describe the FEG local and exchange potentials and
derive an expression for the OPP. In Sec. III, we present our
results for the lighter rare-gas atoms He and Ne. In Sec. IV, we
present our results for the heavier rare-gas atoms Ar, Kr, and
Xe. Lastly, in Sec. V, we present our conclusions and outlook.
Atomic units are used throughout unless stated otherwise. As
has become customary since the discovery [1] of similarities
between electron and Ps scattering, in most cases we present
the Ps scattering cross sections as functions of velocity rather
than energy, although in the thermal-energy region we will
also use the energy scale.

II. POTENTIALS

In this section, we describe the theory for calculation of the
exchange and correlation potentials using the FEG method of
[17] and the inclusion of orthogonality using the OPP. The
FEG potentials are local, but the OPP is nonlocal. To obtain
the radial equations for the Ps center-of-mass motion, we
write the total Ps wave function in the form

�(re, rp ) = G(R)ψ (t), (2)

where the Ps center of mass is related to the positron and
electron coordinates by R = (re + rp )/2 and we define the
relative coordinate as t = re − rp.

When the Schrödinger equation governing the Ps + atom
collision is averaged over the ground-state Ps function, given
by

ψ (t) = 1√
8π

e−t/2, (3)

the static potential vanishes and we obtain the equations for
the function G(R) that describe the Ps center-of-mass motion,[∇2

R + p2
]
G(R) = 4VXC (R)G(R) + 4γ P̂G(R), (4)

where VXC is the local exchange plus correlation potential
derived in [18], and γ P̂ is an orthogonalizing pseudopotential
as defined in [14,15,26]. In the remainder of this section, we
describe the FEG local exchange and correlation potentials
and derive the expression for the OPP kernel.

A. FEG exchange and correlation potentials

In the FEG method, the exchange and correlation energies
are functions of the Fermi momentum kF . The dependence on
position is given by the Thomas-Fermi relation in which the
Fermi momentum depends on the target charge density ρ(r),

kF (r) = [3π2ρ(r)]1/3. (5)

As described in Ref. [17], we evaluate kF at the center
of mass of the Ps atom so that r = R. The exchange and
correlation potentials are then summed to give the total local
approximation to the scattering potential. To calculate the
charge densities, we have used, for all rare-gas atoms except
helium, the Hartree-Fock wave functions of Mann [29]. For
He, we have used the two-parameter wave function of Green
et al. [30] that closely approximates the Hartree-Fock wave
function.

In order to take into account the long range behavior of the
correlation potential, we have used the long-range form,

VW (R) = − CW(
R2 + R2

c

)3 , (6)

where the cutoff parameter Rc is adjusted to smoothly match
the FEG correlation potential below some transition radius
Rt at a scattering velocity of v = 0.01 a.u. For He, we have
used Rc = 1.65 a.u., which gives Rt = 1.95 a.u. For all other
atoms, we have chosen Rc = 1.3 a.u., which gives Rt =
2.72 a.u. for Ne, 3.09 a.u. for Ar, 3.27 a.u. for Kr, and 3.36
a.u. for Xe. The value of CW for He, used in the present
calculations, is 13.37 a.u. [15]. For Ne, Ar, Kr, and Xe, the
values are 26.48, 98.69, 146.71, and 227.38 a.u., respectively
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FIG. 1. Absolute value of the FEG exchange-plus-correlation
potential for Ps-Rg scattering as a function of Ps center-of-mass R

at small values of R.

[31]. These values are the same as those used by Swann and
Gribakin [11].

Another common method of including correlation is by
using the empirical potential (1) with an adjustable cutoff
radius Rc. This form has been used in the pseudopotential
calculations for various targets of Refs. [9,10] as well as the
calculations of Swann and Gribakin for Rg targets [11].

In Fig. 1, we show the absolute value of the exchange and
correlation potentials for each atom at a Ps velocity of 0.01
a.u. The potentials depend very weakly on the Ps velocity. Due
to the rapid rise of the charge density as r → 0, the strength
of the potential increases rapidly in this region.

An interesting feature of the exchange-plus-correlation po-
tential is that at intermediate values of R, it becomes repulsive.
This is shown in Fig. 2. This is due to the exchange energy
becoming positive for small kF ; see Ref. [17]. Due to this
effect, the potential does not reach its asymptotic form until
relatively large values of R. It should be noted that although
the total potential becomes repulsive for a small range of in-
termediate values of R, it eventually becomes attractive again.
The value of R at which the potential becomes attractive again
increases as the size of the atom increases. For He and Ne, this
transition occurs at the relatively small distances of 2.83 and
3.53 a.u., respectively. For the larger atoms Ar, Kr, and Xe,
the transition occurs at the larger distances of 4.61, 5.07, and
5.77 a.u., respectively.

B. Orthogonalizing pseudopotential (OPP)

As mentioned above, we use the OPP to enforce
orthogonality between the electron in Ps and the occupied
target atom orbitals, φnlm. The OPP is defined by the
projection operator [26]

γ P̂ = γ δ(rp − r′
p )

N∑
i

|φi〉〈φi |, (7)

which is added to the exchange and correlation potentials VXC

and leads to the nonlocal term. The δ function ensures that
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FIG. 2. FEG exchange-plus-correlation potentials for Ps-Rg
scattering as a function of the position R of the Ps center of mass
at intermediate values of R.

the OPP affects only the electron coordinate, emphasizing in
this way the dominant role of the electron constituent of Ps in
the scattering. The strength parameter γ in these equations is
made large enough so that orthogonality is enforced and the
scattering calculations are converged in the sense that further
increase of γ leads to a negligible change in the phase shifts
and cross sections. The sum is over the N occupied orbitals
of the target atom.

