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Vapor-phase atomic clocks and atomic magnetometers are achieving levels of stability and measurement
precision today that would have been considered unrealistic in the not too distant past. To make further progress,
researchers will need a more detailed understanding of vapor-phase atomic physics, in particular, the manner
in which mesoscopic variations of atomic perturbations map onto the observed resonant phenomena: length
scales larger than that of homogeneous quantum dynamics, where atoms within some localized region of the
vapor all experience the same optical and microwave fields and collisional perturbations; but smaller than that
of the vapor as a whole, where the atomic system is described in terms of (for example) vapor pressure, heat
content, and optical depth. In this paper, we discuss the issue of mesoscopic physics as it manifests itself in
vapor-phase collision-shift gradients affecting the 0-0 hyperfine transition of 87Rb. We show that these gradients
not only produce increased line broadening but lead to lineshape asymmetry and an increased sensitivity of the
observed resonance to power-broadening. We develop a statistical theory describing the experimental results,
and through that theory we show that mesoscopic atomic physics encompasses a broader class of phenomena
than that described by the circumscribed term “inhomogeneous broadening.”
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I. INTRODUCTION

At the microscopic level of atomic dynamics (i.e., spatial
scales where all atoms experience the same Hamiltonian)
perturbations affecting the hyperfine transition of alkali-metal
atoms in the vapor-phase are fairly well understood. There
is a well-founded understanding of the ac-Stark shift [1,2];
researchers have a good grasp of the physics of spin-exchange
[3,4] (though we can still be surprised by nonintuitive con-
sequences of the interaction [5,6]), and we know well the
effect of weak and strong magnetic fields on the ground-state
hyperfine structure [7,8]. In particular, at the microscopic
scale it is relatively straightforward to set up the density
matrix equations for a multilevel alkali atom, include all the
perturbations acting on the atom, and solve those equations
(numerically if necessary) to predict the atom’s behavior
under any arbitrary set of conditions.

Notwithstanding this good understanding of microscopic
vapor-phase atomic dynamics, evidence has been mounting
for another scale of physics that contributes to the 0-0 hyper-
fine transition lineshape that is not so well understood. For
lack of a better term, we refer to this vapor-phase regime of
spatial dimensions as the mesoscopic scale. By mesoscopic,
we mean spatial scales larger than the atoms’ microscopic
quantum dynamics but smaller than the scale of the vapor
as a whole (e.g., vapor pressure, vapor heat content, vapor
optical depth). This scale comes into atomic physics because
in many vapor-phase systems the atoms are spatially confined
by buffer-gas collisions on time intervals long compared to
a perturbation’s effective timescale (e.g., the Rabi period for
an alkali atom’s 0-0 hyperfine transition). Thus, the atoms

in the vapor’s signal volume experience local perturbations,
which combine nonlinearly to produce the vapor’s overall
(i.e., observed) atomic signal. Some examples of important
mesoscopic phenomena related to the 0-0 hyperfine transition
in alkali atoms that have been discovered to date include: the
position-shift effect [9], the inhomogeneous light shift [10],
and the effect of inhomogeneous-field saturation broadening
[11].

Clearly, what we are describing as mesoscopic physics has
strong ties to processes related to traditional inhomogeneous
broadening, as exemplified by the inhomogeneous light shift
and position shift noted above. Consequently, one might le-
gitimately question our insistence on the mesoscopic label,
when inhomogeneous broadening might suffice. The point
to note, however, is that when discussing inhomogeneous
broadening one is primarily restricting attention to spatial
variations of the atom’s resonant frequency. Here, we are
concerned with a broader class of phenomena. For example, in
the case of inhomogeneous-field saturation broadening noted
above there need be no variation of the atoms’ resonant
frequency from one spatial region to another. Instead, changes
in the observed lineshape arise because different regions of
the vapor come into saturation at different power levels due
to the field-amplitude’s modal distribution in a cavity. The
effect is present without any variation of the atom’s resonant
frequency, and describing this as an effect of inhomoge-
neous broadening would be misleading. We will have more
to say about the inhomogeneous-broadening/mesoscopic-
physics distinction in our conclusions.

Several years ago, Oreto et al. [12] clarified what
is arguably one of the more important manifestations of
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mesoscopic physics [13]. Specifically, for isobaric vapor-
phase systems temperature gradients result in density gra-
dients, and buffer-gas density gradients result in spatially-
varying collision shifts of atomic resonance lines. To illus-
trate, consider a fractional-frequency collision shift of the
87Rb 0-0 hyperfine resonance, δycol (i.e., δy = δνhfs/νhfs).
This collision shift scales like [BG]v̄λcol, where [BG] is the
number density of buffer-gas molecules in the vapor, v̄ is the
mean collision speed, and λcol is a collision-shift coefficient.
Under isobaric conditions (and considering two regions A
and B at slightly different temperatures �J) the ratio of 0-0
resonance shifts in those two regions becomes [14]

δycol(A)

δycol(B )
∼= �B

�A

⇒ �y ≡ [δycol(B ) − δycol(A)]

= δycol(B )

(
1 − �B

�A

)
. (1)

For an 87Rb vapor-phase system at 50 °C, confined with
a typical buffer gas like N2 at a 10 torr buffer-gas pressure,
δycol ∼ 10−6 [15]. Consequently, to keep �y variations across
the vapor’s signal volume to less than 10−14 (a required
stability level for Global Navigation Satellite System, GNSS,
atomic clocks [16]), the temperature difference between these
two regions needs to be kept constant to micro-Kelvin lev-
els or better. This temperature-gradient effect is an example
of mesoscopic physics, since spatial temperature variations
at some level will always exist in vapor-phase systems;
and as the example illustrates, exceedingly small fluctua-
tions in temperature gradient can have significant conse-
quences for the 0-0 hyperfine resonance frequencies of atomic
clocks.

