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We explore the suitability of ultracold collisions between spin-polarized SrF(2�+) molecules and Rb(2S)
atoms as elementary steps for the sympathetic cooling of SrF(2�+) molecules in a magnetic trap. To this end,
we carry out quantum-mechanical scattering calculations on ultracold Rb + SrF collisions in a magnetic field
based on an accurate potential-energy surface for the triplet electronic state of Rb-SrF developed ab initio using
a spin-restricted coupled cluster method with single, double, and noniterative triple excitations [RCCSD(T)].
The Rb-SrF interaction has a global minimum with a well depth of 3444 cm−1 in a bent geometry and a
shallow local minimum in the linear geometry. Despite such a strong and anisotropic interaction, we find that
converged close-coupling scattering calculations on Rb + SrF collisions in a magnetic field are still possible using
rotational basis sets including up to 125 closed rotational channels in the total angular momentum representation.
Our calculations show that electronic spin relaxation in fully spin-polarized Rb-SrF collisions occurs much
more slowly than elastic scattering over a wide range of magnetic fields (1–1000 G) and collision energies
(10−5–10−3 K), suggesting good prospects of sympathetic cooling into the microkelvin regime of laser-cooled
SrF(2�+) molecules with spin-polarized Rb(2S ) atoms in a magnetic trap. We show that incoming p-wave
scattering plays a significant role in ultracold collisions due to the large reduced mass of the Rb-SrF collision
pair. The calculated magnetic-field dependence of the inelastic cross sections at 1.4 μK displays a rich resonance
structure including a low-field p-wave resonance, which suggests that external magnetic fields can be used to
enhance the efficiency of sympathetic cooling in heavy atom-molecule mixtures.
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I. INTRODUCTION

The production, trapping, and manipulation of cold molec-
ular gases is expected to make a major impact on chemical
physics, quantum information processing, quantum simula-
tion, and fundamental tests of physics beyond the standard
model [1]. The ability to manipulate cold molecules with
external electromagnetic fields is key to the wide range of their
proposed applications [2]. External field-induced Stark and
Zeeman energy shifts, while insignificant at thermal collision
energies, become of major importance at ultralow tempera-
tures, where they can be used to activate or suppress reaction
mechanisms [1,3–6]. A variety of ingenious mechanisms to
control the reaction rates have been demonstrated experimen-
tally, including the use of Fermi statistics, long-range dipole-
dipole interactions, and external confinement to control the
reaction KRb + KRb → K2 + Rb2 [7–9]. Recent theoretical
work has explored the important roles of geometric-phase ef-
fects [10], quantum chaos [11,12], and electric-field-induced
reactive scattering resonances [13] in ultracold chemical
reactions.

Since its first experimental demonstration in 1998 [14],
magnetic trapping remains a key experimental technique
for the production and trapping of cold molecular gases.
Examples of molecular radicals trapped using this tech-
nique include CaH [14], NH [15], OH [3,16], O2 [17], and,
more recently, CaF [18] and CH3 [19]. Latest experimen-
tal advances in laser cooling [20–25] and molecular-beam

deceleration have enabled magnetic and magneto-optical trap-
ping of molecular ensembles at much lower temperatures than
was previously possible. Laser-cooled samples of SrF(2�+)
and CaF(2�+) molecules have been trapped at temperatures
�400 μK [21–23,25]. Additionally, efficient transfer of CaF
[26] and SrF [27] molecules into a conservative quadrupole
magnetic trap has recently been reported, achieving temper-
atures around 100 and 200 μK. More recently, sub-Doppler
cooling of CaF molecules to a temperature of 60 μK has been
demonstrated [28]. While experimentally demonstrated sam-
ples have low enough densities to avoid molecule-molecule
collisions [26,27], they represent an ideal starting point for
performing sympathetic cooling with a cotrapped atomic sam-
ple.

While extremely low compared to ambient or even
cryogenic conditions (T = 1–4 K), millikelvin temperatures
are still too high for manipulating molecular interactions
with external electromagnetic fields. The primary tool for
such manipulation—the magnetic Feshbach resonance [29]—
requires collisions in a single partial-wave (s-wave) regime,
which occur at temperatures well below 1 mK for most
molecules. Direct laser-cooling and molecular-beam deceler-
ation cannot reach such low temperatures due to their intrinsic
limitations (such as the Doppler limit [23]), so alternative
cooling methods must be employed to reach the ultracold
regime [25].

Sympathetic cooling is one such method, based on cooling
atomic and molecular species by immersion in a gas of coolant

2469-9926/2018/98(4)/042702(13) 042702-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.98.042702&domain=pdf&date_stamp=2018-10-09
https://doi.org/10.1103/PhysRevA.98.042702
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atoms [30]. The method relies on elastic collisions to transfer
momentum between the hot molecules and the coolant atoms
and has been successfully used to cool fermionic K atoms
[31], leading to the production of a quantum degenerate Fermi
gas [32]. Inelastic collisions are detrimental to the cooling
process as they release the internal (e.g., Zeeman) energy of
trapped molecules, leading to undesirable heating and trap
loss [1]. Spin-relaxation (or depolarization) collisions, which
flip the electron spin of the molecule, represent a major
inelastic channel for molecular radicals confined in permanent
magnetic traps [33–35]. For optimal cooling, the ratio of the
cross sections for elastic to spin-relaxation collisions γ should
exceed 100 [1,36].

The search for atom-molecule combinations with favorable
collisional properties for sympathetic cooling experiments has
stimulated the development of molecular collision theory in
the presence of magnetic fields by Volpi and Bohn [37] and
Krems and Dalgarno [33]. These pioneering theoretical stud-
ies focused on collisions with He atoms and found that due to
the low anisotropy of the molecule-He interaction, collision-
induced spin relaxation of light 2� and 3� molecules with
large rotational constants occurs much more slowly than elas-
tic scattering, leading to the prediction that NH(3�−) radicals
could be magnetically trapped in cryogenic He buffer gas,
which was later realized experimentally [15,38].

Ultracold paramagnetic atoms (such as the alkali-metal
atoms or atomic nitrogen) offer a viable alternative to cryo-
genic helium, which is unsuitable for sympathetic cooling of
molecules below 100 mK due to its vanishing vapor pressure.
Ultracold alkali-metal atoms (e.g., Li, Na, Rb, and Cs) at high
phase-space densities are routinely produced by laser cool-
ing and trapping followed by evaporative cooling [39–41].
However, theoretical studies found large inelastic relaxation
rates in collisions of molecular radicals OH(2�) and NH(3�)
with ultracold Rb atoms, suggesting that the alkali-metal
atoms would be much less suitable for sympathetic cooling of
magnetically trapped molecules than the alkaline-earth atoms
such as Mg [42] or atomic nitrogen [43,44] or hydrogen [45],
which present significant experimental difficulties associated
with either trapping or detection.