For simplicity, we derive the OPP kernel K (R, R′) for He;
the generalization to the heavier Rg atoms is then relatively
straightforward. For He, the OPP of (7) includes only one term
due to the occupied 1s orbital, and the nonlocal term in (4) is
given by∫

K (R, R′)G(R′)d3R′ =
∫ ∫

ψ∗(t)φ1s (re )φ∗
1s (r′

e )ψ (t′)

×G(R′)d3t ′d3r ′
e. (8)

In order to facilitate evaluation of the integrals in Eq. (8),
we change coordinates from (r′

e, t′) to (rp, R′), which is
similar to that used by Fraser [32,33]. The Jacobian of this
transformation equals 64. This follows from the relations

t = 2(R − rp ), t′ = 2(R′ − rp ) (9)

and

re = 2R − rp, r′
e = 2R′ − rp. (10)

Furthermore, we make the expansions

ψ∗(2|R − rp|)φ1s (|2R − rp|)

=
∑

l

(2l + 1)

4π
Al (R, rp )Pl

(
cos θRrp

)
(11)

and

φ∗
1s (|2R′ − rp|)ψ (2|R′ − rp|)

=
∑

l′

(2l′ + 1)

4π
A∗

l′ (R
′, rp )Pl′

(
cos θR′rp

)
. (12)
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The coefficients Al (R, rp ) are calculated numerically, as
suggested by Fraser [32,33]. From Eq. (8), we obtain∫

K (R, R′)G(R′)d3R

= 64γ
∑
ll′

∫ ∫
(2l + 1)(2l′ + 1)

(4π )2
Al (R, rp )A∗

l′ (R
′, rp )

×Pl

(
cos θRrp

)
Pl′

(
cos θR′rp

)
G(R′)drpdR′. (13)

Now we use the spherical harmonic addition theorem,
perform the angular integration over rp, and make the partial
wave expansion

G(R) =
∑
LM

FL(R)

R
YLM (R̂), (14)

to obtain the radial equations[
d2

dR2
− L(L + 1)

r2
+ p2

]
FL(R)

= 4VXC (R)FL(R) + 4γ

∫
KL(R,R′)FL(R′)dR′,

(15)

where VXC is the local exchange-plus-correlation potential,
and the L-dependent kernel is given by

KL(R,R′) = 64RR′
∫

AL(R, rp )A∗
L(R′, rp )r2

pdrp. (16)

In the case of an atom with more than one occupied orbital,
we must evaluate the sum over the occupied orbitals of the
target atom. Each orbital may be written as

φnlm(r) = Rnl (r )Ylm(r̂ ). (17)

We may now obtain a radial equation like that of (15).
Noting that θrr′ = θRR′ and using properties of the spherical
harmonics and the Wigner 3-j symbols, we obtain, for the
L-dependent kernel,

KL(R,R′)=64RR′ ∑
nll′

Cll′L

∫
Anll′ (R, rp )Anll′ (R

′, rp )r2
pdrp,

(18)
where Anll′ is the Legendre expansion coefficient in

ψ (2|R − rp|)Rnl (|2R − rp|)

=
∑

l′

(2l′ + 1)

4π
Anll′ (R, rp )Pl′

(
cosθRrp

)
(19)

and

Cll′L = (2l + 1)(2l′ + 1)

4π

(
l l′ L

0 0 0

)2

. (20)

The radial equations (15) are solved iteratively. The phase
shifts and cross sections are converged for values of γ >

3 a.u. We have used γ = 20 a.u. in all calculations. We also
note that the OPP acts as a repulsive potential that forces the
wave function to be small at small values of R for all values
of L. This is unlike the electron-atom scattering case where
the orthogonality affects only the symmetries corresponding
to the occupied atomic orbitals.
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FIG. 3. Phase shifts for Ps scattering by helium and neon using
(a) FEG exchange and correlation potentials and (b) FEG exchange
and correlation plus OPP. Solid lines: neon; dashed lines: helium.
Black lines: S wave; red lines: P wave; blue lines: D wave.

III. Ps SCATTERING BY He AND Ne

In this section, we consider scattering of Ps by the lighter
Rg atoms He and Ne.

In Fig. 3, we show the phase shifts for Ps scattering by
He and Ne using the FEG exchange and correlation potentials
with and without inclusion of the OPP. Without the OPP, the
scattering exhibits a low-energy resonance, in P wave for
He and in D wave for Ne. When the effect of orthogonality
is included by adding the OPP to the FEG potentials, the
resonance disappears due to the repulsive nature of the OPP.

In Fig. 4, we show the cross sections for elastic scattering
of Ps by He and Ne using our FEG exchange and correlation
potentials with and without the OPP as well as just the
exchange potential with the OPP, but without correlations.
The cross section near zero velocity is only slightly larger
than the results of [11], but is a fair amount larger than the
experimental results above the ionization threshold. Note that
after adding Ps ionization cross sections to the elastic cross
sections, the disagreement with the experiment would become
even worse, although the ionization cross sections for these
targets (with peak values 1.5 × 10−16 and 3 × 10−16 cm2 for
He and Ne, respectively [35]) are not large.