In the present work we take a closer look at temperature-
gradient mesoscopic physics for the 87Rb 0-0 hyperfine tran-
sition lineshape. In particular, while the conceptual outline of
buffer-gas shifts and broadenings under temperature-gradient
conditions is straightforward, the phenomenon has never been
explored carefully. Here, our purpose is to investigate the
influence of temperature gradients on 0-0 hyperfine transition
linewidths and lineshapes under controlled conditions. As
will be discussed, we find: (a) that a temperature gradient
across a vapor’s signal volume has more of an effect on
the 0-0 transition linewidth than an equivalent change in the
vapor’s average temperature, (b) that temperature gradients
can produce lineshape asymmetry as well as broadening,
(c) that temperature gradients result in a greater sensitivity
of the linewidth to power broadening, and (d) that all of
these observations can be understood with a relatively simple
statistical model of the mesoscopic physics.

In Sec. II, we discuss our experimental arrangement. Then,
in Sec. III we present our measurements of the 87Rb 0-0
hyperfine transition lineshape both in the absence and pres-
ence of vapor-phase temperature gradients. Finally, in Sec. IV
we present results from our model and compare theory with
experiment. We anticipate that the results presented here will
provide a foundation for the development of next generation
vapor-phase atomic clocks, and in particular will provide the
basic physics understanding to allow them to finally break into
the 10−16 frequency stability range [17].

II. EXPERIMENT

Figure 1 is a block diagram of our experimental arrange-
ment. A VCSEL diode laser at λ = 780 nm (ωL = 2πc/λ)
is locked to the 5 2S1/2(Fg = 2) → 5 2P3/2 transition of 87Rb
(i.e., the D2 transition) in a cell containing isotopically en-
riched Rb and 10 torr of N2. In a separate beam, the same laser
light is expanded and apertured (to make a reasonably colli-
mated “top-hat” beam) before passing into our resonance cell,
which also contains isotopically enriched 87Rb and 10 torr N2.
(Given the relatively large phase noise of VCSEL diode lasers
[18], and the not so small diameter of our aperture, we see
no evidence of diffraction effects in our experiment or our
experimental results.) The beam diameter in the resonance cell
is 2RL

∼= 0.27 cm; the cell has a diameter of 2Rc = 2.5 cm,
and the cell length is L = 3.8 cm. This geometry was chosen
so that the signal volume diameter would be much smaller
than the cell diameter, thereby limiting temperature gradients
across the signal volume to the axial direction. The maximum
laser power entering the cell is nominally 45 μW.

The cell is located in an oven where we can superimpose
a temperature gradient along the cell length, and the oven
sits inside a mu-metal tube to limit environmental magnetic
fields to the axial direction. (The heating jacket is actually
composed of two strip-heaters on each end of the cell.)
Magnetic field coils are placed outside the mu-metal tube to
impose a controllable, axial quantization axis on the atoms,
and these provide a 76 mG magnetic field inside the tube
for our experiments. The microwaves are derived from a
frequency synthesizer; they pass through a variable attenua-
tor, and then a +30 dB amplifier before passing to a horn
that broadcasts the microwave signal to the atoms in the
resonance cell. (The maximum forward power at the horn
is −11.5 dBm.) In this way, there is no cavity-mode field
geometry over the signal volume that could create mesoscopic
effects [11]. The transmitted light intensity is detected with
a Si photodiode, amplified, and recorded with an averaging
oscilloscope.

Figure 2 shows the optical absorption spectrum for the
resonance cell at room temperature (�c = 24 ◦C) taken with
extremely low light intensity (i.e., no optical pumping and the
laser was unlocked for these measurements): η ≡ [Rb]σL =
ln[Vo/VL], where Vo and VL are the photodiode voltages
measured for the light off-resonance [19] and near-resonance,
respectively, after passing though the vapor. [Rb] is the rubid-
ium number density, and σ is the (laser-frequency dependent)
optical absorption cross-section. The data of Fig. 2 have been
calibrated in terms of the cell length and alkali number density
at room temperature using the vapor pressure curves of Killian
[20] and Ditchburn and Gilmore [21]. These then yield the
absorption cross section for the peak of the Fg = 2 resonance:
σ = (6.6 ± 2.4) × 10−12 cm2. (By taking the measurement at
room temperature, we know the true temperature of the liquid
Rb pool in the resonance cell; consequently, the uncertainty is
determined solely by the variance in the vapor pressure curves
of Killian and Ditchburn and Gilmore.) We note that the two
absorption resonances are in the ratio of the ground-state
hyperfine level degeneracies (i.e., 3/5) verifying that optical-
pumping effects were absent in the absorption spectrum.
Additionally, we calibrated the photodiode signal voltage to
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FIG. 1. Experimental arrangement. With heating strips placed on the front and back of the resonance cell (i.e., “heating jacket”) we can
impose a temperature gradient along the length of the cell. Since the beam diameter is small, the temperature gradient is essentially confined
to the axial direction.

laser power within the resonance cell, PL (accounting for
glass transmission losses and with the laser off-resonance):
PL = κVo. Thus, in combination with the optical absorption
cross section we had means of defining a photon-absorption
rate parameter: �o ≡ κVLσ/(πRL

2h̄ωL) [22].

FIG. 2. We measured the laser absorption in the resonance cell
as a function of laser frequency by altering the VCSEL injection
current. As the measurements were made at room temperature, we
had good knowledge of the liquid Rb pool’s temperature and hence
the Rb vapor density, [Rb]. Dividing the absorption coefficient (η =
[Rb]σL) by [Rb]L then gave the absorption coefficient, σ .

For each 0-0 hyperfine transition lineshape measurement
(with the laser now locked to the D2 resonance and at higher
intensity), we first recorded the amplitude of the 6834.7
MHz microwave signal on the spectrum analyzer shown in
Fig. 1, which yielded the microwave power delivered to the
horn, Pμw. Additionally, we measured VL, which yielded
�o through the PL to VL calibration. We then scanned the
microwave frequency ν over the 0-0 hyperfine transition
frequency, νhfs. (The laser was on continuously during these
scans.) Finally, taking the natural logarithm of the transmitted
light signal yielded the relative change in the |Fg = 2〉 87Rb
number density as a function of ν, which is our measure of
the hyperfine transition lineshape.