More recent quantum scattering studies have shown, how-
ever, that 2� molecular radicals such as CaH and SrOH have
low spin-relaxation rates in collisions with ground-electronic-
state Li(2S ) atoms in their maximally spin-stretched Zeeman
states, despite the triplet Li-CaH and Li-SrOH interactions
being extremely strong and anisotropic [46,47]. The sup-
pression of spin relaxation is due to the weak spin-rotation
coupling among the molecular rotational levels involved in
spin-flipping transitions [46,48] and opens up the possibility
of sympathetic cooling of 2�+ molecules by ultracold Li
atoms [46,47].

While atomic Li appears as a promising coolant for 2�

molecules, quantum scattering calculations on Li-molecule
collisions performed thus far neglected the chemical reac-
tion between cotrapped molecules and Li atoms (e.g., Li +
CaH → LiH + Ca), which are energetically allowed for many
2�+ molecules of interest such as CaH [46,49], SrOH [47],
and SrF [50], as is the chemical reaction SrF + SrF → SrF2 +
Sr [51]. These reactions are often assumed to be forbid-
den for spin-polarized reactants by conservation of the total

spin S of the reaction complex [6,52,53]. However, model
calculations show that S-changing intersystem crossing can
occur at substantial rates even in fully spin-polarized atom-
molecule collisions [54], triggering rapid chemical reactions
[49], which are detrimental for sympathetic cooling.

Fortunately, the chemical reactions of 2� molecular rad-
icals with heavier alkali-metal atoms, such as Rb + SrF →
RbF + Sr are strongly endothermic [50] and will therefore not
occur at ultralow temperatures. This consideration, together
with recent numerical simulations of sympathetic cooling dy-
namics of trapped CaF molecules [36], suggests that Rb might
be a better coolant atom than Li. However, the collisional
properties of 2� molecular radicals with alkali-metal atoms
heavier than Li remain unexplored due to the large densities
of rovibrational states and strongly anisotropic atom-molecule
interactions [46,47,50,55], which have thus far precluded
converged quantum scattering computations on these heavy
systems. As a result, it remains unclear whether the ratio of
elastic to inelastic collision rates in Rb-molecule collisions is
large enough to allow for efficient sympathetic cooling.

In this work, we investigate ultracold collisions in a
chemically nonreactive atom-molecule mixture Rb-SrF using
coupled-channel quantum scattering calculations based on an
accurate ab initio potential-energy surface (PES) of triplet
symmetry. This system can be realized experimentally by
cotrapping laser-cooled SrF(X2�) molecules [21,23] with Rb
atoms. We explore the experimentally demonstrated regime
for magnetically trapped SrF samples around 200 μK and
100 G [27] providing a path to μK SrF molecules. We also
show that despite a high density of rovibrational states of
the Rb-SrF collision complex, it is possible to carry out
converged coupled-channel (CC) calculations of elastic and
inelastic cross sections using a recently developed total an-
gular momentum representation for molecular collisions in
magnetic fields [35]. We find that the ratios of elastic to
inelastic cross sections, while not as favorable as for Li
collisions [46,47], are nevertheless fairly large (γ > 10) over
most of the collision energy and magnetic-field ranges stud-
ied, with γ > 100 reachable by tuning the external magnetic
field and/or collision energy. We also find a rich resonance
structure in the spin-relaxation cross sections as a function of
applied magnetic field at ultralow collision energies (1.4 μK).
Most of the resonance structure arises due to the incoming
p partial-wave contributions, which are present even at very
low collision energies due to the large reduced mass of the
Rb-SrF collision complex, leading to an enhancement of the
inelastic cross section. Our results suggest that the efficiency
of sympathetic cooling in spin-polarized Rb-SrF(X2�) mix-
tures can be enhanced by tuning the spin-relaxation cross
sections away from resonance with an applied magnetic
field.

This article is organized as follows. Section II A presents
our ab initio calculations of the triplet Rb-SrF potential-
energy surface (PES) and explores the main features of the
PES. Section II B outlines the methodology of our quantum
scattering calculations in a magnetic field using the total
angular momentum representation. Section III presents the
results for the elastic and inelastic cross sections as a function
of collision energy and magnetic field, along with an analysis
of spin-relaxation mechanisms. Section IV concludes with a
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summary of the main results and an outline of future research
directions.

II. THEORY

A. Ab initio calculations of the triplet Rb-SrF PES

As mentioned in the Introduction, the endothermicity of the
chemical reaction Rb + SrF → RbF + Sr [50] makes atomic
Rb particularly attractive as a collision partner for sympathetic
cooling of SrF. To pave the way for quantum dynamics calcu-
lations, we have carried out high-level ab initio calculations
on the 3A′ electronic state of Rb-SrF using the state-of-the-art
coupled cluster method with single, double, and noniterative
triple excitations [CCSD(T)] [56,57] implemented in the MOL-
PRO package [58]. The augmented core-valence, correlation-
consistent basis set (aug-cc-pCVQZ) was employed to de-
scribe the F atom. For the Rb and Sr atoms, small-core
relativistic energy-consistent pseudopotentials (ECP28MDF)
were used together with a tailored valence basis set spdfg. All
basis functions were uncontracted [59,60] and subsequently
augmented by adding a single set of even-tempered functions.
The interaction energy from the supermolecular calculations
was counterpoise corrected to eliminate the basis-set super-
position error (BSSE) [61]. To describe the geometry of the
Rb-SrF collision complex we use the Jacobi coordinates R

and θ , where R is the distance between Rb and the center
of mass of SrF and θ is the angle between the SrF axis and
the vector pointing from the center of mass of SrF to Rb.
Throughout this paper, we assume that the SrF molecule is
rigid and compute the interaction energy as a function of R

and θ at a fixed SrF bond length (r = 2.075 Å) corresponding
to the experimentally measured equilibrium geometry [62].

The ab initio calculations are performed on a dense two-
dimensional grid of θ and R extending from 2 to 10 Å in
steps of �θ = 5◦ and �R = 0.25 Å. For a given value of R

the PES is interpolated using the reproducing kernel Hilbert
space (RKHS) method [63]. The RKHS parameters were set
to extrapolate the interaction energy as −C6R

−6 − C7R
−7 −

C8R
−8 beyond 10 Å [30]. We monitored the stability of the

coupled-cluster calculations using the T1 diagnostics [64]
with a result below 0.02 for all the R grid points investigated.