In Fig. 5, we show the phase shifts for Ps-He and Ps-Ne
scattering at velocities below the ionization threshold and
compare the present results with the calculations of Swann
and Gribakin [11] and, for He, with the calculations of Barker
and Bransden [36]. In this calculation, we have used the
correlation potential of Eq. (1) with Rc = 2.5 a.u., which has
also been used in the calculations of Swann and Gribakin
[11]. Our phase shifts decrease more rapidly than those from
other calculations, and this leads to a larger scattering cross
section at velocities near 0.5 a.u. It appears that the OPP
overestimates the repulsive effect of orthogonality for these
lighter target atoms at intermediate velocities. It could also
be possible that our local exchange potential, based on the
statistical Thomas-Fermi model, is too approximate for atoms
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potential and correlation potential of Eq. (1) with a cutoff radius of
Rc = 2.5 a.u. Dashed line (middle curve): Many-body theory results
of [16]. Red dashed lines (upper curve): frozen target calculations of
[11]. Blue dashed lines (lower curve): calculations of [11] using the
correlation potential of Eq. (1) with a cutoff radius of Rc = 2.5 a.u.
Squares: total cross-section measurements of [1]. Circles: total cross-
section measurements of [34].

with a few electrons, such as He and Ne, and underestimates
the effective attraction due to exchange.

When solving the radial equations (15) at low Ps velocities
(v < 0.1 a.u.), we have often encountered some instability in
the S-wave phase shift due to the large nonlocal OPP term. In
order to extrapolate the S-wave phase shift to low velocities,
we attempted to use the modified effective range expansion
[9,37–39] for the phase shift,

tan δ0 = −Ap − r0A
2p3/2 + πγ 4p4/15

+ 4Aγ 4p5 ln |2pd|/15 + O(p5), (21)

where p = 2v is the Ps center-of-mass momentum, A is the
scattering length, r0 and d are other parameters depending on
the short-range interaction, and

γ 4 = 2mCW, m = 2 a.u.

It is well known, however, that for long-range potentials,
δl as a function of p is nonanalytical at p = 0 [37]. [This
explains the logarithmic term in expansion (21).] Moreover,
this expansion has a very small (if not zero) convergence
radius; therefore, inclusion of higher-order terms there leads
to a spurious behavior of δl (p). This is particularly relevant
when the parameter γ 4 is large, such as the case of Xe when
it equals 920 a.u. In this case, the p4 terms becomes larger
in absolute magnitude than the p3 term already at p = 0.17
a.u. (E = 0.2 eV). A more reasonable approach would be to
expand δl (p) about the point where this function is analytical.
Assuming that this point is close to the origin and reexpanding
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FIG. 5. Phase shifts for Ps scattering by (a) helium and (b) neon
using the FEG exchange potential plus the OPP and correlation
potential of Eq. (1) with a cutoff radius of Rc = 2.5 a.u. Black lines:
S wave; red lines: P wave; blue lines: D wave. Solid lines: present
results; dashed lines: results of Ref. [11] using the same correlation
potential; dotted lines: results of Barker and Bransden [36].

δ0 again in powers of p, we obtain the following polynomial
extrapolation formula:

δ0 = −Ap + Bp3 + Cp4 + Dp5, (22)

where all coefficients are treated as fit parameters. We could
have included the term p2 as well, but Eq. (21) suggests that
this term is insignificant. Calculations for all rare-gas atoms
show that indeed Eq. (22) works much better for extrapolation
to lower p than Eq. (21). The fit parameters and cross section
at v = 0 for He and Ne are shown in Table I. For comparison,
we also show results of previous calculations and experiments
for the scattering length and cross section at v = 0 in Table II.

Using the present FEG model for the correlation potential,
we obtain the scattering lengths of 1.77 and 1.87 a.u. for
He and Ne, respectively. These are in quite good agreement
with the many-body theory values, i.e., 1.70 a.u. for He and
1.76 a.u. for Ne, of Green et al. [16]. They are slightly larger
than the recommended values of Ref. [11], i.e., 1.60 a.u. for
He and 1.65 a.u. for Ne. When correlation is neglected, we
obtain the scattering lengths of 1.87 and 2.08 a.u. for He and
Ne, respectively. These are also in good agreement with the
frozen target values of 1.86 a.u. for He and 2.02 a.u. for Ne of
Ref. [11].

Mitroy and Ivanov [14] have employed the OPP in low-
velocity calculations for Ps scattering with several closed-
shell atoms. Using the stochastic variational method, they
obtained frozen target scattering lengths of 1.84 a.u. for He
and 2.02 a.u. for Ne. These compare well with the present
results of 1.87 a.u. for He and 2.08 a.u. for Ne. When the van
der Waals interaction is included, the stochastic variational
method results in scattering lengths of 1.57 a.u. for He and
1.55 a.u. for Ne. These are somewhat smaller than the present
values of 1.77 a.u. for He and 1.87 a.u. for Ne. This difference
may be attributed to the fact that Mitroy and Ivanov use a
different model for the van der Waals interaction.
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TABLE I. Zero-velocity cross sections (in units of 10−16 cm2) and fit parameters (in a.u.) of Eq. (22) for Ps scattering by He and Ne for
several correlation models.

