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Accurate atomic structure calculations of complicated atoms with four or more valence electrons begin to
push the memory and time limits of supercomputers. This paper presents a robust method of decreasing the size
of ab initio configuration interaction and many-body perturbation theory calculations without undermining the
accuracy of the resulting atomic spectra. Our method makes it possible to saturate the CI matrix in atoms with many
valence electrons. We test our method on the five-valence-electron atom tantalum and verify the convergence of
the calculated energies. We then apply the method to calculate spectra and isotope shifts of tantalum’s superheavy
analog dubnium. Isotope-shift calculations can be used to predict the spectra of superheavy isotopes which may
be produced in astrophysical phenomena.
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I. INTRODUCTION

Configuration interaction and many-body perturbation the-
ory (CI+MBPT) has been developed as an ab initio method
for accurately predicting the spectra of atoms with up to a few
valence electrons. CI+MBPT was first introduced to calculate
the spectra of neutral thallium [1]. Since its development,
it has been successful in accurately reproducing the spec-
tra of atoms with one to three valence electrons (see, e.g.,
Refs. [2–4]).

Conversely, the CI+MBPT method has presented some
limitations when applied to atoms with more than four va-
lence electrons [5–8]. The underlying method of CI+MBPT
treats the valence-valence electron correlations using CI and
incorporates core-valence interactions using MBPT. Recently,
the particle-hole CI+MBPT formalism has allowed important
hole-excitations to be treated using CI [9], however there are
computational constraints on its implementation. The size of
the Hamiltonian matrix generated in the CI routine increases
dramatically with the addition of more electrons, which in
turn places heavier demands on computational recourses.
Moreover, accurate spectra calculations require the CI basis
set to be large enough for saturation of the CI wave func-
tion. Consequently, the time and memory needed to diagno-
lize the CI matrix can exceed the supercomputer capacities
typically available to atomic physicists before saturation is
achieved.

This paper presents a way of minimizing the computa-
tional resources needed for CI calculations. The “emu CI”
method (Sec. II B) can be implemented directly within existing
CI+MBPT programs without sacrificing accuracy of results.
We have tested the convergence of the method on the five-
valence-electron system tantalum with atomic numberZ = 73,
and compared our results with usual CI+MBPT and existing
experimental data. We then calculate the spectra and isotope
shift constants for tantalum’s superheavy analog dubnium
(Z = 105) and estimated uncertainties. The method we present
may allow for more accurate structure calculations in atoms
with many valence electrons without the need for major
modifications to existing code.

To date, it has been assumed that increasing the CI basis
set will result in the calculated atomic spectra converging to
a value close to the experimental data. Due to computational
limits, the assumption that CI converges at large basis sets has
not been tested. The emu CI modification allows for the CI
basis set to be increased to very large sizes.

Theoretical predictions of spectra and ionization energies
for superheavy atoms will be important for experimental
work in the future. The ionization potential for lawrencium
has been measured using the surface ionization technique
where a Lr+ ion is formed on a high-temperature surface
and then selectively mass-separated from other byproducts
[10]. Theoretical predictions of the transition energies of Lr
and Lr+ were used to interpret the experimental results and
extract the ionization potential from the data. Alternatively,
nobelium has been experimentally characterized using laser
resonance spectroscopy [11]. Accurate predictions of No
transition energies and strengths were used to locate transitions
whilst avoiding broad wavelength scans, and also as a tool
for comparison. The aforementioned methods are expected to
be applied to even heavier elements of Z � 104, making it
necessary to perform theoretical calculations for superheavy
elements.

Ab initio calculations of isotope shifts in superheavy atoms
(Z > 100) can aid the search for the nuclear island of stability.
Nuclear shell theory predicts that superheavy elements with
a magic number of neutrons N = 184 and an atomic number
Z � 104 will be more stable than their lighter isotopes [12,13].
It is not possible to produce neutron deficient superheavy atoms
by colliding lighter atoms because the smaller, stable atoms
have neutron to proton ratios smaller than are necessary to
produce stable superheavy atoms. Alternatively, it is possible
that neutron-rich superheavy atoms can be created by r-process
neutron capture in astrophysical events such as neutron star
mergers [14]. As a consequence, evidence of neutron-rich
superheavy atoms may be present in complex astrophysical
spectra. This appears to be feasible as atoms with atomic
number up to Z = 99 have been identified in the spectra of
Przybylski’s star [15]. It has been proposed in Ref. [16] that it is
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possible to predict the spectra of stable superheavy atoms using
the spectra of the neutron-deficient isotope produced on Earth
combined with accurate isotope shift calculations. Therefore,
it may be possible to search for stable superheavy atoms in
astrophysical spectra.