Figure 3 shows a typical 0-0 hyperfine transition line-
shape for a cell temperature of 44 °C and no temperature
gradient. The lineshape is normalized, and we fit that portion
of the normalized signal with amplitude greater than 0.5 to
a Lorentzian to estimate: (1) the half-width half-maximum
(HWHM), �ν1/2, and (2) the frequency for the lineshape’s
peak, νfit. Our rationale for focusing on the central portion of
the lineshape for our fit, as opposed to the entire lineshape or
the lineshape wings, is that the central portion is of critical
importance for atomic clocks and other atomic devices [23].
In Fig. 3, the dashed line corresponds to the Lorentzian fit, and
it is clear that while the central portion of the 0-0 transition
is well described by a Lorentzian, the wings of the actual
lineshape fall off slower than a Lorentzian. While we will
not discuss the lineshape wings in any great detail, we believe
that these are a manifestation of mesoscopic physics: the mi-
croscopic quantum dynamics predict a Lorentzian lineshape
[24]; we recognize of course that other causes can also lead
to non-Lorentzian lineshapes [11,25]. For completeness, we
note that for our experiments the average value of νfit − νo
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FIG. 3. An example of our measured lineshapes without a tem-
perature gradient. The dashed line is a Lorentzian fit to that portion
of the lineshape with amplitude greater than 0.5. For this figure,
the abscissa is ν − νfit, and we had �c = 44 ◦C, [Rb]σL = 1.92,
Pμw = 38 μW, and �o = 7225 s−1. The half-width half-maximum
(HWHM), �ν1/2 was 123 Hz.

(where νo is the free atom value of νhfs) was 5657 Hz, which
is indicative of a 10.5 Torr N2 filled cell [26], consistent with
expectations.

In addition to assessing �ν1/2 and νfit for our mea-
sured lineshapes, we also computed νres, which is defined
as the zero-crossing of the lineshape’s derivative (computed
numerically). Further, for each experimental run (holding
�o constant but varying Pμw), we fit the amplitude of the
measured lineshapes to a saturation curve, (Pμw/Psat)/(1 +
Pμw/Psat), and in that way estimated the saturation-power
for all of our temperature-gradient conditions: no-gradient,
positive gradient, and negative gradient (these will be de-
fined more rigorously below). We found no statistically
meaningful variation of the saturation power over the three
temperature-gradient conditions. Consequently, treating all
three temperature-gradient conditions collectively, and rec-
ognizing that the saturation power should scale like �o

2, we
obtained the relation (with �o in units of s−1)

Psat = (2.9 ± 1.0) × 10−7�2
o + (26 ± 2) μW. (2)

III. RESULTS

A. No temperature gradient

Figure 4(a) shows �ν2
1/2 as a function of microwave power,

while Fig. 4(b) shows a lineshape asymmetry parameter, α, as
a function of microwave power. The asymmetry parameter is
defined by taking the difference between νfit and νres relative
to the lineshape’s FWHM:

α ≡ (νfit − νres)

2�ν1/2
. (3)

Consequently, α is a fractional measure of the lineshape’s
skewness with positive values indicating that the lineshape has

FIG. 4. (a) For the case of �c = 44 ◦C, no temperature gradient,
[Rb]σL = 1.92, and �o = 699 s−1, this figure shows the linewidth
squared as a function of microwave power. The intercept corresponds
to the residual HWHM, γ , which is affected by collisional processes
and light-broadening (due to optical pumping); the slope yields β2.
(b) The asymmetry parameter α as a function of microwave power.
The asymmetry parameter is independent of microwave power, and
for this experiment indistinguishable from zero at the 95% confi-
dence level. (The gray region corresponds to the 95% confidence
interval and the average is indicated by the dashed line.)

an asymmetry (i.e., a larger wing) on the high-frequency side
of the resonance.

From the intercept of the straight line relationship between
�ν2

1/2 and Pμw shown in Fig. 4(a), we estimated the transi-
tion’s microwave-independent linewidth, γ , which is a mea-
sure of collisional, diffusion, and light-broadening processes
[27]. The slope of the line is a power-broadening “linewidth
enhancement factor,” which we label as β2. For a two-level
atom, β = (T1/T2)1/2, where T2 and T1 are the transverse (i.e.,
dephasing) and longitudinal relaxation times for the system,
respectively [28], while for multilevel systems β can have
a more complicated relationship with these relaxation times
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FIG. 5. Microwave power independent linewidth, γ , as a func-
tion of the optical photon absorption rate, �o: squares correspond
to �c = 54 ◦C, while circles correspond to �c = 44 ◦C. While the
slopes are not distinguishable at the 95% confidence level, the differ-
ence in the intercepts is significant, and traces back to a difference in
spin-exchange dephasing of the 0-0 hyperfine transition.

[25]. For the parameters of Fig. 4(a) we have γ = (68.3 ±
2.4) Hz, and β = (13.9 ± 0.3) Hz/μW1/2. Additionally, from
Fig. 4(b) we see that α is very small: α = (0.23 ± 0.12)%.
Thus, in the absence of a temperature gradient we have
the comforting result that the lineshape shows little to no
asymmetry. Moreover, as the slope of the α versus Pμw line
is indistinguishable from zero at the 95% confidence level
(i.e., ∂α/∂Pμw = −(1.2 ± 2.2) × 10−3%/μW), we have ev-
idence that the symmetry of the lineshape is independent of
microwave power.

Figure 5 shows γ as a function of photon absorption rate
for two different temperatures: �c = 44 ◦C with a measured
[Rb]σL = 1.92 ± 0.17, and �c = 54 ◦C with a measured
[Rb]σL = 3.90 ± 0.29. The slopes are indistinguishable at
the 95% confidence level and are likely strongly influenced
by diffusional modes in the resonance cell (a separate meso-
scopic effect) [17,29]. Alternatively, the intercepts are clearly
different.