The interpolated ab initio PES is expanded in Legendre
polynomials as

Vλ(R) = 1

2
(2λ + 1)

∫ 1

−1
V (R, θ )Pλ(cos(θ ))d cos θ. (1)

Following Ref. [65], the angular integration is performed us-
ing the quadratures which accurately reproduce the isotropic
part of the potential V0(R). Due to a very strong potential
anisotropy, we used a large number of expansion terms Vλ(R)
with λ � 25. To ensure the smoothness of the potential be-
yond 10 Å, we used the van der Waals analytical expansion
in inverse powers of R for the five leading terms (0 � λ �
4). For higher-order Legendre components the potential was
damped to zero at R > 11 Å. A smooth connection between
the ab initio PES at short range and the analytical expansion
at long range was ensured by using the switching function
introduced by Janssen et al. [65] between 9 and 11 Å.
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FIG. 1. Contour plot of the ab initio potential-energy surface for
Rb-SrF in its triplet electronic state (in units of cm−1). The θ = 0◦

geometry corresponds to the collinear Rb–F-Sr arrangement.

A contour plot of our ab initio PES of the Rb-SrF complex
is shown in Fig. 1. The triplet PES has a global minimum
in a bent configuration with R = 4.1 Å, θ = 25◦ with a
well depth of De = 3444 cm−1. Here and elsewhere except
Sec. IIB, we express energy in units of wave numbers (cm−1),
which are commonly used to measure energy in spectroscopy
and molecular physics [66]. By definition, the wave number
ν̃ = 1/λ is the number of wavelengths λ per 1 cm. While
wave numbers are, strictly speaking, not energy units, they
are directly proportional to energy via E = hcν̃, where h is
Planck’s constant and c is the speed of light in vacuum. As a
point of reference, 1 cm−1 = 4.55633×10−6 atomic units of
energy [66].

The Rb-SrF interaction potential is extremely anisotropic,
leading one to expect strong coupling between the rotational
states of SrF in the collision complex. There are two saddle
points on the PES, both at linear geometries. For the Sr-F-Rb
configuration the saddle point is located at R = 4.25 Å, while
for the Rb-Sr-F configuration it is located at R = 6.80 Å. It
is worthwhile to note that the global minimum of the triplet
PES is strongly attractive even at the restricted Hartree-Fock
level of theory (about 2900 cm−1 near the global minimum).
This implies that the inaccuracy of our ab initio PES should
be smaller than that of typical dispersion-bound systems. To
estimate the inaccuracy due to the incompleteness of the basis
set, we compare in Table I the interaction energies near the
stationary points of the PES obtained with series of basis sets
of different quality, ranging from triple to quintuple zeta, as
well as with the approximate complete basis set (CBS) limit.
Clearly, the depth of the potential near the global minimum
and the Rb-F-Sr saddle point changes very little with increas-
ing basis set size. Moreover, we observe that all the stationary
points behave very similarly at the quintuple zeta level and
in the CBS, so the shape of the PES is insensitive to the
basis set. The global minimum obtained with the quadruple-
zeta basis set, which was used in production calculations,
is underestimated by 2.2% compared to the CBS limit. The
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TABLE I. Convergence of the absolute magnitude of the interaction energy with the basis set size at the global minimum (R = 4.1 Å,
θ = 25◦) and two saddle points at linear geometries: Rb-F-Sr (with R = 4.25 Å) and Rb-Sr-F (R = 6.8 Å). The energy unit is cm−1.

aug-cc-pCVTZ aug-cc-pCVQZ aug-cc-pCV5Z CBS

Global minimum 3329 3444 3485 3521
Rb-F-Sr saddle point 3093 3243 3292 3337
Rb-Sr-F saddle point 170 172 173 175

corresponding figures for the Rb-Sr-F and Rb-F-Sr saddle
points are 1.7% and 2.8%, respectively. Since the interaction
energy of Rb-SrF is not dominated by the dispersion interac-
tion, the contributions of higher excitations are marginal and
we expect the CCSD(T) method to accurately reproduce the
interaction energy.

B. Quantum scattering calculations

The quantum scattering problem for Rb + SrF in a mag-
netic field is solved by the numerical integration of close-
coupling (CC) equations using the total angular momen-
tum representation in the body-fixed (BF) coordinate frame
[35,46]. We employ the rigid-rotor approximation by con-
straining the SrF bond length to the ground-state equilibrium
value of r = 2.075 Å. The approximation is justified by re-
cent ab initio calculations [50], which show that the Rb-SrF
interaction depends on r only weakly.

The effective Hamiltonian for low-energy collisions be-
tween a 2S atom A (Rb) and a 2� diatomic molecule B (SrF)
in the presence of an external magnetic field may be written
using the atomic units (h̄ = e = me = 1) [35,46]

Ĥ = − 1

2μ
R−1 d2

dR2
R + (Ĵ − N̂ − ŜA − ŜB )2

2μR2

+ ĤA + ĤB + Ĥint, (2)

where A and B stand for Rb and SrF, μ is the reduced mass
of the A-B collision complex μ = mAmB/(mA + mB ) with
mA = 86.909 180 527 and mB = 106.904 015 32 a.m.u, ĤA

and ĤB describe noninteracting collision partners in an exter-
nal magnetic field, and Ĥint is the atom-molecule interaction,
which vanishes in the limit R → ∞. The embedding of the
BF z axis is chosen to coincide with the vector R, and the BF
y axis is chosen to be perpendicular to the plane defined by
the collision complex (see Appendix A for more details).