In addition, improving the ab initio methods for characteris-
ing complex atoms will capacitate a wider search for potential
atomic clock candidates and in turn assist the search for
physics beyond the Standard Model [17]. Certain transitions
in atomic clocks are highly sensitive to variations in the fine
structure constant α [5,18]. In addition, interactions between
dark matter and ordinary matter can present itself as variation
in α. Therefore, atoms sensitive to α variation may also be
useful for putting limits on the existence of certain types of
dark matter.

Nevertheless, many atomic clock candidates that are both
favourable for atomic clocks and sensitive to new physics also
have complicated valence configurations with many electrons.
For example, the atomic clock candidate Ho14+ [19] has seven
valence electrons, five of which reside in a f shell. The spectra
of Ho14+ is therefore difficult to theoretically characterize
due to the time and memory required to perform the calcu-
lation. Therefore, the CI+MBPT method must be modified to
overcome the challenges of atomic structure calculations in
many-valence electron atoms.

II. METHOD

Tantalum has a ground state configuration of
[Xe]4f 145d36s2. The CI+MBPT calculation commences
with a Dirac-Hartree-Fock (DHF) treatment of the atom. The
atom is modeled as a collection of single electrons in a nuclear
potential with an additional mean potential V NDF arising from
all other surrounding electrons. The single electron wave
functions |m〉 and energies εm are found by solving the DHF
equations:

ĥDF|m〉 = εm|m〉,

ĥDF = c α · p + (β − 1)mec
2 − Z

r
+ V NDF .

The number of electrons included in the DHF calculation, NDF,
is typically chosen in the range from Ne − M [20] up to Ne,
where Ne is the number of electrons and M is the number
of valence electrons. Ideally, the result of a fully converged
CI+MBPT calculation will be the same regardless of which
V NDF is chosen. However, all CI basis sets are truncated, hence
it is advantageous to choose the V NDF that converges the most
rapidly. An initial DHF calculation made it clear that the 5d36s2

state is well separated from the energies of the lower filled
f orbitals, hence it is sensible to place the Fermi energy
just above the filled 4f 14 shell. The V N , V N−1 and V N−5

potentials were tested using small CI calculations. The V N−1

potential produced results that were more representative of the
experimental spectra than the two other potentials and thus was
used in calculations throughout this work. In a similar manner,
the DHF valence configurations 5d36s, 5d36p and 5d26s6p

were examined and consequently 5d36s was selected. Note
that at DHF level we treat open shells by simply scaling the
potential due to the filled shell (i.e., the 5d3 potential is just
3/10 that of a filled 5d10 shell).

Once the potential V NDF is determined by solving the DHF
equations, a single particle basis set |i〉 is constructed out of
B-splines, which have been diagonalized over ĥDF [21,22].
This basis set contains core, valence, and virtual states. States
in the lower continuum are discarded.

A. Configuration interaction

Slater determinants are constructed from the single-electron
B-spline basis set |i〉. Configuration state functions (CSFs) |I 〉
with a well-defined total angular momentum J and projection
M are formed by taking all Slater determinants with a given
M and diagonalizing over the operator Ĵ2. The many-electron
wave function that will form the basis set for the CI calculation
is formed from a linear combination of CSFs.

Next, the many-electron Hilbert space is split into two
subspaces, both of which can be accounted for in different
ways. The first subspace Q contains all states with excitations
from the [Xe]4f 14 core. The core-valence interactions are
assumed to be small and hence we can treat Q with MBPT
as described in the next subsection. The complement of Q is
P . The states in subspace P represent states with fully filled
cores, hence the core can be frozen and the CSFs need only
contain the valence electrons. This is valid if the valence and
core electrons are well separated in energy, which in the case of
Tantalum has been confirmed in the initial DHF calculation. All
CSFs in P are included directly in the CI method and describe
valence-valence interactions. The effective CI Hamiltonian can
be written using the Feshbach operator [23]:

(PHP + �(E))�P = E�P , (1)

where PHP is the projection of the exact CI Hamiltonian onto
the subspace P , �P is the CI wave function, E is the energy
eigenvalue, and �(E) is an operator that can be treated using
MBPT.