Atom, method σ (v = 0) A B C D

He, FEG 11.04 1.77125 −0.28699 1.02897 −0.71451
He, FEG + Eq. (1), Rc = 2.5 a.u. 9.08 1.60567 −0.53912 1.18288 −0.60647
He, FEG, no correlation 12.31 1.87035 0.33931 0 −0.20284

Ne, FEG 12.28 1.86786 −0.33038 1.24721 −0.92570
Ne, FEG+ Eq. (1), Rc = 2.5 a.u. 9.09 1.60738 −0.39811 1.23919 −0.89430
Ne, FEG, no correlation 15.21 2.07906 0.642976 0 −0.47386

In Fig. 6, we show the momentum-transfer cross sections
for Ps scattering by He and Ne compared with the many-
body theory calculations of [16] and various experimental
swarm measurements. These are based on observation of Ps
thermalization in a gas environment and describe the Ps-Rg
interaction at thermal energies. For He, the earlier results of
Nagashima et al. [54,55] are in much better agreement with
the theory than those of Skalsey et al. [56]. More recently,
Engbrecht et al. [57] attempted to determine the energy depen-

TABLE II. Zero-velocity cross sections (in units of 10−16 cm2)
and scattering lengths (in a.u.) of previous calculations and experi-
ments for Ps scattering by He and Ne.

Atom, method σ (v = 0) A

He, spherical cavity, frozen target [11] 12.17 1.86
He, spherical cavity, Eq. (1), Rc = 2.5 a.u. [11] 8.13 1.52
He, spherical cavity, Eq. (1), Rc = 3.0 a.u. [11] 9.12 1.61
He, stochastic variational, frozen target [14] 11.91 1.84
He, stochastic variational, van der Waals [14] 8.67 1.57
He, static exchange [40] 12.44 1.88
He, static exchange [41] 11.40 1.80
He, static exchange with van der Waals [36] 9.12 1.61
He, Kohn variational, static exchange [42] 10.41 1.72
He, R matrix, static exchange [43] 12.84 1.91
He, R matrix, 22 Ps states [43] 11.65 1.82
He, T matrix, model static exchange [44] 3.73 1.03
He, T matrix, 3 Ps states, model exchange [45] 2.91 0.91
He, T matrix, 1 Ps state, 3 He states [46] 6.70 1.39
He, T matrix, 2 Ps states, 3 He states [46] 6.51 1.36
He, T matrix, static exchange [47] 13.11 1.93
He, T matrix, 3 Ps states [47] 12.97 1.92
He, T matrix, 2 Ps states, 3 He states [47] 6.51 1.36
He, diffusion Monte Carlo [48] 6.90 1.40
He, Kohn variational, 3 Ps states [49] 9.01 1.60
He, R matrix, 9 Ps states, 9 He states [50] 9.01 1.6
He, expt. Rytsola et al. [51] 7.07 1.42
He, expt. Coleman et al. [52] 7.92 1.50
He, expt. Canter et al. [53] 7.50 1.46

Ne, spherical cavity, frozen target [11] 14.36 2.02
Ne, spherical cavity, Eq. (1), Rc = 2.5 a.u. [11] 7.50 1.46
Ne, spherical cavity, Eq. (1), Rc = 3.0 a.u. [11] 9.70 1.66
Ne, stochastic variational, frozen target [14] 14.36 2.02
Ne, stochastic variational, van der Waals [14] 8.45 1.55
Ne, T matrix, model static exchange [44] 7.00 1.41
Ne, R matrix, 22 Ps states [12] 14.07 2.0
Ne, expt. Coleman et al. [52] 7.92 1.50

dence of the momentum-transfer cross section in the region
between 0 and 0.8 eV from measurements of Ps energy as a
function of time. The shape of their curve is consistent with
the theoretical results. However, the absolute magnitude of
the cross section is even lower than that of Skalsey et al. To
resolve this controversial situation, experimental results in the
energy (velocity) range joining the regions of beam and swarm
measurements are certainly warranted. For Ne, both swarm
measurements agree with the theory, but, again, measurements
in the gap corresponding to the velocity range between 0.2 and
0.5 a.u. (1 to 7 eV) would be beneficial.

IV. Ps SCATTERING BY Ar, Kr, AND Xe

In Fig. 7, we show the phase shifts for Ps scattering by
Ar and Xe using the FEG exchange and correlation potentials
with and without inclusion of the OPP. Again, without the
OPP, the scattering exhibits a low-energy resonance, in P

wave for Ar and in D wave for Xe. For Xe, there is also an
F -wave resonance that is prominent at low velocities. When
the effect of orthogonality is included by adding the OPP to
the FEG potentials, the resonances again disappear due to the
repulsive nature of the OPP.
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FIG. 6. Momentum-transfer cross sections for Ps scattering by
(a) He and (b) Ne. Solid lines: present FEG plus OPP results. Dashed
lines: many-body theory calculations of [16]. Experimental results:
triangle is Nagashima et al. [54,55], circle is Skalsey et al. [56], and
dotted line is Engbrecht et al. [57].
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FIG. 7. Phase shifts for Ps scattering by argon and xenon using
(a) FEG exchange and correlation potentials and (b) FEG exchange
and correlation plus OPP. Solid lines: argon; dashed lines: xenon.
Black lines: S wave; red lines: P wave; blue lines: D wave; green
lines: F wave.

In Fig. 8, we show the cross sections for Ps scattering
by Ar and Xe compared with experimental measurements
and the calculations of [11]. In the present calculations, we
use the OPP potential with the FEG exchange potential and
with either no correlation, FEG correlation, or the correlation
potential with cutoff of Eq. (1). We have also added the
ionization cross sections above the ionization threshold to
the FEG exchange and correlation plus OPP cross section
using the binary encounter approximation of [10] to obtain the
total scattering cross section. The present total cross sections
above the ionization threshold are slightly larger than the
experimental results and previous pseudopotential calcula-
tions of [10]. However, at velocities below the ionization
threshold, the present cross sections are quite different from
the pseudopotential results. The pseudopotential results [9]
exhibit a peak in the cross section in this region, whereas the
present calculations do not. This peak was explained [9] by
a rapid decrease of the S-wave and the P -wave phase shifts
in the low-velocity region. Looking at the present results for
the phase shifts, we conclude that the pseudopotential calcu-
lations either overestimated the Pauli repulsion or underesti-
mated the attraction due to short-range correlations, or both.