In Eq. (2), Ĵ is the operator for the total angular momentum
of the collision complex, N̂ is that for the rotational angular
momentum of the diatomic molecule, and ŜA and ŜB are the
operators for the electronic spin angular momenta of atom A

and molecule B. The orbital angular momentum operator of
the collision complex in the BF frame is given by l̂ = (Ĵ −
N̂ − ŜA − ŜB ). The Hamiltonian of atom A is given by ĤA =
geμBŜA,ZB, where ge is the electron g factor, μB is the Bohr
magneton, ŜA,Z gives the projection of ŜA onto the space-fixed
Z axis defined by the direction of an external magnetic field
B, and B = |B| is the field magnitude. The Hamiltonian of
the diatomic molecule B in its ground electronic state of 2�

symmetry (such as SrF) is

ĤB = BeN̂
2 + γSRN̂ · ŜB + geμBŜB,ZB, (3)

where Be = 0.253 613 5 cm−1 is the rotational constant and
γSR = 2.501×10−3 cm−1 is the spin-rotation constant (the
values for the 88Sr19F isotope from Ref. [22]). In this work,
we neglect the weak hyperfine interactions due to the nuclear
spins of 87Rb and 88Sr19F for the sake of computational effi-
ciency [adding these interactions would increase the number
of channels by a factor of (2IA + 1) × (2IB + 1) = 8, in-
creasing the computational cost over 100-fold]. In the regime
where the Zeeman splitting is small compared to the hyper-
fine interaction, scattering calculations omitting the latter are
known to underestimate the actual values of spin-relaxation
cross sections [67]. The critical value of the magnetic field
above which the hyperfine interactions become small com-
pared to the Zeeman interaction (and hence can be neglected)
is given by Bc = �10/μB = 77 G, where �10 = 107.9 MHz
is the ground-state hyperfine splitting of 88Sr19F (IB = 1/2)
calculated using the molecular constants from Ref. [22]. Thus
our results at B � 100 G are likely to be only weakly affected
by the hyperfine interaction.

The atom-molecule interaction given by the Ĥint term in
Eq. (2) includes both the electrostatic interaction potential V̂

and the magnetic dipole-dipole interaction V̂dd between the
magnetic moments of A and B. The interaction potential V̂

may be written

V̂ (R, θ ) =
SA+SB∑

S=|SA−SB |

S∑
�=−S

|S�〉V̂ S (R, θ )〈S�|, (4)

where total electronic spin S is defined as Ŝ = ŜA + ŜB .
In this work, we are interested in collisions between rota-
tionally ground-state SrF molecules (N = 0) with Rb atoms
initially in their maximally stretched, magnetically trappable
Zeeman states, i.e., MSA

= MSB
= 1/2, where MSA

and MSB

are the projections of ŜA and ŜB onto the magnetic-field
axis. Following our previous work on Li-CaH and Li-SrOH
[46,47] we assume that the nonadiabatic coupling between the
triplet (S = 1) and the singlet (S = 0) Rb-SrF PESs can be
neglected, and that the PESs are identical, i.e., V̂ S=0(R, θ ) =
V̂ S=1(R, θ ). The magnetic dipole-dipole interaction may be
written [68]

V̂dd = −g2
eμ

2
0

√
24π

5

α2

R3

∑
q

(−1)qY ∗
2,−q ( R̂)[ŜA ⊗ ŜB](2)

q , (5)

where μ0 is the magnetic permeability of free space, α is
the fine-structure constant, and [ŜA ⊗ ŜB](2)

q is the spherical
tensor product of ŜA and ŜB .

Following previous theoretical work [35,46,68], the total
wave function of the Rb-SrF collision complex is expanded in
a set of basis functions

|JM�〉|NKN 〉|SA�A〉|SB�B〉, (6)
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where �, KN , �A, and �B are the projections of J , N ,
SA, and SB onto the standard BF axis z′ (see Appendix A)
and � = KN + �A + �B . The basis functions in Eq. (6) are
direct products of four state vectors. The first state vector
describes the rotation of the rigid atom-molecule collision
complex in three dimensions, and may be written as
|JM�〉 = ( 2J+1

4π
)1/2DJ∗

M�(ᾱ, β̄, γ̄ ), where ᾱ, β̄, and γ̄ are the
Euler angles that specify the orientation of the standard body-
fixed (BF) frame relative to the SF frame and DJ

M�(ᾱ, β̄, γ̄ )
is a Wigner D function [69]. As shown in Appendix A (see
also Refs. [70,71]) the third Euler angle γ̄ = φ, where φ is
the azimuthal angle of the diatomic molecule in the two-
thirds BF frame shown in Fig. 5(a). The second state vector
|NKN 〉 = YNKN

(θ, 0) belongs to the Hilbert space of a rigid
rotor (the diatomic molecule B), where the polar angle θ is
the polar angle of the molecular axis in the standard BF frame
(see Appendix A). The state vectors |SA�A〉 and |SB�B〉
are in the Hilbert space of a spin-SA (or spin-SB) system,
which accounts for the spin degrees of freedom of atom A (or
molecule B). Note that the projections �A and �B are defined
with respect to the BF z-axis R.

The BF basis (6) is closely related to the standard SF
total angular momentum basis of eigenfunctions of Ĵ 2 and
ĴZ widely used in molecular collision theory [72]. Here, Z

stands for the SF Z axis defined by the direction of an external
magnetic field. The SF basis functions can be obtained by
vector coupling of all angular momenta in the system

|JM (lJABJBSASBN )〉 =
∑

MAB,ml

〈JABMABlml|JM〉

× |JABMAB (JBSASBN )〉|lml〉, (7)

where 〈· · · · | · ·〉 are the Clebsch-Gordan coefficients, Ĵ =
l̂ + ŜA + ŜB + N̂ is the total angular momentum of the col-
lision complex, ĴAB = ŜA + ĴB is the combined angular mo-
mentum of atom A and diatomic molecule B, ĴB = ŜB + N̂

is the total angular momentum of the diatomic molecule,
and |lml〉 are the eigenstates of l̂2 and l̂Z . The functions
|JABMAB (JBSASBN )〉 on the right-hand side of Eq. (7) are
obtained by vector coupling of the eigenstates of Ĵ 2

B and ĴBZ

and those of Ŝ2
A and ŜAZ

.
We further note that the quantum number J of the

BF state |JM�〉 is the same as that of the SF state
|JM (lJABJBSASBN )〉 in Eq. (7) because these states are

related by an orthogonal rotation transformation R̂(ᾱ, β̄, γ̄ ),
which transforms the SF axes to the BF axes [69]. Because the
rotation operator R̂(ᾱ, β̄, γ̄ ) commutes with the total angular
momentum operator of the system J 2, the value of J is
unchanged by the rotation transformation as discussed in more
detail in Sec. 3.5 of Ref. [69] [see also Eq. (17) of Tennyson
and Sutcliffe [73]].