In principle, the subspace P has an infinite number of
dimensions as there are an infinite number of configurations
into which the valence electrons can arrange themselves.
Electrons are excited from an appropriate set of valence-
electron leading configurations. To make the numerical CI
treatment of P computationally possible, it is necessary to
constrain the number of valence electron configurations and
hence CSFs which are included in CI. In our calculations,
we limit the configurations to those created by one- and two-
electron excitations from the leading valence configurations
5d36s2, 5d46s, 5d5, 5d36s6p, and 5d26s26p. We have omitted
additional leading configurations such as 5d36p2 as they had
little effect on the resulting energy levels but increased the
time taken for the CI calculation significantly. Furthermore, we
truncate the single-particle basis set. In tantalum, the largest
basis set we could use for a standard CI+MBPT calculation
was 13spdf . That is, we allow a valence basis with orbitals 6 –
13s, 6 – 13p, 5 – 13d, and 5 – 13f (note that the higher energy
waves are not spectroscopic since the B splines only extend
spatially to 45 Bohr radii). The number of CSFs corresponding
to these configurations for a J = 5/2, odd-parity calculation
is N = 244752. The Hamiltonian is symmetric, so storing this
matrix in memory at double precision requires 240 GB. We
solve for the lowest eigenstates using the Davidson method [24]
implemented by Ref. [25].
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B. Emu configuration interaction

The next step in improving the CI method is to reduce the
number of elements in the CI matrix without compromising the
quality of our calculation. A CI matrix with fewer elements will
require less memory and time to diagonalize. Our strategy is
similar to that presented in Ref. [26]. The idea is that while
higher-energy configurations contribute to the lower-energy
levels of interest, this contribution is not strongly affected by
interactions between the higher-energy configurations them-
selves. Reference [26] treated these higher-energy configura-
tions using second-order perturbation theory in an implementa-
tion known as CIPT (CI and perturbation theory). Our approach
is different in that we generate a full CI matrix but with matrix
elements between these higher-energy CSFs set to zero.

To achieve this, we first need to ensure that all important
CSFs that contribute strongly to the low-energy levels of
interest are situated on one side of the CI matrix. There
are Nsmall of these important, typically lower-energy CSFs.
Any interactions between the important (I � Nsmall) and less
important, typically higher-energy (Nsmall � I � N ) CSFs
will be included in the CI calculations as they will have a
large effect on the lower-energy eigenstates. Conversely, the
interaction between one higher state and a second higher state
should have a negligible contribution to the overall CI wave
function. All higher-higher interactions are therefore set to 0.

In the Fig. 1 schematic, we see the lower-lying states are
on the left of the matrix. Usual CI is represented by the black
triangle (only the lower triangle is actually stored since the
CI matrix is real and symmetric). The dark grey squares are
also calculated and stored explicitly. The rectangle on the left-
hand side of Fig. 1 represents the interactions between “lower”
and “higher” CSFs. We also calculate elements in the squares
along the diagonal. Each of these squares represents matrix
elements between CSFs corresponding to the same relativistic
configuration. The matrix elements between higher states are

Nsmall

N

0

FIG. 1. Schematic depiction of the emu CI method (resembling
an emu’s footprint). The most important configuration state functions
are in the upper left corner; the shaded areas become our effective CI
matrix. In each square along the diagonal are matrix elements between
CSFs belonging to the same relativistic configuration. The unshaded
area represents interactions between high-energy states which are set
to 0.

shown as the unshaded areas and are set to zero. Therefore, the
shaded area becomes our effective CI matrix.

The emu CI approach differs from the CIPT approach
[26] in several respects. First, CIPT treats the interaction of
higher-energy configurations with the main configurations at
second order in perturbation theory, while we treat them at all
orders. Furthermore, in the emu CI approach, we include the
configurations as CSFs, which obey exact symmetries ( Ĵ

2
and

Ĵz). Another important difference is that the CIPT method uses
the configuration-average energy in the energy denominators
of perturbation theory. In particular, this means that the pertur-
bation expansion is different for different targeted low-lying
levels. In Ref. [26], this is dealt with by using an effective
E(0) that averages the configuration energy over targeted
levels. Emu CI avoids these issues because the higher-energy
configurations are included directly in the CI calculation.