In Fig. 9, we show the phase shifts for Ar and Xe at
velocities below the ionization threshold using the correlation
potential of Eq. (1) with a cutoff radius of Rc = 2.5 a.u. for
argon and Rc = 3.0 a.u. for xenon. The present phase shifts
are a fair amount larger than the previous pseudopotential
calculations, which indicates that the overall FEG exchange,
correlation, and OPP is more attractive than the pseudopo-
tential. This might be expected since the pseudopotentials
of Refs. [9,10] are determined by fitting to electron and
positron static-exchange scattering phase shifts; therefore, the
only attractive potential included is the empirical correlation
potential of (1) which is much weaker at small R than the FEG
correlation potential.

0.0 0.5 1.0 1.5 2.0
0

5

10

15

20

25

30

cr
os

s 
se

ct
io

n 
(1

0-1
6  c

m
2 )

Ps velocity (a.u.)

(a) Ar

total

0.0 0.5 1.0 1.5 2.0
0

5

10

15

20

25

30

35

40

45

50

Ps velocity (a.u.)

(b) Xe

total

FIG. 8. Cross sections for Ps scattering by (a) argon and (b)
xenon. Solid lines (middle curves at v = 0): elastic cross section us-
ing local FEG exchange and correlation potentials with OPP. Dashed
line (labeled total): total cross section (elastic plus ionization). Red
solid lines (upper curves at v = 0): elastic cross section using only
the local FEG exchange potential plus OPP. Blue solid lines (lower
curves at v = 0): elastic cross section using the local FEG exchange
potential plus OPP and correlation potential of Eq. (1) with a cutoff
radius of Rc = 2.5 a.u. for Ar and Rc = 3.0 a.u. for Xe. Green
dot-dashed lines: total cross sections of the pseudopotential method
[10]. Red dotted lines (upper curves): frozen target calculations of
[11]. Blue dotted lines (lower curves): calculations of [11] using the
correlation potential of Eq. (1) with a cutoff radius of Rc = 2.5 a.u.
for Ar and Rc = 3.0 a.u. for Xe. Circles: total cross-section measure-
ments of [1]. Squares: total cross-section measurements of [5].

Therefore, it is interesting to compare the FEG correlation
potential with the form of Eq. (1). In Fig. 10, we compare
the FEG correlation potentials with the potential of Eq. (1)
with Rc = 2.5 a.u. for Ar and Rc = 3.0 a.u. for Xe. At small
values of R, the FEG potential becomes very strongly at-
tractive, while the correlation potential of Eq. (1) goes to
zero. However, at small values of R, the short-range repulsion
of the OPP masks the attractive effect of the exchange and
correlation potentials. At intermediate values of R, however,
the potential of Eq. (1) is slightly more attractive than the FEG
correlation potential. This leads to a smaller cross section at
low velocities and, in the case of Xe, to a Ramsauer-Townsend
minimum.

In general, we see relatively good agreement with exper-
iment for the heavier rare-gas atoms both above and below
the ionization threshold when using the FEG exchange and
correlation potentials plus the OPP. The worse agreement for
the lighter atoms He and Ne may be due to the FEG model
being not as appropriate for systems with fewer electrons.

In Fig. 11, we present our cross section and phase shifts for
scattering of Ps by Kr. We obtain similar results to that of Ar
and Xe.

As we did for He and Ne, we have fit the low-velocity S-
wave phase shift to the polynomial expansion of Eq. (22), and
we present the fit parameters for Ar, Kr, and Xe in Table III.
For comparison, we also show results of previous calculations
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FIG. 9. Phase shifts for Ps scattering by (a) argon and (b) xenon
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pseudopotential results of Ref. [10]; dotted lines: results of Ref. [11].

and experiments for the scattering length and cross section
at v = 0 in Table IV. When using the FEG potentials plus
OPP, we have obtained the scattering lengths of 1.95 a.u. for
Ar, 1.98 a.u. for Kr, and 1.86 a.u. for Xe. The recommended
values of [11] are 2.0 a.u. for Ar, 2.3 a.u. for Kr, and 2.6 a.u.
for Xe. The recommended values are becoming larger with the
size of the atom, whereas our FEG plus OPP results are quite
close to one another and, in fact, the result for Xe is smaller
than Ar and Kr. The scattering lengths from the stochastic
variational method including the van der Waals interaction
method are 1.79 a.u. for Ar [14], 1.98 a.u. for Kr, and 2.29
a.u. for Xe [15], which are also somewhat smaller than the
recommended values of [11].
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FIG. 11. Cross sections and phase shifts for Ps scattering by Kr.
(a) Solid line (middle curve at v = 0): elastic cross section using
local FEG exchange and correlation potentials with OPP. Dashed line
(labeled total): total cross section (elastic plus ionization). Red solid
line (upper curve at v = 0): elastic cross section using only the local
FEG exchange potential plus OPP. Blue solid line (lower curve):
elastic cross section using the local FEG exchange potential plus
OPP and correlation potential of Eq. (1) with a cutoff radius Rc =
3.0 a.u. Red dotted line (upper curve): frozen target calculations of
[11]. Blue dotted line (lower curve): calculations of [11] using the
correlation potential of Eq. (1) with a cutoff radius of Rc = 3.0 a.u.
Green dash-dotted line: pseudopotential results of [10]. Squares: total
cross-section measurements of [1]. (b) Phase shifts for Ps-Kr using
local FEG exchange and correlation potentials with OPP. Black line:
S wave; red line: P wave; blue line: D wave. Dashed lines are
pseudopotential phase shifts of [10] and dotted lines are phase shifts
of [11] with the correlation potential of Eq. (1) with a cutoff radius
of Rc = 3.0 a.u.