The BF and SF states given by Eqs. (6) and (7) are related
by an orthogonal transformation

|JM (lJABJBSASBN )〉
=

∑
α,�

WJM
�NKN SA�ASB�B ;lJABJBSASBN

× |JM�〉|NKN 〉|SA�A〉|SB�B〉, (8)

where the coefficients WJM
�NKN SA�ASB�B ;lJABJBSASBN form an

orthogonal matrix W, which can be obtained by diagonalizing
the matrix of l̂2 = (Ĵ − N̂ − ŜA − ŜB )2 in the BF basis (6)
as described in our previous work [35]. The transformation
(8) does not mix basis functions with different values of
J , M , and N [35]. An advantage of the SF total angular
momentum basis (7), (8) is that it provides a representation
that diagonalizes the operator l̂2 = (Ĵ − N̂ − ŜA − ŜB )2 in
Eq. (2) and thus each SF basis function has a definite value
of l as required for the application of scattering boundary
conditions. We transform the log-derivative matrix to the SF
basis after reaching the outer end of the integration grid (see
below and Ref. [35]).

Scattering calculations in external fields can also be car-
ried out using the fully uncoupled SF basis [33,37]. While
these calculations provide an independent test of the results
computed here using the BF basis (see Appendix B) the SF
basis sets become too computationally expensive already for
Nmax � 7, and thus cannot be used to obtain converged results
for strongly anisotropic Rb + SrF collisions [34,46].

In the presence of an external magnetic field, the projection
M of the total angular momentum J onto the magnetic-field
axis M is conserved (unlike J itself) [33,35] and we solve
the CC equations separately for each value of M . The matrix
elements of the effective Hamiltonian in the total angular
momentum representation (6) are evaluated as described else-
where [35]. The matrix elements of the magnetic dipole-
dipole interaction V̂dd are

〈J ′M�′|〈N ′K ′
N |〈SA�′

A|〈SB�′
B |V̂dd|SB�B〉|SA�A〉|NKN 〉|JM�〉

= δJ ′J δ�′�δN ′NδK ′
N ,KN

(
−

√
30g2

eμ
2
0α

2

R3

)
(−1)SA+SB−�A−�B

√
(2SA + 1)SA(SA + 1)

√
(2SB + 1)SB (SB + 1)

×
∑
qA,qB

(
1 1 2
qA qB 0

)(
SA 1 SA

−�
′
A qA �A

)(
SB 1 SB

−�
′
B qB �B

)
. (9)

The size of the basis set is determined by the truncation
parameters of Jmax and Nmax which give the maximum quan-
tum numbers of the total angular momentum J of the collision
complex and the rotational angular momentum N of SrF in
the basis set. We use the values Jmax = 3 and Nmax = 125

that give the elastic and inelastic cross sections converged
to �2.5% (see Appendix C). The numerical procedures used
in this work are essentially the same as those employed in
our previous studies of Li + CaH and Li + SrOH collisions
[46,47]. The CC equations are solved numerically using the
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log-derivative propagator method [74,75] on an equidistant
radial grid from Rmin = 5.2 Bohr to Rmid with Rmid = 15.0
Bohr for B � 10 G and Rmid = 25.0 Bohr for B < 10 G using
a step size of 0.002 Bohr. Airy propagation is employed for
Rmid � R � Rmax with Rmax = 300.0 Bohr for B � 10 G and
Rmax = 750 Bohr for B < 10 G. At R = Rmax, we transform
the log-derivative matrix from the BF total angular momentum
representation (6) to the SF basis (7) via Eq. (8). In spite
of providing a diagonal representation for the operator l2,
the asymptotic Hamiltonian ĤA + ĤB [the R → ∞ limit of
Eq. (2)] is not diagonal in either BF or SF representations due
to the presence of an external magnetic field, which couples
basis functions of different J , so an additional change of basis
is required to bring the asymptotic Hamiltonian to a diagonal
form [35]. The matrix of this final transformation is composed
of the eigenvectors of the asymptotic Hamiltonian in the SF
basis (7). After all of these transformations, the log-derivative
matrix is matched to the scattering boundary conditions to
obtain the S-matrix following standard numerical techniques
[76]. The scattering cross sections are computed from the
S-matrix elements as described in, e.g., Refs. [35,68].

III. RESULTS

A. Elastic and inelastic cross sections

Figure 2(a) shows the elastic and inelastic cross sections
for spin-polarized Rb + SrF collisions plotted as functions of
collision energy for the external magnetic fields of 1, 100,
and 1000 G. The internal state of SrF(X 2�+) before the
collision is |N = 0,MN = 0,MSB

= 1/2〉 and that of Rb(2S )
is |MSA

= 1/2〉. At very low collision energies of interest
here (which are much smaller than the rotational energy split-
ting between the ground N = 0 and the first excited, N = 1
rotational states of SrF), the only inelastic process that can
occur is electronic spin relaxation within the ground rotational
state, i.e., |N = 0,MN = 0,MSB

= 1/2〉 → |N ′ = 0,M ′
N = 0,

M ′
SB

= −1/2〉. The field dependence of the elastic cross sec-
tion is very weak, and thus only the B = 1000 G result is
shown in Fig. 2(a). We observe that the inelastic cross section
decreases with increasing the magnetic field from 1 G to
1000 G; the effect is particularly strong in the ultracold s-wave
regime.

A key figure of merit for sympathetic cooling is the ratio
of elastic to inelastic cross sections γ = σel/σinel; γ > 100 is
generally required for optimal sympathetic cooling of magnet-
ically trapped molecules [1,36,46,47]. Figure 2(b) shows that
the calculated values of γ for Rb + SrF collisions exceed 100
at collision energies above EC ∼ 5×10−5 cm−1, suggesting
good prospects for sympathetic cooling of cold SrF(2�+)
molecules with magnetically cotrapped Rb atoms. At ultralow
collision energies (EC < 10−5 cm−1) the ratio of elastic to
inelastic collision rates drops below 100 and becomes very
sensitive to the applied magnetic field. Still, we observe that
the inelastic cross sections are relatively small at B = 1000 G
compared with their values at smaller magnetic fields. Thus,
as noted previously for He + O2 [77] and Li + SrOH [47],
it may be possible to enhance the efficiency of sympathetic
cooling by tuning the inelastic cross sections with an applied
magnetic field.
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FIG. 2. (a) Collision energy dependence of the elastic cross
section (circles) and inelastic cross section for the external magnetic
field of 1 G (diamonds), 100 G (squares), and 1000 G (crosses). The
elastic cross section displays a very weak field dependence. (b) The
ratios of elastic and inelastic cross sections as functions of collision
energy for the same values of the magnetic field as in (a).