As we will see in Sec. III A, our emu CI calculation becomes
saturated when our single particle basis includes orbitals up to
21spdf . For the J = 2.5, odd-parity calculation N = 952112.
However, we find that we get good results by restricting the
important configurations (on the small side of the rectangle) to
those created by single excitations up to 21spdf and double
excitations up to 6sp5d, for which Nsmall = 20462. Thus,
the total number of matrix elements calculated and stored is
reduced by a factor of ∼40.

C. Many-body perturbation theory

Core-valence effects are considered using the MBPT
method that was introduced in Ref. [1]. The subspace Q

includes all states where the core is not completely filled. The
�(E) operator introduced in Eq. (1) is dependent on energy,
the projection of the P states on Q, and vice versa. It is possible
to write �(E) in terms of a perturbation expansion in the
residual Coulomb interaction, which can be calculated using
the diagrammatic technique described in Ref. [23]. One-, two-,
and three-body diagrams were taken into account up to the
second order of perturbation theory using a large MBPT basis
set of 30spdfgh. Our implementation in the AMBiT code is
detailed in Ref. [3], with three-body diagrams introduced in
Ref. [27].

D. Isotope shift

When comparing the spectra of one isotope of a given atom
with that of a second isotope, certain transitions will exhibit a
small change in energy. The phenomena where atomic energy
levels shift upon the addition of neutrons into the nucleus is
known as isotope shift. The isotope shift between a pair of
isotopes with mass numbers A and A′ can be expressed asy

δνA,A′ = νA − νA′ = K

(
1

mA

− 1

mA′

)
+ Fδ〈r2〉A,A′ . (2)

The first term is the result of the mass shift, where K is the
mass shift constant and mA, mA′ are the masses of the A and
A′ nuclei. The mass shift describes the effect of the motion of
the nucleus with respect to the electrons, and how this changes
when the mass of the nucleus increases. The second term of
Eq. 2 corresponds to the field shift, where F is the field shift
constant and δ〈r2〉A,A′ is the change in the root-mean-squared

042508-3



GEDDES, CZAPSKI, KAHL, AND BERENGUT PHYSICAL REVIEW A 98, 042508 (2018)

FIG. 2. Convergence of select even states when CI basis set is
increased from 11spdf to 21spdf . Open shapes denote results of the
largest non-emu calculations performed.

charge radius. The field shift incorporates the effect of the
change in charge radius on the atomic energy levels, which is
a consequence of the change in potential inside the nucleus.

Dubnium is a superheavy element with Z = 105. Primarily,
the isotope shift in heavy atoms such as dubnium is dominated
by the field shift, as the nucleus is heavy enough that change in
nuclear recoil becomes negligible. Therefore, it is only neces-
sary to calculateF from Eq. (2) when finding the isotope shift in
dubnium. We determined the dubnium spectra by applying the
approach used in our previous tantalum calculations. The DHF
potential, CI leading configurations, and basis set chosen where
analogous to those used in tantalum, although increased by
one principal quantum number to accommodate for dubnium’s
valence ground state of 6d37s2. We can calculate the value of F

by modifying the charge radius in the CI+MBPT calculations.
F can be calculated from the change in frequency dω with
respect to RMS charge radius in the same way as presented in
Refs. [27,28]:

F = dω

δ〈r2〉 . (3)

FIG. 3. Convergence of select odd states when CI basis set is
increased from 11spdf to 21spdf . Open shapes denote results of the
largest non-emu calculations performed.

FIG. 4. Convergence of select even states when CI basis set is
increased from 11spdf to 21spdf and MBPT is included. Open
shapes denote results of the largest non-emu calculations performed.

We calculated the dubnium energy spectra for five different
nuclear radii spaced evenly on either side of R = 1.5A1/3,
corresponding to 268Db. The transition energies were graphed
against the matching 〈r2〉 values to produce a linear relation-
ship.

III. RESULTS AND DISCUSSION

A. CI convergence testing in Ta

The size of the CI basis set was increased from 11spdf

in increments of two principal quantum numbers. The CI
calculations performed with the full CI matrix were halted at
13spdf due to computational demands. It is apparent from
Figs. 2 and 3 that the full CI calculations did not meet
convergence.