Our present scattering lengths without including correla-
tion are 2.60 a.u. for Ar, 2.84 a.u. for Kr, and 3.16 a.u. for Xe,
which may be compared with the frozen target calculations of
[11], i.e., 2.81 a.u. for Ar, 3.11 a.u. for Kr, and 3.65 a.u. for Xe.
In both cases, the scattering lengths are increasing with the
size of the atom, but the present results are somewhat smaller
than the frozen target results. The frozen target stochastic
variational phase shifts are 2.85 a.u. for Ar, 3.18 a.u. for Kr,
and 3.82 a.u. for Xe, which are again larger than the present
results. The difference here might be due to the effect of
the strongly attractive FEG exchange potential in the present
calculations.

Recently, Shibuya and Saito [58] have proposed a method
to convert measured Ps annihilation rates into total and partial
Ps scattering cross sections in the Ps energy range 0–80 meV.
They applied this method to Ps-Xe scattering and obtained
scattering phase shifts at thermal energies shown in Fig. 12.
Their scattering length is 2.06 a.u. for Xe, which is quite
close to our present value of 1.86 a.u. Based on this re-
sult, they claim that “the positron plays the more important
role during Ps-Xe collisions in the ultralow-energy region.
This differs from the understanding that electron exchange
plays the dominant role in the intermediate-energy region”
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TABLE III. Zero-velocity cross section in units of (10−16 cm2) and fit parameters of Eq. (22) for Ps scattering by Ar, Kr, and Xe using
various correlation models.

Atom, correlation model σ (v = 0) A B C D

Ar, FEG 13.33 1.94669 −0.25754 1.81828 −1.69489
Ar, FEG+Eq. (1), Rc = 2.5 a.u. 1.95 0.74374 0.91843 −3.76388 2.81374
Ar, FEG, no correlation 23.86 2.60419 1.64387 0 −1.41846

Kr, FEG 13.86 1.98443 0.25155 1.12354 −1.59459
Kr, Eq. (1), Rc = 3.0 a.u. 5.01 1.19382 0.94039 −3.44121 2.42489
Kr, no correlation 28.41 2.84166 2.07948 0 −1.81308

Xe, FEG 12.14 1.85763 5.02004 −10.4840 6.05051
Xe, Eq. (1), Rc = 3.0 a.u. 8.06 −1.51357 −14.14210 18.6610 −6.80718
Xe, no correlation 35.21 3.16358 3.45205 0 −3.63689

[58, p. 5]. We agree that the low-energy scattering is con-
trolled by a repulsive potential, but as we see through the use
of the OPP, the repulsion is due to the effect of orthogonality
between the electron in Ps and the electrons in the atomic
target, so the scattering is still controlled mostly by electron
exchange, although the cross section is quite different from
that of e−-Xe because of different long-range interactions in
the two processes.

TABLE IV. Zero-velocity cross sections (in units of 10−16 cm2)
and scattering lengths (in a.u.) of previous calculations and experi-
ments for Ps scattering by Ar, Kr, and Xe.

Atom, correlation model σ (v = 0) A

Ar, spherical cavity, frozen target [11] 27.78 2.81
Ar, spherical cavity, Eq. (1), Rc = 2.5 a.u. [11] 7.20 1.43
Ar, spherical cavity, Eq. (1), Rc = 3.0 a.u. [11] 16.42 2.16
Ar, stochastic variational, frozen target [14] 28.58 2.85
Ar, stochastic variational, van der Waals [14] 8.45 1.55
Ar, pseudopotential, static exchange [9] 35.81 3.19
Ar, pseudopotential, Eq. (1), Rc = 2.5 a.u. [9] 16.11 2.14
Ar, pseudopotential, Eq. (1), Rc = 3.0 a.u. [9] 19.10 2.33
Ar, T matrix, model static exchange [44] 9.58 1.65
Ar, R matrix, 22 Ps states [12] 14.07 2.0
Ar, expt. Coleman et al. [52] 7.92 1.50

Kr, spherical cavity, frozen target [11] 34.03 3.11
Kr, spherical cavity, Eq. (1), Rc = 3.0 a.u. [11] 17.97 2.26
Kr, spherical cavity, Eq. (1), Rc = 3.5 a.u. [11] 23.06 2.56
Kr, stochastic variational, frozen target [14] 35.58 3.18
Kr, stochastic variational, van der Waals [14] 13.79 1.98
Kr, pseudopotential, static exchange [9] 38.78 3.32
Kr, pseudopotential, Eq. (1), Rc = 3.0 a.u. [9] 19.43 2.35
Kr, pseudopotential, Eq. (1), Rc = 3.5 a.u. [9] 21.99 2.50
Kr, R matrix, static exchange [12] 38.32 3.3