Figures 3(a) and 3(b) show incoming partial-wave con-
tributions to the elastic and inelastic cross sections at B =
100 G. Based on the ab initio value of the long-range dis-
persion coefficient C6 = 3495 a.u. [50], the calculated heights
of the p- and d-wave centrifugal barriers are 5.53×10−5 and
2.87×10−4 cm−1. Consistent with these estimates, we observe
in Fig. 3(a) a decline of l � 1 incoming partial-wave contri-
butions to the elastic cross section as the collision energy is
tuned below the corresponding barrier heights.

Remarkably, the p-wave contribution to the inelastic
cross section dominates through the entire collision energy
range spanning three orders of magnitude (EC = 10−6–2 ×
10−3 cm−1). This suggests the presence of a near-threshold
scattering resonance, as discussed in more detail below. In
contrast, the partial-wave spectrum of the inelastic cross sec-
tions calculated previously for Li + CaH and Li + SrOH [47]
is dominated by the incoming s-wave contributions below
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FIG. 3. Incoming partial-wave decomposition of the elastic (a)
and inelastic (b) cross sections as a function of collision energy
calculated for the magnetic field of 100 G. The total elastic and
inelastic cross sections are shown as solid lines with circles.

EC = 10−3 cm−1 and by all partial waves at higher collision
energies.

B. Magnetic-field dependence and spin-relaxation mechanisms

In Fig. 4(a), we plot the magnetic-field dependence of
the cross sections for elastic scattering and spin relaxation
in spin-polarized Rb-SrF collisions at a collision energy of
10−6 cm−1. We observe a broad resonance profile in the
inelastic cross section centered at B = 0.2 G, where inelastic
scattering occurs 2.6 times faster than elastic scattering. With
further increase in magnetic field, the inelastic cross section
decreases by more than an order of magnitude, whereas the
elastic cross section remains essentially independent of the
field. A dense resonance pattern emerges above B = 100 G,
where the ratio of elastic to inelastic cross sections γ varies
rapidly from unity to above 100. Thus it may be possible to
enhance the efficiency of sympathetic cooling by tuning the
inelastic cross sections with an applied magnetic field.
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FIG. 4. (a) Magnetic-field dependence of the elastic (circles)
and inelastic (squares) cross sections calculated for the collision
energy of 10−6 cm−1. The inelastic cross sections calculated with
the magnetic dipole-dipole interaction omitted are shown as stars.
(b) Incoming partial-wave decomposition of the inelastic cross sec-
tion. (b) Final-state decomposition of the inelastic cross section.

Spin relaxation in ultracold collisions of 2� molecules
in their ground rotational states with 2S atoms is mediated
by two mechanisms, direct and indirect [46,48]. The direct
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mechanism is due to the long-range magnetic dipole-dipole
interaction between the electronic spins of the collision part-
ners given by the term V̂dd in Eq. (5) [46,47,78,79]. The
indirect mechanism is a combined effect of the intramolec-
ular spin-rotation interaction and the coupling between the
rotational states of the molecule induced by the anisotropy of
the interaction potential [46,48]. Previous theoretical studies
have found that spin-relaxation in Li + CaH and Li + SrOH
collisions occur predominantly via a direct mechanism and
that the indirect mechanism is strongly suppressed at low
collision energies (EC < 10−3 cm−1) [46,47]. In order to
compare these mechanisms for Rb + SrF collisions, we plot
in Fig. 4(a) the inelastic cross section calculated with the
magnetic dipole-dipole interaction term V̂dd omitted from the
scattering Hamiltonian. We observe a dramatic reduction of
the spin-relaxation cross section over the entire magnetic-field
range, except for a narrow resonance at B = 250 G.

In order to further inspect the spin-relaxation mechanisms,
we show in Fig. 4(b) the incoming partial-wave contributions
to the inelastic cross section. Below B = 300 G, the inelastic
cross section is dominated by the incoming p-wave contribu-
tion. The incoming s-wave contribution becomes comparable
in magnitude in the vicinity of scattering resonances. The
results plotted in Figs. 4(a) and 4(b) allow us to conclude
that spin relaxation in spin-polarized Rb + SrF collisions is
driven by the magnetic dipole-dipole interaction between the
electron spins of Rb and SrF.

As follows from Eq. (5), the magnetic dipole-dipole in-
teraction has nonzero matrix elements between all of the
|MSA

〉|MSB
〉 spin basis states. This long-range interaction can

thus cause either single spin-flip relaxation, in which the elec-
tron spins of either Rb or SrF are flipped, or double spin-flip
relaxation, in which both of the electron spins are flipped. The
projection of the total electron spin of the Rb-SrF complex
on the magnetic-field axis MS = MSA

+ MSB
changes by 1 in

a single spin-flip transition (|MS = 1〉 → |M ′
S = 0〉) and by

2 in a double spin-flip transition (|MS = 1〉 → |M ′
S = −1〉).

In contrast, the indirect mechanism mediated by the spin-
rotation interaction [48] can only change the projection of the
molecule’s electron spin MSB

, and thus only the single-flip
MS = 1 → M ′

S = 0 transition is allowed.
Figure 4(c) shows the final state-resolved inelastic cross

sections for Rb-SrF collisions. We observe that double spin-
flip relaxation is slightly more efficient than single spin-flip re-
laxation at low magnetic fields. Interestingly, the double spin-
flip relaxation occurs without changing the initial partial-wave
component, via the process |MS = 1〉|l = 1,Ml = −1〉 →
|M ′

S = −1〉|l′ = 1,M ′
l = 1〉 within the ground rotational state

manifold (N = N ′ = 0). This is consistent with the p-wave
resonance-mediated mechanism considered above.

IV. SUMMARY AND CONCLUSIONS

We have presented an ab initio study of ultracold col-
lisions in a heavy, spin-polarized mixture of Rb(2S ) atoms
and SrF(X 2�+) molecules in the presence of an exter-
nal magnetic field. We developed an accurate ab initio
interaction PES for the triplet 3A

′
electronic state of Rb-

SrF using the state-of-the-art CCSD(T) method and large
correlation-consistent basis sets. The PES features a deep

minimum and an extremely steep dependence on the Rb-
SrF bending angle θ (Fig. 1), making the Rb-SrF interaction
strongly anisotropic. Using the ab initio PES, we carried
out converged quantum scattering calculations using the total
angular momentum representation in the BF coordinate frame
[35], demonstrating the feasibility of such calculations on
heavy, strongly anisotropic atom-molecule collision systems.