Defining γo as the light-independent and microwave-power
independent linewidth we have

γo ≡
{

(64.6 ± 2.1)Hz [Rb]σL = 1.92

(75.9 ± 2.2)Hz [Rb]σL = 3.90
. (4)

This difference can be explained as a consequence of Rb-
Rb spin-exchange. To proceed, we write γo as γ ′

o + γex =
γ ′

o + ( 6I+1
8I+4 )[Rb]σexv̄ [30], where γ ′

o is the dephasing rate
for all processes other than spin-exchange, σex is the spin-
exchange cross section for Rb with v̄ the mean relative speed
between two Rb atoms, and I the nuclear spin. Assuming γ ′

o is
independent of �c, the difference between the two values of
γo is then given by

γo(54 ◦C) − γo(44 ◦C)=
(

6I + 1

8I + 4

)
σexv̄{[Rb]54 ◦C − [Rb]44 ◦C},

(5)

from which we can determine the spin-exchange cross-
section: σex = (1.5 ± 0.4) × 10−14 cm2. This result compares
well with the theoretical value of 1.6 × 10−14 cm2 [31], indi-
cating that in the absence of a temperature gradient the pri-
mary temperature-dependent effect appearing in the linewidth
arises from spin-exchange, which for a doubling of [Rb]σL
only adds about 10 Hz to γo.

B. Temperature gradients

To accentuate the influence of a temperature gradient on
0-0 hyperfine transition lineshapes, we imposed an approx-
imately 10 °C temperature gradient across the cell. Seven
thermistors were placed on the cell: one at z/L ≡ ζ = 0
(i.e., the front of the cell at the laser beam entrance), one at
ζ = 1, and five around the cell center at ζ = 0.5. Primarily,
the thermistors near the cell center were meant to give us
some assessment of possible radial temperature gradients,
which we estimated as roughly 0.3 °C over the signal volume
for this magnitude axial temperature gradient. Unfortunately,
the five centrally located thermistors could not give us a
useful estimate of the actual vapor temperature on axis at
ζ = 0.5, since the temperature measurements (located on the
cell’s outside glass wall) were relatively far removed from the
location of the signal volume.

Though we only had two reliable measurements of the
temperature gradient along the signal volume (i.e., ζ = 0 and
ζ = 1) [32], we nevertheless allowed for the possibility that
the temperature gradient might be nonlinear:

�z = �0 + Aζ (1 + f ζ ). (6a)

Here, f is uniquely determined by �L, �0, and A:

f = �L − �0

A
− 1. (6b)

In our analyses, we treat A as a parameter to be determined
by experiment. Nevertheless, given our experimental arrange-
ment we expected �z to be close to linear in ζ over the cell
length, which implied that we should expect the A values to
result in f < 1.

Assuming an ideal buffer gas, this temperature gradient
profile implies a buffer-gas density gradient (and thereby a
collision-shift gradient) of

[BG]z − [BG]0

[BG]0
= �0

�z

− 1 = − Aζ (1 + f ζ )

�0 + Aζ (1 + f ζ )
(7)

(where � is in Kelvin for this equation). Note that for |�L −
�0| = 10 ◦C, the relative size of the buffer-gas density change
is roughly 3% over the signal volume. Though this may seem
quite small, it should be taken in the context of the total buffer-
gas collision shift relative to the linewidth of the 0-0 hyperfine
transition. In the present case, the total buffer-gas collision
shift is about 5660 Hz, so that 3% of this shift is about 170
Hz, and such a shift is quite large when compared to the 65 Hz
linewidth of the 0-0 transition in the absence of a temperature
gradient.

For a fair comparison with the no-gradient results, we
carefully set temperatures across the signal volume so that
the average value of [Rb]σL was as close as possible to the
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FIG. 6. Comparison of the 0-0 hyperfine transition lineshapes
under nearly similar conditions with and without an 11 °C positive
temperature variation across the length of the resonance cell (i.e.,
�L > �0). For the case of no temperature gradient, [Rb]σL = 1.92,
�o = 1830 s−1, and Pμw = 13 μW; for the case with a temperature
gradient, 〈[Rb]σL〉 = 1.92, �o = 1110 s−1, and Pμw = 17 μW.

no-gradient conditions:

ln

[
Vo

VL

]
= σ

∫ L

0
[Rb]zdz ≡ 〈[Rb]〉σL. (8)

For our negative gradient experiments, we had �0 =
50.2 ◦C, �L = 38.3 ◦C, and 〈[Rb]〉σL = 1.90 ± 0.15; for our
positive gradient experiments we had �0 = 40.8 ◦C, �L =
51.6 ◦C, and 〈[Rb]〉σL = 1.92 ± 0.17. Thus, the average con-
tributions of spin-exchange to the lineshape should differ
very little among no-gradient, positive-gradient, and negative-
gradient temperature conditions.

Figures 6 and 7 are comparisons of the 0-0 hyperfine
transition lineshape under nearly identical conditions with and
without a positive temperature gradient across the length of
the signal volume (i.e., �L − �0 = 11 ◦C). Examining Fig. 6
it is clear that temperature gradients give rise to a broadening
of the resonance lineshape and an asymmetry. Similar asym-
metric lineshapes were observed with negative temperature
gradients, and for both positive and negative gradients the
asymmetric wing extended to positive microwave-frequency
detunings. From Fig. 7 we see that: (1) even in the presence of
a temperature gradient the square of the linewidth appears to
have a linear dependence on Pμw, (2) the increased broaden-
ing extends to zero microwave power (i.e., the Rabi frequency,
�, equals zero), and (3) a temperature gradient results in a
larger value of the linewidth-enhancement factor, β.

As suggested by the data of Fig. 6, the data presented in
Fig. 8 show that regardless of photon absorption rate, �o,
linewidths are broadened by the presence of a temperature
gradient. Figures 9(a) and 9(b) compare the light-independent
linewidths, γo, and the slopes (i.e., dγ /d�o), respectively, for
the three temperature-gradient conditions. Error bars indicate
95% confidence intervals. There appears to be a clear increase
in γo due to the presence of a temperature gradient, which
in the present case is by a factor of 1.6. However, at the

FIG. 7. Comparison of the microwave power dependence of the
0-0 hyperfine transition lineshape under nearly similar conditions
with and without an 11 °C positive temperature variation across the
length of the resonance cell (i.e., �L > �0). For the case of no tem-
perature gradient, [Rb]σL = 1.92 and �o = 1830 s−1; for the case
with a temperature gradient, 〈[Rb]σL〉 = 1.92 and �o = 1110 s−1.
The slope of the least-squares fits yields β.