On the other hand, CI calculations with the emu CI method
were performed for basis sets up to and including 21spdf . The
calculations were fully converged by 19spdf as illustrated in
Figs. 2 and 3. It has been demonstrated in Figs. 4 and 5 that
the addition of MBPT did not alter the convergence of the odd
or even states.

FIG. 5. Convergence of select odd states when CI basis set is
increased from 11spdf to 21spdf and MBPT is included. Open
shapes denote results of the largest non-emu calculations performed.
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TABLE I. Energies and g factors of even-parity states in tan-
talum. Calculation performed with the emu CI method using a
CI basis of 21spdf and MBPT basis of 30spdfgh. #This energy
was calculated using a parameter fit rather than being observed
experimentally. *These g factors were calculated rather than being
measured experimentally.

Calculated Experimental �E

Config. J E (cm−1) g E (cm−1) g (cm−1)

6s25d3 0.5 6215 2.4771 6049.3 2.454 −166
6s 5d4 0.5 10790 3.0605 9759 3.02 −1031
6s25d3 0.5 12564 1.0749 11792 1.116 −772
6s 5d4 0.5 22766 2.1834 20145 1.591* −2621
6s 5d4 0.5 25441 0.45635 22236 1.056* −3205
6s 5d4 0.5 29781 0.2274 26744 0.272* −3037
6s25d3 1.5 0 0.44895 0 0.447 0
6s25d3 1.5 6256 1.5488 6069 1.527 −187
6s25d3 1.5 10771 1.2928 9976 1.542 −795
6s 5d4 1.5 11708 1.6259 10950 1.407 −758
6s25d3 1.5 16846 1.2086 15904 1.199 −943
6s 5d4 1.5 24093 0.88567 21381 1.02 −2712
6s25d3 2.5 2024 1.0353 2010 1.031 −14
6s25d3 2.5 9457 1.5806 9253 1.58 −204
6s 5d4 2.5 12341 1.6392 11244 1.641 −1097
6s25d3 2.5 13560 1.2159 12866 1.214 −694
6s25d3 2.5 18194 0.88261 17224 0.882 −970
6s 5d4 2.5 24135 0.85629 21623 0.894 −2512
6s25d3 3.5 4100 1.221 3963.9 1.218 −136
6s25d3 3.5 10452 0.91595 9705.4 0.912 −746
6s 5d4 3.5 13419 1.5776 12235 1.578 −1184
6s25d3 3.5 18372 1.1342 17383 1.125 −989
6s 5d4 3.5 23203 0.82314 20647 0.818 −2556
6s 5d4 3.5 25310 0.9913 22761 1.008 −2549
6s25d3 4.5 5935 1.2928 5621.1 1.272 −314
6s25d3 4.5 11524 1.0573 10690 1.063 −834
6s 5d4 4.5 14636 1.5365 13352 1.533 −1284
6s25d3 4.5 16443 1.0092 15391 1.014 −1052
6s 5d4 4.5 23749 1.0718 21153 1.089 −2596
6s 5d4 4.5 26536 1.1779 23913 1.185 −2623
6s25d3 5.5 16292 1.0909 15114 1.021 −1178
6s 5d4 5.5 25068 1.1614 22429 1.159 −2639
6s 5d4 5.5 28747 1.2373 26023 1.26 −2724
6s 5d4 5.5 33523 0.96034 29499 0.975* −4024
6s 5d4 5.5 37606 1.0611 33064 1.051* −4542
6s 7s 5d3 5.5 47087 1.441 43758# 1.248* −3329

The difference between the energies calculated with and
without the emu CI method is small with respect to the change
seen as the CI procedure converges. We compared the CI
method truncated at 13spdf to an emu CI calculation with an
equivalent basis set and found that the differences between the
results were small, with the exception of a single state. The dif-
ference between the 13spdf full CI and Emu CI was no more
than 1% of the non-emu calculation. Emu CI calculation was
significantly less resource-intensive and provided comparable
results, validating our assumption that interactions between
higher energy states are negligible to a good approximation.
Hence, for larger systems such as tantalum, it is far more

TABLE II. Energies and g factors of odd parity states in tantalum.
Calculation performed with the emu CI method using a CI basis of
21spdf and MBPT basis of 30spdfgh.