The inelastic collisions change the value of the molecule’s
electron spin projection MS on the magnetic-field axis, lead-
ing to magnetic trap loss. The ratio γ of elastic to inelastic
collision rates is a key predictor of successful atom-molecule
sympathetic cooling in a magnetic trap. Our calculations show
that ultracold spin-polarized Rb-SrF mixtures are relatively
stable against collisional relaxation (γ > 10) over most of the
collision energy and magnetic-field ranges explored in this
work (EC = 10−6–10−3 cm−1 and B = 0.01–1000 G). It is
important to point out, however, that small changes in the
Rb-SrF PES can lead to dramatic variations of the scattering
cross sections. Because the estimated uncertainty in our PES
is about 5%, our scattering calculations presented in this paper
should be considered as qualitatively accurate. A detailed
analysis of the effect of the uncertainties of the interaction
potentials will be presented in future work.

Our calculations predict a significant magnetic-field de-
pendence of the inelastic cross section at ultralow collision
energies (see Fig. 4), which suggests the possibility of tuning
inelastic collision rates by applying an external magnetic field
to optimize the efficiency of sympathetic cooling, as sug-
gested before for He-O2 and Li-SrOH [47,77]. The inelastic
spin relaxation in cold Rb + SrF collisions is mainly driven by
a direct mechanism mediated by the magnetic dipole-dipole
interaction between the electronic spins of Rb and SrF.

It is instructive to compare the collisional properties of
Rb + SrF with those of the lighter collision systems Li +
SrOH and Li + CaH explored in our previous work [46,47].
While the potential depths and anisotropies are comparable in
all of the alkali-molecule systems, the lighter reduced masses
of Li-containing complexes result in higher centrifugal barri-
ers. As a result, the s-wave regimes of Li + SrOH and Li +
CaH collisions occur at higher collision energies. In addition,
as mentioned in Sec. IIIA, the presence of a near-threshold
p-wave resonance at low magnetic fields modifies the Wigner
scaling of Rb-SrF spin relaxation cross sections, making them
almost independent of the collision energy [see Fig. 4(b)].
In contrast, the spin-relaxation cross sections for Li + CaH
and Li + SrOH collisions exhibit the expected s-wave Wigner
scaling as EC → 0 with σinel ∝ E

−1/2
C . Finally, the resonance

peaks in the magnetic-field dependence of the spin-relaxation
cross sections for Rb + SrF are much narrower than those cal-
culated previously for Li + SrOH [47]. This suggests that the
resonances in Rb + SrF collisions decay mainly by tunneling
through a p-wave centrifugal barrier in the incoming collision
channel, whereas those in Li + SrOH collisions decay by a
mechanism not involving tunneling in the incoming channel.

In future work, it would be interesting to explore the
collisional properties of nonfully spin-polarized initial states
of Rb and SrF (which would require explicit consideration of
the singlet Rb-SrF PES) and elucidate the effects of hyperfine
interactions on scattering observables at low magnetic fields.
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Experimental measurements of inelastic collision rates in ul-
tracold Rb-SrF mixtures as a function of magnetic field would
be desirable to constrain the interaction PES. Finally, it would
be worthwhile to extend this study to other 2� molecules
currently under experimental investigation (such as CaF and
YO [24,26]) and lighter coolant atoms (such as K).
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APPENDIX A: COORDINATE FRAMES
AND BASIS FUNCTIONS

Here, we define the SF and BF coordinate frames for
the atom-molecule collision complex along with the corre-
sponding basis functions. In the following we will omit the
spin basis functions for the sake of simplicity, setting �A =
�B = 0, and hence � = KN . The discussion can be easily
generalized to include nonzero atomic and molecular spin
functions |SA�A〉 and |SB�B〉.

We begin by defining the “two-thirds” BF frame (some-
times also called the “two-angle embedding” frame [80]). The
z axis of the two-thirds BF frame coincides with the atom-
molecule Jacobi vector R whose orientation relative to the SF

axes X, Y , and Z is specified by the polar β̄ and azimuthal ᾱ

angles as shown in Fig. 5(a). We assume that Z is defined by
the direction of an external magnetic field. The angles (β̄, ᾱ)
are the two Euler angles that define the orientation of the z

axis of the two-thirds BF frame relative to the SF axes. To
completely specify the orientation of the x and y axes, we
need to choose the third Euler angle γ̄ , which is the angle
between the line of nodes (the intersection of the XY and xy

planes) and the y axis [69]. Alternatively, γ̄ can be thought
of as the azimuthal angle about the z axis [see Fig. 5(a)
and Fig. 3.1 of Ref. [69]]. We follow previous theoretical
work [70,80] in choosing the third Euler angle γ̄ = 0, which
means that the two-third BF y axis lies in the XY plane. The
polar and azimuthal angles of the diatomic molecule in the
two-thirds BF frame are denoted as θ and φ [see Fig. 5(b)].
These angles, together with the Euler angles (ᾱ, β̄ ) defined
above, constitute the four angular variables that are necessary
to specify the configuration of the atom-molecule system.
Note that the definition of the two-thirds BF axes does not
depend on the orientation of the diatomic molecule vector r.

In the two-thirds BF frame, the basis function |JM�〉 =
[(2J + 1)/4π ]1/2DJ∗

M�(ᾱ, β̄, 0) in Eq. (6) is a function of two
Euler angles (ᾱ, β̄ ) defined above and shown in Fig. 5(a) [70].
The basis functions for the R̂ = R/R and r̂ = r/r vectors in
the two-thirds BF frame can be written as [70]

(
2J + 1

4π

)1/2

DJ∗
M�(ᾱ, β̄, 0)YNKN

(θ, φ). (A1)

(Note that the normalization factor [(2J + 1)/4π ]1/2 is larger
by

√
2π than the standard factor [(2J + 1)/8π2]1/2 because

of the absence of integration over γ̄ .)
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FIG. 5. Schematic depiction of the two-thirds BF frame (a) and the standard BF frame (b). The SF axes are denoted X, Y , and Z, with
the Z axis defined by the direction of the applied magnetic field B. The orientation of the BF axes x, y, and z with respect to the SF axes
is specified by the Euler angles ᾱ, β̄, and γ̄ defined according to the convention adopted in Ref. [69]. The z axis of the two-thirds BF frame
coincides with the atom-molecule Jacobi vector R which has polar coordinates β̄, ᾱ in the SF frame (RXY is the projection of R onto the XY