95% confidence level there appears to be no difference in
the increased linewidths for positive versus negative tem-
perature gradient conditions. Regarding the estimated values
of dγ /d�o, there is no evidence of a difference among the

FIG. 8. Residual linewidth, γ (i.e., Pμw → 0) as a function of
photon absorption rate, �o: squares ⇒ no temperature gradient,
diamonds ⇒ negative temperature gradient, and circles ⇒ positive
temperature gradient. Temperature gradients clearly increase the
linewidth of the 0-0 transition, and when compared with Fig. 5
the effect of temperature gradients seems to be larger than a simple
increase of the mean vapor temperature. Also shown is the equation
for the least squares fit of γ to �o under no-gradient conditions:
γ = 3.0 × 10−3�o + 64.6 Hz.
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FIG. 9. (a) Light-independent HWHM, γo, as a function of tem-
perature gradient condition; error bars correspond to 95% confidence
intervals. (b) In units of Hz/Hz this figure shows dγ /d�o as a func-
tion of temperature gradient condition; again, error bars correspond
to 95% confidence intervals.

three temperature-gradient conditions at the 95% confidence
level.

Figures 10(a) and 10(b) show the asymmetry parame-
ter α and the linewidth-enhancement factor β for the three
temperature-gradient conditions, respectively, averaged over
photon absorption rate, �o (and microwave power in the case
of α). The data showed no significant influence of �o on either
α or β under any of the temperature-gradient conditions, and
there was no statistically significant effect of Pμw on α. As
Fig. 10 shows, temperature gradients create lineshape asym-
metry and lead to enhanced microwave power broadening.
While there is a very slight residual asymmetry under our
no-gradient conditions, we assume that this is due to a slight
temperature gradient that we were unable to completely elim-
inate. Clearly, however, the asymmetry under explicit positive
and negative temperature-gradient conditions is considerably
larger. For both α and β, we see no difference in these

FIG. 10. (a) Asymmetry parameter, α, averaged over photon
absorption rate, �o, and microwave power, Pμw , as a function of
temperature-gradient condition. There is clearly a gradient-induced
lineshape asymmetry, and we suspect that the slight asymmetry
under “no gradient” conditions is a manifestation of our inability
to completely eliminate temperature gradients in the experiment.
(b) The microwave-power dependence of the linewidth enhancement
factor β as a function of temperature-gradient condition. There is
a clear effect of the temperature gradient on β, though we find no
(statistically significant) difference in β for positive and negative gra-
dient conditions. Error bars correspond to 95% confidence intervals.

parameters for positive versus negative temperature-gradient
conditions.

IV. STATISTICAL THEORY

To describe the effects of mesoscopic physics on the 0-0
hyperfine transition lineshape, one could obviously set up
the complete spatiotemporal density matrix equations for the
problem, accounting for diffusional relaxation of hyperfine
polarization, optical pumping, collisional dephasing/shifts,
etc., and then give those rates (where necessary) a functional
dependence on spatial position. Through that effort, one could
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certainly compare detailed theory with experiment. However,
given the complexity of the (likely nonlinear) density matrix
equations, and the necessity of solving those equations numer-
ically, it is not at all clear that such a procedure would provide
any great intuitive understanding of the problem. Here, our
focus is on insight, and to that end we will find a statistical
approach advantageous. Our goal is threefold: to develop
some intuition regarding the underlying physics giving rise to
temperature-gradient induced increases in (a) line broadening
and (b) β values and (c) to understand the origin of lineshape
asymmetry.

A. Overview

To proceed, we follow the normal derivation of Beer’s
law, and consider the relative change in light intensity at
axial location ζ , δIζ /Iζ , caused by photon absorption from
a thin axial slice of vapor, δz. We write the number-density of
atoms in the optically absorbing state as η(ν − νζ )[Rb], where
η(ν − νζ ) is the fraction of atoms in the absorbing state as a
function of microwave detuning from the 0-0 hyperfine reso-
nant frequency at axial location ζ (indicated as νζ ) obtaining

δIζ = −Iζ η(ν − νζ )[Rb]σδz. (9)

Integrating Eq. (9) across the vapor length, we then obtain

I (L, ν) = I0e
−[Rb]σL

∫ 1
0 η(ν,ζ )dζ = I0e

−[Rb]σL〈η(ν)〉, (10)

The important point to note from Eq. (10) is that the light
intensity transmitted by the vapor (our observable for the 0-0
hyperfine resonance) corresponds to a statistical quantity: the
value of η(ν,ζ ) averaged over the signal volume.

As a result of this recognition, we can make a conceptual
switch. Rather than considering the light-beam’s propagation
through a vapor of spatially varying η(ν) values, we consider a
statistical ensemble of independent and differing η(ν) values,
and average over the ensemble. Within the ensemble, we label
each of the η(ν) values by ζ : η(ν) → ηζ (ν), where ζ is now
a parameter that distinguishes distinct realizations of η(ν).

In the average of Eq. (10), different regions of the vapor
will have a greater or lesser effect on the transmitted light
depending on the degree of optical pumping in that region
(i.e., the light intensity in that region) and the manner in
which diffusion limits the efficacy of optical pumping in that
region. To capture this variability in the statistical approach,
we allow the number of realizations in the ensemble defined
by a specific value of ζ , Mζ , to vary. Thus, to determine 〈η(ν)〉
we perform a weighted average over the ensemble:

〈η(ν)〉 =
∑

ζ

Wζ ηζ (ν) →
∫

Wζ ηζ (ν)dζ , (11)

with the weighting factor, Wζ , given by Mζ/
∫

Mζdζ .
If there were no variation of η with axial position, then all

the ηζ (ν) in the ensemble would be equivalent, and we could
write for all ζ

ηζ (ν) = � + BL(ν − νhfs), (12)

where � captures the effect of optical pumping alone on
the number-density of atoms in the optically absorbing state

(with 0 � � � 1); B captures the influence of the 0-0
magnetic-resonance on the return of optically pumped atoms
to the absorbing state (with 0 � B � 1 − �), and L(ν − νhfs)
is a normalized-amplitude Lorentzian centered on the hyper-
fine resonance frequency. In the case that η does depend on
axial position, we should therefore write

ηζ (ν) = �ζ + BζL(ν − νζ ), (13a)

〈η(ν)〉 =
∫ 1

0
[�ζ + BζL(ν − νζ )]dζ

= 〈�〉 +
∫ 1

0
BζL(ν − νζ )dζ . (13b)

Notice, that the second term on the right-hand-side of
Eq. (13b) has the appearance of a weighted average similar
to Eq. (11): Wζ → Bζ .