Xe, spherical cavity, frozen target [11] 46.88 3.65
Xe, spherical cavity, Eq. (1), Rc = 3.0 a.u. [11] 24.34 2.63
Xe, spherical cavity, Eq. (1), Rc = 3.5 a.u. [11] 29.18 2.88
Xe, stochastic variational, frozen target [14] 51.34 3.82
Xe, stochastic variational, van der Waals [14] 18.45 2.29
Xe, pseudopotential, static exchange [10] 35.81 3.19
Xe, pseudopotential, Eq. (1), Rc = 3.0 a.u. [10] 21.12 2.45
Xe, R matrix, static exchange [59] 50.00 3.77
Xe, expt. Shibuya and Saito [58] 14.93 2.06

By extrapolation to higher Ps energies, Shibuya and Saito
have also found a peak in the total Ps-Xe cross section near
0.4 eV that has a very large magnitude of (430 ± 100) ×
10−16 cm2. This peak is significantly higher than that obtained
in our previous pseudopotential calculations [10] and that
found by Blackwood et al. [12]. We also note that the result
of [12] was later found to be in error due to a numerical
inaccuracy [59] and there is, in fact, no peak. The cross
section of Shibuya and Saito in the E = 1 eV region is
also much higher than that obtained in beam measurements
[5]. In particular, these measurements give the cross section
9 × 10−16 cm2 at E = 1.7 eV, whereas Shibuya and Saito
obtain 200 × 10−16 cm2 at E = 1 eV. Such a striking dis-
agreement can be, at least to a large extent, explained by the
extrapolation procedure used by Shibuya and Saito. They use
the effective range theory expansion, given by Eq. (21), for δ0

and similar expansions for δ1 and δ2 [37]. As was discussed
in Sec. III, these expansions are very badly divergent already
for E = 0.2 eV, even with γ 4 = 460 a.u. in Eq. (22), used by
Shibuya and Saito, instead of actual γ 4 = 920 a.u. for Xe. The
parameters of Shibuya and Saito for partial cross sections at
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FIG. 12. S- and P -wave phase shifts for Ps-Xe scattering at low
Ps energies. Solid lines: Present FEG+OPP results. Dashed red lines:
Shibuya and Saito [58]. Dotted blue lines: pseudopotential results
[10].

042703-9



R. S. WILDE AND I. I. FABRIKANT PHYSICAL REVIEW A 98, 042703 (2018)

0.0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

cr
os

s 
se

ct
io

n 
(1

0-1
6  c

m
2 )

Ps velocity (a.u.)

(a) Ar

0.0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

Ps velocity (a.u.)

(b) Kr

0.0 0.1 0.2 0.3 0.4 0.5

5

10

15

20

25

30

Ps velocity (a.u.)

(c) Xe

FIG. 13. Momentum-transfer cross sections for heavy rare-gas
atoms. Solid lines: present calculations using FEG exchange and
correlation potentials plus the OPP. Dotted lines: calculations of [11]
with correlation potential of Eq. (1); larger cross sections are using
Rc = 3.0 a.u. for Ar and 3.5 a.u. for Kr and Xe, while smaller cross
sections are using Rc = 2.5 a.u. for Ar and 3.0 a.u. for Kr and Xe.
Experimental results for Ar: closed circle is Nagashima et al. [55],
open circle is Skalsey et al. [56], closed square is Sano et al. [60].
Experimental result for Xe: open square is Shibuya et al. [61].

E = 0.4 eV (v = 0.12 a.u.) produce σ1 = 162 × 10−16 cm2

and σ2 = 249 × 10−16 cm2, leading to the total cross section
exceeding 400 × 10−16 cm2, which is not supported by any
theory.

In our present calculations, using FEG exchange and corre-
lation potentials plus the OPP, we actually see a minimum in
the Ps scattering cross section at low energies (velocities). To
understand this, we show in Fig. 12 the present phase shifts
for Ps-Xe scattering compared with the results of Shibuya
and Saito [58] and our previous pseudopotential results [10]
for Ps energies of 0–80 meV. Our present S-wave phase shift
decreases the most slowly of the three and our P -wave phase
shift is quite negligible at these ultralow energies. In fact,
the present P -wave phase shift is slightly positive in the
thermal-energy range and becomes negative at a Ps energy
of 256 meV. This means that the P -wave phase shift is very
small in the low-energy region and the slowly decreasing
S-wave phase shift is dominant, which leads to a minimum
in the cross section before the P wave and other higher partial
waves begin to grow and the cross section starts to increase
at higher velocities. Our present results seem more consistent
with the beam measurements, but once again we see that
further measurements in the 0.2–0.5 a.u. (E = 1 to 7 eV)
range are warranted.

We also see from Table III that the scattering length is very
sensitive to the correlation potential. In fact, when using the
empirical correlation potential of Eq. (1) with Rc = 3.0 a.u.
for Xe, we obtain a negative scattering length, indicating
the presence of a Ramsauer-Townsend minimum. However,
calculations with a more reliable correlation potential, the
measurements of Shibuya and Saito, and all other calcula-
tions of Ps-Xe scattering suggest that the existence of the

0.0 0.5 1.0 1.5 2.0
0

5

10

15

20

25

30

cr
os

s 
se

ct
on

 (1
0-1

6  c
m

2 )

velocity (a.u.)

(a) Ar

0.0 0.5 1.0 1.5 2.0
0

5

10

15

20

25

30

35

velocity (a.u.)

(b) Kr

0.0 0.5 1.0 1.5 2.0
0

5

10

15

20

25

30

35

40

45

50

velocity (a.u.)