plane). The third Euler angle is the angle between the line of nodes (the intersection of the XY and xy planes) and the y axis. Alternatively,
γ̄ can be thought of as the azimuthal angle about the z axis [69]. In the two-thirds BF frame, the third Euler angle γ̄ = 0, which implies that
the y axis lies in the XY plane. (b) The standard BF axes x ′, y ′, and z′ are shown relative to the two-thirds BF axes x, y, and z, which are the
same as in Fig. 7(a). The SF axes are omitted for clarity. The standard BF frame has the same z axis as the two-thirds BF frame (z′ = z), but
the third Euler angle γ̄ is set equal to the azimuthal angle φ of r in the two-thirds BF frame such that the vector r lies in the x ′z′ plane (rxy is
the projection of r onto the xy plane).
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Another commonly used BF frame (the “standard” BF
frame in the following or the “three-angle embedding” frame
[80]) may be obtained from the two-thirds BF frame via an
additional rotation about the z axis, which brings the diatomic
molecule vector r to the x ′z′ plane [80]. Figure 5(b) illustrates
the orientation of the standard BF axes x ′, y ′, and z′ relative
to the two-thirds BF axes x, y, and z. The standard BF frame
has the same z axis as the two-thirds BF frame (z′ = z), but
its x ′ and y ′ axes are rotated with respect to the two-thirds BF
axes in the xy plane. The angle of rotation is the azimuthal
angle φ of the diatomic molecule in the two-thirds BF frame
[80], which is thereby identified with the third Euler angle
(γ̄ = φ).

By definition, the vector r always lies in the x ′z′ plane,
so only a single azimuthal angle θ is necessary to com-
pletely specify the orientation of the diatomic molecule in
the standard BF frame. Accordingly, the basis functions in the
standard BF frame can be written as [70](

2J + 1

4π

)1/2

DJ∗
M�(ᾱ, β̄, φ)YNKN

(θ, 0). (A2)

The definitions (A1) and (A2) are equivalent because, as
stated above, the third Euler angle γ̄ used to define the
standard BF frame is identical to the azimuthal angle φ of
the diatomic molecule in the two-thirds BF frame. In this
work, we choose to use the standard BF frame, which leads
to simpler expressions for the matrix elements of the BF total
angular momentum operator Ĵ [70,80].

APPENDIX B: VERIFICATION OF SCATTERING RESULTS

The BF theory of molecular collisions in the total angular
momentum representation has been extensively tested [35] by
comparison with the previous results obtained independently
using the fully uncoupled SF representation of Volpi and Bohn
[37] and Krems and Dalgarno [33]. To verify the correctness
of the scattering cross sections calculated here for Rb + SrF,
we have performed additional benchmark calculations using
the independently developed codes SF2Sigma and extended
MOLSCAT. SF2Sigma is a code developed in-house which uses
the fully uncoupled SF basis [33,37] and extended MOLSCAT
is a well-established package of programs for molecular scat-
tering calculations [81] that has recently been extended [82]
to handle molecular collisions in magnetic fields using the BF
basis of Eq. (6).

For the purpose of comparison with SF calculations, we
restrict our test calculations to small rotational basis sets
(Nmax = 2). This restriction is necessary because benchmark
scattering calculations employing SF basis sets become com-
putationally intractable for larger rotational basis sets with
Nmax � 7 [34,46], and hence cannot be used to obtain con-
verged results for strongly anisotropic atom-molecule colli-
sion systems [46,55].

The total elastic and inelastic cross sections for Rb +
SrF collisions computed here using the BF basis (6) are
compared with the extended MOLSCAT and SF2Sigma results
in Table II. All of the results are in excellent agreement with
each other, thereby providing strong evidence for the validity
of our quantum scattering approach and for the correctness of

TABLE II. Elastic and inelastic cross sections for ultracold Rb +
SrF collisions computed using the BF code developed in the present
work (first column), SF2Sigma (second column), and extended
MOLSCAT (third column) at a magnetic field of 0.1 T. The collision
energies are in units of cm−1 and the cross sections are in units

of Å
2
. The SF basis given by Eq. (10) of Ref. [33] included all

the |NMN 〉|lMl〉 states with l � 7 and N � 2 and the BF basis (6)
included all the basis states with J � 7 and N � 2.

Collision energy Present work SF2Sigma Extended MOLSCAT

Elastic cross sections
10−5 6.521×105 6.522×105 6.528×105

10−4 1.143×105 1.142×105 1.142×105

10−3 2.991×104 2.990×104 2.988×104

Inelastic cross sections
10−5 432.24 432.24 433.23
10−4 3.080 3.080 3.084
10−3 0.509 0.511 0.508

the Rb + SrF elastic and inelastic cross sections computed in
this work.

APPENDIX C: BASIS SET CONVERGENCE

In this section, we examine the convergence properties
of the Rb + SrF cross sections with respect to the basis set
truncation parameters Jmax and Nmax, which determine the
maximum quantum numbers of the total angular momentum
J of the Rb-SrF collision complex and the rotational angular
momentum N of SrF.

The convergence of the elastic (σel) and inelastic (σinel)
cross sections for fully spin-polarized Rb-SrF collisions
with respect to the value of Nmax is illustrated in Fig. 6
for B = 100 G, Jmax = 1, and EC = 10−6 cm−1. The
cross sections display rapid oscillations, which persist until
Nmax � 110, and we find that using Nmax = 125 is nec-
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FIG. 6. Convergence of the elastic and inelastic cross sections
with respect to the number of rotational states included in the basis
set at the collision energy of 10−6 cm−1. The magnetic field is 100 G
and Jmax = 1.
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FIG. 7. Convergence of the elastic and inelastic cross sections
with respect to the maximum total angular momentum value in the
basis set: Jmax = 3 (circles and squares) and Jmax = 2 (pluses and
crosses). The magnetic field is 100 G.

essary to produce the cross sections converged to within
2.5%.

To examine the convergence with respect to the maximum
value of the total angular momentum Jmax, we plot the elastic
and inelastic cross sections as a function of collision energy
in Fig. 7 for Jmax = 2 and 3 at B = 100 G. Adequate conver-
gence is achieved with Jmax = 2 through the entire collision
energy region. As discussed previously [33,34,37,47], indirect
spin relaxation in the incoming s-wave channel must be
accompanied by a change of the orbital angular momentum
from l = 0 to l = 2. As a result, in order to properly describe
the d-wave states in the outgoing collision channels, it is
necessary to include at least four total angular momentum
states (Jmax � 3) in the basis set. On the other hand, the
incoming p wave can make a transition to the outgoing p

wave by changing ml , the projection of l on the magnetic-
field axis. Thus the s and p waves in the entrance and exit
collision channels can be described by a smaller basis set with
Jmax = 2. To properly account for all of the partial waves in
the entrance and exit collision channels, we choose to use
Jmax = 3 and Nmax = 125 for the production calculations.
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