Calculated Experimental

Config. J E (cm−1) g E (cm−1) g �E (cm−1)

6s 6p 5d3 0.5 16269 0.42066 18504 0.172 2236
6s26p 5d2 0.5 17540 1.7001 20340 1.956 2801
6s 6p 5d3 0.5 21696 −0.17182 23355 −0.32 1659
6s 6p 5d3 0.5 22766 1.0153 24516 2.888 1751
6s 6p 5d3 0.5 23160 1.4873 25512 0.028 2353
6s 6p 5d3 0.5 24921 2.8377 26866 2.65 1945
6s 6p 5d3 1.5 15770 0.3067 17384 – 1614
6s 6p 5d3 1.5 17646 0.81803 19658 1.018 2012
6s26p 5d2 1.5 18068 0.90576 20772 0.812 2705
6s26p 5d2 1.5 19551 0.59109 21855 0.666 2304
6s 6p 5d3 1.5 22437 1.4473 24243 1.126 1807
6s 6p 5d3 1.5 23103 1.251 24739 1.62 1636
6s26p 5d2 2.5 15042 0.76253 17994 0.732 2952
6s 6p 5d3 2.5 17681 0.91497 19178 0.851 1498
6s26p 5d2 2.5 18695 1.0618 21168 1.12 2472
6s 6p 5d3 2.5 19767 1.1827 22047 1.179 2280
6s26p 5d2 2.5 20999 1.107 23363 1.078 2364
6s 6p 5d3 2.5 23588 1.202 25181 1.239 1593
6s26p 5d2 3.5 18788 1.0695 20560 1.194 1772
6s 6p 5d3 3.5 20120 1.0976 22380 1.06 2261
6s26p 5d2 3.5 21880 1.2439 23927 1.326 2047
6s 6p 5d3 3.5 22844 1.3077 24982 1.235 2138
6s26p 5d2 3.5 24616 1.2285 26586 1.356 1970
6s 6p 5d3 3.5 25198 1.3297 26960 1.223 1762
6s 6p 5d3 4.5 21491 1.2497 22682 1.231 1191
6s 6p 5d3 4.5 23141 1.2258 25186 – 2045
6s26p 5d2 4.5 23843 1.2593 25926 1.292 2083
6s 6p 5d3 4.5 26410 1.3991 27734 1.39 1324
6s 6p 5d3 4.5 27446 1.2928 28767 1.337 1321
6s 6p 5d3 4.5 28747 1.3134 30021 1.186 1274
6s 6p 5d3 5.5 24175 1.3304 25009 1.302 834
6s 6p 5d3 5.5 26483 1.3073 27783 1.351 1300
6s 6p 5d3 5.5 28584 1.3819 30361 1.334 1777
6s 6p 5d3 5.5 32867 1.1795 33070 1.349 203
6s 6p 5d3 5.5 34392 1.1167 34716 – 1422
6s 6p 5d3 5.5 35590 1.2031 35814 1.2 −874

advantageous to conduct calculations with much larger CI
bases and a well-constructed emu CI approximation.

Overall, the emu CI technique used in these calculations
allowed convergence to be achieved both with and without
MBPT and results did not differ significantly from calculations
performed without the approximation, implying that all signif-
icant interactions contributing to the level positions have been
accounted for. The largest CI+MBPT calculations conducted
for tantalum were compared with literature values for the
energy levels and have been presented in Tables I and II. The
six lowest energy solutions for each total angular momentum
J = 1

2 , . . . , 11
2 were calculated. We split our discussion into

even and odd solutions.
Almost all of the lowest energy even parity levels found

experimentally and presented in Refs. [29,30] were success-
fully identified in our calculations. The calculated levels were
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all within 14.5% of the literature values, with some levels
calculated within 1% accuracy as depicted in Table I. Our
calculations consistently overestimated the even states, with
the average discrepancy being �E = −1583 ± 1231 cm−1.

The E = 43758 cm−1, J = 11
2 literature level given was

calculated using a semi-empirical parameter fit presented in
Ref. [29] rather than being experimentally observed, however
it is unclear whether this level exists.

Most of the lowest energy odd parity levels as given in
Refs. [30–32] were identified in order and have been presented
in Table II. All calculated odd levels were within 14% of ex-
perimental values, with the majority of levels within 8% of the
experimental values, except theE = 15042 cm−1,J = 5

2 level,
which was within 16.5%. The best calculated odd level was
also within 1%. Our calculations consistently underestimated
the odd states, with the average �E = 1773 ± 714 cm−1. We

often have a disagreement with literature in the identification of
the major configuration of a level, particularly with respect to
levels with 5d36s6p and 5d26s26p configurations in tantalum.
This is due to strong mixing between levels.