In the statistical approach, the crux of the theoretical
problem is determining the appropriate form and values of
Bζ , along with the form of L(ν − νζ ), and this of course is
a nontrivial problem. However, it is nonetheless possible to
make a first-order educated guess as to Bζ and L(ν − νζ ),
and to the extent that those educated guesses lead to results
in reasonable agreement with experiment insight into the
underlying mesoscopic physics will have been gained. To
that end, we expect Bζ to depend on the degree of optical
pumping at ζ , and the manner in which axial diffusion places
boundary-value limits on optical pumping’s efficacy. Thus,
we will take Bζ

∼= BoWop(ζ )Wdif (ζ ), where Wop and Wdif

are independent optical-pumping and diffusional weighting
functions, respectively.

For the optical-pumping weight function we consider sim-
ple saturation of the optical-pumping process:

Wop(ζ ) = T1�o(ζ )

1 + T1�o(ζ )
∼= T1�oe

−[Rb]σLζ

1 + T1�oe−[Rb]σLζ
, (14)

where we have implicitly assumed that to first-order the
effects of optical pumping on the absorbing-state number
density can be ignored (i.e., 〈�〉 ∼= 1). Also, we define
T1 as the longitudinal relaxation time of the 0-0 transition,
which is assumed independent of ζ . Strictly speaking, T1 will
depend on the rate of buffer-gas collisions (BG) and Rb-Rb
spin-exchange collisions (SE): T −1

1 =T −1
1 (BG)+T −1

1 (SE).
Ignoring for the moment Rb-Rb spin-exchange, since it only
contributes about 10 Hz to T −1

1 , we note that as the buffer-gas
density varies axially so too will T1(BG). However, whereas
a 3% change in the buffer-gas collision shift is significant
when compared to the narrow linewidth of the 0-0 reso-
nance, a 3% change in its relaxation rate is not. Taking γo =
T −1

1 (BG) + ( 6I+1
8I+4 )[Rb]σexv̄ in the no-gradient situation, we

obtain T1(BG) ∼= 2.6 ms for our [Rb]σL = 1.92 conditions,
and this only varies by 3% over the signal volume. (Similar
arguments hold for spin-exchange.)

To obtain an intuitive expression for the axial-diffusion
weight function, Wdif (ζ ), we raise the first-order axial
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FIG. 11. Various profiles of the axial diffusion weighting func-
tion, Wdif (ζ ) = sinQ(πζ ) for differing values of Q.

diffusion mode to the Qth power:

Wdif (ζ ) = sinQ(πζ ), (15)

with 0 < Q � 1. Wdif (ζ ) is illustrated in Fig. 11 for several
values of Q, where it can be seen that small values of Q
indicate a nonnegligible role for high-order axial modes in the
diffusion process [33].

Finally, though we could appeal to the Generalized-Vanier
theory [25] to write an expression for L(ν − νζ ), it will be
more illuminating for present purposes to reduce the problem
to that of a two-level atom. We therefore write

L(ν − νζ ) =
γ 2

2 + (
T1

/
T ∗

2

)
�2

γ 2
2 + (

T1
/
T ∗

2

)
�2 + (ν − νζ )2

. (16)

In this expression, γ2 is the dephasing rate in the absence of
a temperature gradient, while T2

∗ is a transverse relaxation
time in the presence of inhomogeneous broadening (arising
from the spatially varying collision shift). Both γ2 and T2

∗

are considered independent of ζ for the same reasons as T1.
Notice that in this expression we have distinguished 1/T2

∗

from γ2, as 1/T2
∗ takes account of the temperature gradient’s

influence on power broadening through dephasing. (This will
be clarified below.)

The observed lineshape, Lobs(ν), is obtained from
ln[I (L, ν)/I0] via Eqs. (10) and (13b), so that

Lobs(ν) ≡
∫ 1

0
Wop(ζ )Wdif (ζ )L(ν − νζ )dζ . (17)

In the limit �/γ2 � 1 and �oT1 � 1 (i.e., small microwave
power and light intensity), the observed lineshape reduces to

lim
�→0
�o→0

Lobs(ν)=T1�oγ
2
2

∫ 1

0

{
e−[Rb]σLζ sinQ(πζ )dζ

γ 2
2 + (ν − ν0(�0/�ζ ))2

}
,

(18)
where ν0 refers to the collision shift at ζ = 0 and � values
are in Kelvin. Notice that in the absence of a temperature

FIG. 12. (a) Diamond ⇒ (γo, α) value for the experimental neg-
ative gradient; square ⇒ (γo, α) value for the experimental positive
gradient. The various curves are theoretical pairs (γo,α) varying Q
and A as free parameters. The closest theoretical fit to the data
provides an estimate of Q and A: for ∇� < 0 we have Q = 0.7
and A = −10, while for ∇� > 0 we have Q = 0.5 and A = 23. (b)
Taking the A and Q values determined from (a), we plot the estimates
of the buffer-gas density gradient in the resonance cell.

gradient (i.e., �ζ → �0 for all ζ ), Eq. (18) reduces to a simple
Lorentzian lineshape of halfwidth γ2.

B. Computational results: � < γ2

To make quantitative predictions with the statistical theory,
we require estimates of Q and A for use in Eqs. (6) and (15).
To this end, Fig. 12(a) provides theoretical plots of γo versus
α for positive and negative gradients (taking �L and �0 from
the measured values) along with two data points based on
our measurements (i.e., Pμw and �o → 0). For the theoretical
curves, we first chose values for Q and A. Then, considering
the �, �o → 0 limit of the statistical theory we computed
the lineshape from Eq. (18), and similar to our experimental
procedure determined γo and α from the computed lineshape.
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FIG. 13. (a) Comparison of theoretical and experimental line-
shapes for low microwave power, but high light intensity under
negative temperature gradient conditions (�o = 5720 s−1); (b) same
as (a) except for positive temperature gradient conditions (�o =
7180 s−1).