(c) Xe

FIG. 14. Comparison of Ps scattering and electron scattering
cross sections for (a) Ar, (b) Kr, and (c) Xe. Solid lines: present Ps
total (elastic-plus-ionization) cross sections with local FEG exchange
and correlation potentials plus OPP. Dashed lines: total electron
scattering cross sections for Ar compiled from the calculations in
[62] and measurements in [63], for Kr measurements of [64], and for
Xe compiled from calculations in [65] and measurements in [66].

Ramsauer-Townsend minimum in Ps-Xe scattering is highly
unlikely.

In Fig. 13, we show the momentum-transfer cross sections
for the heavier Rg atoms Ar, Kr, and Xe using the FEG
exchange and correlation potentials with the OPP. We also
show the calculations of Swann and Gribakin [11] using
Eq. (1) with two different values of cutoff radius Rc. For Ar,
these values are Rc = 2.5 and 3.0 a.u. and our present cross
section lies between these. For Kr and Xe, the cutoff radii
are larger, Rc = 3.0 and 3.5 a.u., and our cross sections are
smaller than the calculations of [11]. Since a larger cutoff
radius leads to a weaker correlation potential, this seems to
indicate that the Ps-Rg interaction in our case is effectively
more attractive than that of Swann and Gribakin.

For Ar, the experimental results are quite varied, but we ob-
tain relatively good agreement, while for Xe, our momentum-
transfer cross section is in excellent agreement with the mea-
surement of Shibuya et al. [61].

Lastly, in Fig. 14, we compare our Ps scattering cross
sections with electron scattering cross sections for the heavier
rare-gas atoms Ar, Kr, and Xe. We see a strong similarity
between the electron and Ps total cross sections above the
ionization threshold, confirming observations [1–4,6]. Below
the threshold, the Ps cross sections are larger but exhibit a
minimum like the electron cross sections. This minimum is
different in nature: in Ps scattering, it is due to the slow
decrease of the S-wave phase shift at low Ps velocities, while
for electron scattering, it is a Ramsauer-Townsend minimum.

V. CONCLUSION AND OUTLOOK

We have applied the exchange and correlation energies
of Ps in a free-electron gas [17] to construct local exchange
and correlation potentials describing Ps-atom interaction. To
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take into account the effect of antisymmetry of the total wave
function with respect to interchange of the Ps electron and
the target electron, we can impose the orthogonality of the Ps
electron orbital to the occupied orbitals of the target atom. In
order to model the effect of orthogonality, we have added an
orthogonalizing pseudopotential (OPP) [25–28] which leads
to a short-range, nonlocal repulsive potential. The constructed
potentials were then used to calculate phase shifts and cross
sections for Ps scattering by Rg atoms at low to intermediate
Ps velocities.

The use of just the attractive local potentials leads to shape
resonances at low Ps velocities that are not seen experimen-
tally. The addition of the OPP to the local potentials removes
the resonances and generally leads to good agreement with
beam experiments [1,5,34], especially for the heavier atoms
Ar, Kr, and Xe. For He and Ne, the cross sections are too large
compared with experiment in the low-energy region, which
may be due to the FEG potential not being as appropriate
for such smaller systems since it is based on the statistical
Thomas-Fermi model.

At velocities below the ionization threshold, the cross
section is very sensitive to the intermediate- and long-range
correlation potential. This is because the exchange and corre-
lation potentials are masked by the OPP at small values of
R. In fact, for Xe, we can get a Ramsauer-Townsend-type
minimum in the cross section if the correlation potential
is attractive enough in the region of intermediate R. This
sensitivity illustrates the necessity of accurate determination
of the exchange and correlation potentials in this region.

The use of the local FEG exchange and correlation poten-
tials with the OPP, in general, leads to smaller cross sections
and better agreement with the results of beam measurements
than previous pseudopotential calculations. In the thermal-
energy region, inaccessible to beam experiments, our results
are compared with swarm experiments measuring the Ps
momentum-transfer cross sections from observation of Ps
moderation in gases. An excellent agreement with measure-

ments of Nagashima et al. [54,55] for He, Ne, and Ar, with
Skalsey et al. [56] for Ne, and with Shibuya et al. [58,61]
for Xe has been obtained. However, the extrapolation of the
Ps-Xe phase shifts, obtained by Shibuya and Saito [58], to
higher energies leads to strongly overestimated (by an order
of magnitude) total cross sections. This is due to the failure
of the effective range expansion, given by Eq. (21), at higher
energies.

We conclude that our model provides a good description
of Ps scattering by Rg atoms, especially the heavier atoms
Ar, Kr, and Xe. Our calculations confirm the positive sign
of the scattering length and the absence of the Ramsauer-
Townsend minimum in Ps scattering by heavier rare-gas
atoms. However, the S- and P -wave scattering phase shifts
decrease with energy significantly slower than in the previous
pseudopotential calculations. This leads to a minimum, albeit
of not Ramsauer-Townsend type, in the cross section as a
function of energy and significantly improves agreement with
the beam experiments in the energy range below the Ps
ionization threshold.

The next important step would be a generalization of the
present model to Ps-molecule scattering. A particular inter-
esting case is Ps-N2 resonant scattering treated in [18] without
incorporation of the OPP. Since there is no occupied πg orbital
in N2, inclusion of OPP should not affect the �g resonance in
e-N2 scattering. However, Ps-N2 scattering is different since
electron partial waves there are mixed. Therefore, the OPP in
this problem can contribute noticeably.
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