In addition, the calculated values for the Tantalum energies
(and also for dubnium) agree with those calculated by Ref. [33]
when we use a minimal emu CI approach (making Nsmall very
small), which is expected as the CIPT method used in Ref. [33]
is based off a very small CI calculation.

In both even and odd parities, some levels calculated
appeared in a different energy order to those in the literature.
We present the calculated energies in the energy order in
which they were calculated. Calculations without MBPT were
generally better for the even states, and with MBPT better for
the odd states, however CI only was significantly worse for odd
states.

TABLE III. Energies and field shift constants of even parity states in Dubnium. Calculations were performed with the emu CI method with
a CI basis of 22spdf and MBPT basis of 31spdfgh. Energies and g-factors given are for 268Db.

No Breit Breit

Config. J E (cm−1) g E (cm−1) g F (cm−1/fm2)

7s26d3 0.5 8548 2.1857 8465 2.1913 −0.22
7s26d3 0.5 17462 1.2546 17309 1.2471 −0.14
7s 6d4 0.5 21226 3.0095 21063 3.0168 −6.32
7s27p26d 0.5 32624 0.59559 32752 1.3432 1.30
7s 6d4 0.5 33293 1.975 33264 1.2258 −4.85
7s28s 6d2 0.5 39588 2.0556 39578 2.0494 2.67
7s26d3 1.5 0 0.57139 0 0.56905 0.00
7s26d3 1.5 8009 1.3471 7935 1.3507 0.24
7s26d3 1.5 16292 1.1184 16137 1.1192 0.63
7s 6d4 1.5 22776 1.2916 22738 1.5028 −0.64
7s 6d4 1.5 23544 1.4652 23539 1.2781 −2.61
7s26d3 1.5 26961 1.093 26851 1.07 1.85
7s26d3 2.5 5321 1.0468 5235 1.0466 0.23
7s26d3 2.5 14485 1.527 14338 1.5288 0.56
7s26d3 2.5 19361 1.1928 19186 1.1936 0.48
7s26d3 2.5 22081 0.96885 21941 0.96571 0.72
7s 6d4 2.5 25511 1.6239 25265 1.6249 −7.24
7s27p26d 2.5 31053 1.1542 31131 1.1542 2.79
7s26d3 3.5 8812 1.151 8699 1.1527 0.36
7s26d3 3.5 15429 1.0022 15273 1.0002 0.68
7s26d3 3.5 23685 1.119 23509 1.1193 0.57
7s 6d4 3.5 27567 1.5378 27302 1.5394 −7.24
7s 6d4 3.5 35098 0.87896 34889 0.87801 −7.66
7s27p26d 3.5 36156 1.0741 36412 1.0735 4.02
7s26d3 4.5 10782 1.1672 10671 1.1696 0.40
7s26d3 4.5 17216 1.104 17041 1.1029 0.65
7s26d3 4.5 25646 1.0877 25382 1.0863 0.91
7s 6d4 4.5 29560 1.4834 29284 1.4856 −7.04
7s 6d4 4.5 36756 1.1175 36508 1.1162 −7.69
7s26d27d 4.5 42217 1.0217 42217 1.0327 2.57
7s26d3 5.5 22826 1.0911 22637 1.0911 0.91
7s 6d4 5.5 39995 1.17 39703 1.1699 −7.77
7s 6d4 5.5 46566 1.1988 46214 1.2003 −7.54
7s26d27d 5.5 50506 1.0822 50310 1.0351 −0.33
7s 6d4 5.5 50937 1.0444 50728 1.0898 −4.01
7s26d28d 5.5 55446 1.2021 55407 1.1936 −0.05
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TABLE IV. Energies and field shift constants of odd parity states in dubnium. Calculations were performed with the emu CI method with
a CI basis of 22spdf and MBPT basis of 31spdfgh. Energies and g-factors given are for 268Db.