The theoretical predictions closest to experiment provide our
estimates of Q and A: for ∇� < 0 we obtain Q = 0.7, A =
−10, and f = 0.19; while for ∇� > 0 we obtain Q = 0.5,
A = 23, and f = −0.53. As anticipated, the results are con-
sistent with a nearly linear temperature gradient (i.e., f < 1),
which provides some confidence that our estimates of Q and
A are reasonable. The resulting density gradients for these
temperature profiles are plotted in Fig. 12(b).

For comparison purposes, Fig. 13 shows experimental and
theoretical lineshapes for low microwave power but high light
intensity in the case of both a negative (�o = 5720 s−1) and a
positive (�o = 7180 s−1) temperature gradient. In both cases
the agreement is respectable, though better in the wings of
the line for a negative temperature gradient. Figure 14 shows
the predicted values of γ and α for the positive and negative
temperature gradient conditions along with the experimental
results. For the computations, γ2 in Eq. (15) was taken as
a linear function of the light intensity, with a slope and
intercept derived from the ∇� = 0 conditions (see Fig. 8).
(This procedure was also employed to generate the theoretical

FIG. 14. Comparison between theory and experiment for the
0-0 hyperfine transition linewidth γ , and asymmetry α: diamonds
⇒ positive temperature gradient, circles ⇒ negative temperature
gradient.

lineshapes of Fig. 13.) The predicted linewidth values under
temperature gradient conditions agree reasonably well with
experiment. Interestingly, theory predicts a slight nonlinear
dependence of γ on �o for low light-intensity levels. With
regard to the asymmetry parameter α, theory and experiment
are a bit more disparate, but nevertheless in reasonable agree-
ment given our fairly simplistic descriptions of the weighting
functions Wop(ζ ) and Wdiff (ζ ).

C. Computational results: � > γ2

Before applying our theory to strong-field conditions, there
are two points that need to be clarified. The first relates to the
physical interpretation of the linewidth-enhancement factor in
the case of homogeneous broadening, T1/T2. Clearly, in the
presence of a perturbing microwave field that couples two
quantum states (in our case |F = a = I + 1/2, mF = 0〉 and
|F = b = I − 1/2, mF = 0〉) a superposition state is created:
|�〉 = [|a, 0〉 + |b, 0〉]/21/2. This superposition state lasts for
a mean time T1, because every longitudinal relaxation event
collapses the superposition-state wavefunction to one of the
unperturbed hyperfine eigenstates. 1/T2 is the dephasing rate
of atomic coherence or stating that differently the rate at which
the phase of different superposition states “slip” relative to
one another. Thus, T1/T2 is the total average phase-slip of a
superposition-state wavefunction over the course of its life-
time.

The second point relates to our development of the sta-
tistical theory from Eqs. (9) and (10), and the recognition
that the observed 0-0 lineshape derives from a light beam’s
attenuation by sequential layers of the absorbing medium. It
was essentially sequential absorption (i.e., the integral over
η(ν,ζ ) in Eq. (1)) that allowed us to treat different spatial
regions within the vapor as separate and distinct. However,
under microwave-saturation conditions one cannot ignore the
overall coherence of the many superposition states created by
the field, which has the effect of mixing those distinct spatial
regions in the transmitted light.
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To illustrate the point, consider a transient nutation double-
resonance experiment: turn on a strong microwave field in-
stantaneously and observe the transmitted light as a function
of time. The optical absorption, η(t), will display damped
oscillations sitting on an exponentially rising background:
η(t ) ∼ η∞ − δηe

−t/τb sin(ωRt + φ), where ωR will be some
average of the Rabi nutation frequencies over the entire
sample: [�2 + (ν − νζ )2]1/2. The decay time, τb, of these
oscillations is not the dephasing rate of one localized region
in the sample, nor is it an average of dephasing rates over the
sample. Rather, it is a measure of dephasing within the local-
ized regions in combination with interference among regions
as a consequence of their differing Rabi nutation frequen-
cies. Thus, when considering coherence under strong-field
conditions for an inhomogeneous sample, we should replace
the total homogeneous phase-slip factor with T1/T2

∗, where
T2

∗ now includes the dephasing of coherence oscillations
that results from different localized regions’ Rabi nutation
frequencies interfering with one another. This suggests that
we write

T1

T ∗
2

= T1

√
γ 2 +

(
δωcol

(
�0

�L

− 1

))2

, (19)

where δωcol is the collision shift of the 0-0 hyperfine reso-
nance at ζ = 0. (In writing Eq. (19) as a root-mean-square
value, we have followed the simple approach of Danos and
Geschwind for mixing homogeneous and inhomogeneous ef-
fects [34].)

To compute lineshapes under power-broadening condi-
tions, and in particular to compute values of β that can be
compared to experiment, we need some manner of relating our
measured microwave powers to Rabi frequency. If we assume
that the power-broadening contribution to �ν1/2 equals γ at
Pμw = Psat [29] then we can write

� ∼= γ

√
Pμw

Psat

(
T1

T ∗
2

)−1

. (20)

Figure 15 shows two comparisons of power-broadened
lineshapes: (a) under negative temperature gradient condi-
tions and (b) under positive temperature gradient conditions.
Clearly, the theory is not capable of completely capturing the
lineshape asymmetry out to the wings of the line. However, in
both cases near line center the agreement seems fairly good.
This is especially noteworthy given the fact that T1/T2

∗ is
not small, and that neither T1/T2

∗ nor � are free parameters.
Moreover, while the wings of the lineshape are of physical
interest, it is the lineshape near the peak that has technological
implications (e.g., the discriminator of a vapor-cell atomic
clock [35]).

Figure 16(a) compares β theoretical values with experi-
ment. In the figure, we formed the ratio β/β0, where β0 is the
linewidth-enhancement factor in the absence of a temperature
gradient. As noted in Sec. III, β for a multilevel atom can
be different from the β value for a two-level atom [25].
Consequently, taking the ratio helps account for this differ-
ence. Consistent with experiment, theory shows a roughly
60% increase in β compared to β0 as a consequence of the
temperature gradients.

FIG. 15. (a) Comparison of theoretical and experimental line-
shapes for high microwave power and high light intensity un-
der negative temperature gradient conditions (�o = 5720 s−1, � =
80 Hz, and T1/T2

∗ = 3.52); (b) same as (a) except for positive
temperature gradient conditions (�o = 7180 s−1, � = 82 Hz, and
T1/T2

∗ = 3.17).

Figure 16(b) provides a more rigorous comparison with
experiment. There, we compare theory with experiment for
γ and α as functions of Pμw, considering one of our posi-
tive temperature-gradient experiments (i.e., �o = 7180 s−1).
Given that there are no free parameters (other than A and
Q, which were fixed by our low microwave power measure-
ments), the agreement is quite reasonable. This is particu-
larly true given the fact that our theoretical Rabi frequen-
cies must be converted to Pμw power levels via Eq. (20).
Consistent with experiment, theory predicts a linear relation-
ship between γ 2 and Pμw. The experimental intercept yields
γ = (106 ± 3) Hz, while theory yields γ = 114 Hz; an 8%
difference. Further, the experimental value of β is βexp =
(610 ± 12) Hz/mW1/2, while for theory we have βtheo =
451 Hz/mW1/2. The ratio βtheo/βexp = 0.74, which is very
respectable given the various uncertainties in the theoretical
parameters. Though the theoretical values of α are in fair
agreement with experiment, theory nonetheless clearly under-
estimates the lineshape asymmetry under power-broadening
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FIG. 16. (a) The linewidth enhancement factor normalized to its
value under no-gradient conditions: β/β0. Diamonds correspond to
the experimental positive-gradient results, circles to the negative-
gradient results, and the dashed line is a least squares fit to guide the
eye treating the positive and negative-gradient results collectively.
Generally, theory seems to capture the relative behavior of β as �o

varies. (b) For our experiment with �o = 7180 s−1 and a positive
temperature gradient, this figure compares γ and α for theory and
experiment: circles ⇒ γ and squares ⇒ α.

conditions. This is an aspect of theory that will require addi-
tional analysis in the future. Nevertheless it is noteworthy that
theory agrees with experiment in predicting α > 0.

V. SUMMARY

In this work, we have considered one aspect of meso-
scopic vapor-phase physics as it relates to the observed 0-0
hyperfine transition in an alkali vapor: vapor temperature
gradients and the collision-shift gradients they give rise to. Ex-
perimentally, we found that collision-shift gradients produce
added lineshape broadening as well as lineshape asymmetry.
Additionally, the linewidth-enhancement factor, β, which is
a measure of how power broadening manifests itself in the
observed lineshape also increased under temperature-gradient
conditions. Finally, we developed a statistical theory of the

lineshape that accounted for all of the observed experimental
effects arising from the mesoscopic physics, and which had
the added benefit of intuitive appeal.

With regard to our use of the term “mesoscopic physics”
throughout this paper, one might argue that it obfuscates
what is in reality a straightforward example of inhomoge-
neous broadening. Though we are sympathetic to that critique,
we nonetheless think it misguided. In typical discussions of
inhomogeneous broadening and resonant phenomena [36],
dating back to the early work on the subject by Portis [37],
inhomogeneous broadening has been routinely modeled via
homogeneous resonance lines distributed under an envelope
function, h(ν − νo), with the envelope function describing the
probability distribution of resonant frequencies within some
space (e.g., three-dimensional physical space, velocity space
for Doppler broadening, etc.). This view is certainly similar
to the one taken here, where weighting functions Wop(ζ ) and
Wdif (ζ ) multiplied a normalized lineshape function L(ν −
νζ ). Specifically, in the standard approach to inhomogeneous
broadening, we might rewrite Eq. (18) as

Lobs(ν) =
∫ ∞

0
h(νζ − νp )L(ν − νζ )dνζ , (21)

where νp is the peak frequency for the envelope function.
The problem with Eq. (21) is that it often presumes

that the parameters affecting h(νζ − νp ) are distinct from
those affecting the lineshape function L(ν − νζ ). Though
we recognize that this is not required by the definition of
inhomogeneous broadening, it is nonetheless built into most
models of the phenomena. In the present situation this is
clearly not the case: the light intensity (i.e., �o(ζ )) clearly
defines Wop(ζ ), but it can also play a role in L(ν − νζ )
through both γ2 and T1 (though we have not considered that
here). Further, though we designed our experiment to keep the
microwave field amplitude constant over the signal volume,
in most cases of technological interest (e.g., atomic clocks)
the atomic vapor will be housed in a microwave cavity with
its concomitant mode geometry [38]. This will give rise to a
spatially varying Rabi frequency, which must appear in a new
weighting factor (W�(ζ )) as well as the lineshape function
L(ν − νζ ). Thus, when one employs the term inhomogeneous
broadening, Eq. (21) implies that the only varying parameter
of the homogeneous lineshape is its resonant frequency. Our
use of the term mesoscopic physics is meant to better capture
the notion that all details of the homogeneous lineshape can
vary across the sample:γ2,T1, �, and νres.

In future work we plan to lock the microwave frequency to
the peak of the observed 0-0 hyperfine resonance, and study
the influence of collision-shift gradients on the measured
resonant frequency. Previous research has suggested that these
collision-shift gradients play a dominant role in the long-term
stability of next-generation vapor-cell atomic clocks [13].
Additionally, modulating the microwave frequency at ωm, we
plan to study the dynamics of the vapor’s first- and second-
harmonic responses to the modulation [39]. In the present
work we have been able to model the mesoscopic physics by
considering (to a large extent) different regions of the vapor as
distinct. However, it is not clear at present if that assumption
will hold under dynamic conditions. Generally, we expect the
asymmetry of the static lineshape discovered here to manifest
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itself in the first-harmonic response of the vapor, S1, to ωm,
and result in an asymmetry of S1 when examined as a function
of the microwave frequency detuning, ν − νres. One question
we will be interested in answering is whether or not the
degree of asymmetry in S1 follows directly from the degree
of asymmetry in the static lineshape.
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