No Breit Breit

Final conf. J E (cm−1) g E (cm−1) g F (cm−1/fm2)

7s27p 6d2 0.5 10870 1.1843 11003 1.1942 1.49
7s27p 6d2 0.5 13551 1.138 13632 1.1272 1.62
7s27p 6d2 0.5 19921 0.11736 19992 0.11595 1.77
7s 7p 6d3 0.5 25971 1.3143 25957 1.3365 −1.73
7s 7p 6d3 0.5 28417 0.52521 28393 0.50336 −2.29
7s 7p 6d3 0.5 34029 2.5749 33986 2.6699 −3.81
7s27p 6d2 1.5 9135 0.66478 9300 0.66361 2.28
7s27p 6d2 1.5 13620 1.1058 13708 1.1059 1.70
7s27p 6d2 1.5 17795 0.84716 17861 0.84603 0.01
7s27p 6d2 1.5 20082 1.2897 20137 1.2872 0.64
7s 7p 6d3 1.5 21621 0.37873 21656 0.38243 −3.06
7s27p 6d2 1.5 24999 1.257 24980 1.2568 1.47
7s27p 6d2 2.5 4281 0.74799 4484 0.74789 3.04
7s27p 6d2 2.5 13231 1.0701 13323 1.0703 2.70
7s27p 6d2 2.5 16435 1.0884 16507 1.0888 1.32
7s27p 6d2 2.5 21069 1.1416 21108 1.1422 1.61
7s 7p 6d3 2.5 23729 0.92188 23725 0.92149 −4.29
7s27p 6d2 2.5 25872 1.0711 25851 1.0711 1.06
7s27p 6d2 3.5 13571 1.0212 13663 1.0212 3.15
7s27p 6d2 3.5 19999 1.0986 20057 1.1004 2.52
7s27p 6d2 3.5 23096 1.2232 23114 1.2229 2.76
7s27p 6d2 3.5 25560 1.1551 25556 1.157 1.01
7s27p 6d2 3.5 26378 1.1649 26351 1.1638 0.04
7s 7p 6d3 3.5 28342 1.1395 28292 1.1391 −2.92
7s27p 6d2 4.5 19425 1.1273 19477 1.1285 2.94
7s27p 6d2 4.5 25494 1.1381 25481 1.1383 2.30
7s27p 6d2 4.5 29055 1.1532 29014 1.153 1.71
7s 7p 6d3 4.5 31909 1.2446 31819 1.2456 −5.19
7s27p 6d2 4.5 35950 1.1412 35868 1.143 1.56
7s 7p 6d3 4.5 37844 1.2468 37727 1.2471 −1.79
7s27p 6d2 5.5 31024 1.2383 30951 1.2392 1.48
7s 7p 6d3 5.5 36032 1.287 35921 1.2885 −4.62
7s27p 6d2 5.5 39226 1.1384 39114 1.138 0.86
7s 7p 6d3 5.5 42679 1.3199 42488 1.3214 −5.61
7s 7p 6d3 5.5 44525 1.1485 44386 1.1471 −5.96
7s26d26f 5.5 46883 0.99927 46930 0.99914 3.94

B. Spectra and field shift in Db

The spectra of dubnium was calculated using a CI basis
set of 22spdf , which is one principal quantum number
higher then the maximum calculation performed for its ana-
log tantalum. The convergence graphs for tantalum imply
that a dubnium calculation of this size has also converged.
With the same reasoning, we can assume that the dubnium
spectra has been calculated to within 10% accuracy for most
levels. The calculated spectra displayed in Tables III and
IV correspond to the isotope with A = 268 as discovered in
laboratories.

The Breit interaction was included in the HF procedure and
resulted in the spectra shifting by ∼ 1%. This was expected as
the dubnium system is highly relativistic.

We have found the field shift constants for transitions
between the ground state and each state shown in Tables III and
IV, regardless of whether the transition is allowed or not. This

way, it is possible to calculate the F values of any transition;
this can be done by subtracting the F values of the excited and
ground states of interest:

Fa→b = Fg→b − Fg→a. (4)

Here a and b are the states of interest and g is the ground state
of dubnium.

IV. CONCLUSION

We have confirmed that reducing the size of the CI matrix in
a CI+MBPT calculation significantly decreases the time and
memory resources needed for large computations involving
many valence electrons without having a significant impact
on the accuracy of the results when compared to a standard
CI+MBPT calculation. Consequently, the basis set used in
these large calculations can be increased until saturation of
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the CI matrix is reached. We have demonstrated this through
calculating the spectra of the five-electron system tantalum
with an accuracy within 10% and testing the convergence of
the results. Finally, we have applied this method to predict the
spectra and isotope shifts in dubnium, neither of which have
been experimentally measured.
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