
PHYSICAL REVIEW A 98, 042506 (2018)
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We consider the time-dependent resonance interaction energy between two identical atoms, one in the ground
state and the other in an excited state, and interacting with the vacuum electromagnetic field, during a
nonequilibrium situation such as the dynamical atomic self-dressing process. We suppose the two atoms prepared
in a correlated, symmetric or antisymmetric, state. Since the atoms start from a nonequilibrium conditions,
their interaction energy is time dependent. We obtain, at second order in the atom-field coupling, an analytic
expression for the time-dependent resonance interaction energy between the atoms. We show that this interaction
vanishes when the two atoms are outside the light cone of each other, in agreement with relativistic causality,
while it instantaneously settles to its stationary value after time t = R/c (R being the interatomic distance), as
obtained in a time-independent approach. We also investigate the time-dependent electric energy density in the
space around the two correlated atoms, in both cases of antisymmetric (subradiant) and symmetric (super-radiant)
states, during the dressing process of our two-atom system. We show that the field energy density vanishes in
points outside the light cone of both atoms, thus preserving relativistic causality. On the other hand, inside the
light cone of both atoms, the energy density instantaneously settles to its stationary value. Specifically, for points
at equal distance from the two atoms, we find that it vanishes if the two atoms are prepared in the antisymmetric
(subradiant) state, while it is enhanced, with respect to the case of atoms in a factorized state, in the symmetric
(super-radiant) state. The physical meaning of these results is discussed in detail in terms of interference effects
of the field emitted by the two atoms.
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I. INTRODUCTION

Fluctuation-induced interactions between atoms or
molecules, or between macroscopic objects, such as van
der Waals and Casimir or Casimir-Polder interactions,
have been extensively investigated in the literature, under
equilibrium situations [1–4]. These effects are ubiquitous in
a variety of physical, chemical, and biological processes [5],
playing, for example, a fundamental role in the stability and
functionality of materials, in biological matter, and also in
nanotechnologies [6–8]. Several theoretical approaches, based
on different physical interpretations, have been proposed
in the literature to investigate Casimir and Casimir-Polder
interactions, also at finite temperature, highlighting the crucial
dependence of these interactions from the system’s topology
and the magnetodielctric properties of the interacting objects
[9–11]. Although these forces are very tiny (typically, of the
order of 10−2 nN or even less), they have been measured with
great accuracy [12–15]. Nevertheless, fundamental problems
concerning the dependence of theoretical predictions for real
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metals, and their accordance with experimental data, are still
debated [6,9,16].

In recent years, many investigations have been concerned
with the resonant forces between atoms or molecules that
occur when one or more atoms are in an excited state [17].
In this case, the interaction can be mediated by the exchange
of a real photon, and it can be a very long-range interaction. If
the two atoms are uncorrelated, the resonant Casimir-Polder
force is a fourth-order effect in the atom-field coupling, and
it scales asymptotically as R−2 with the interatomic distance
R. A different, albeit related, phenomenon takes place when
two identical atoms, one excited and the other in the ground
state, are prepared in a symmetric or antisymmetric entangled
state [3,18]. In this case, the excitation is delocalized between
the two atoms, and the interaction is a second-order effect,
asymptotically scaling as R−1. For these reasons, resonance
forces are usually much stronger than dispersion interactions.
Resonant and dispersion Casimir-Polder interactions between
excited atoms have been object of intense investigations in the
past years [19–23], and they are of considerable importance in
a variety of physical processes. Very recently, the role of res-
onance interactions in selective interactions between macro-
molecules in biological systems has been argued [24,25]. The
possibility of manipulating (enhance or inhibit) the resonance
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forces, as well as the resonance energy transfer process,
through a structured environment (i.e., cavities, waveguides,
photonic crystals) has been recently investigated [26–34].

Different and very interesting effects appear when the
overall system is in a nonequilibrium condition, for example,
when the atoms or molecules are coupled to thermal baths
at different temperatures or are in excited states [35,36]. In
such cases, forces that are attractive in equilibrium situations
can become repulsive. Moreover, they can be enhanced or
suppressed, and their qualitative behavior (for example, the
distance dependence) can significantly change. This gives
further possibilities of controlling radiative processes through
dynamical environments compared to static ones.

Nonequilibrium conditions can be also obtained when
some parameter of the system (for example, the atomic tran-
sition frequency [37–39], or the field mode frequency in a
cavity [40]) nonadiabatically changes with time, bringing the
system out of equilibrium. Nonequilibrium conditions are also
obtained in the case of moving atoms [41–44]. In all these
cases, time evolution of the system toward a new equilib-
rium configuration is expected. In this context, the dynamical
Casimir-Polder interaction between an atom and a reflecting
plate, after a nonadiabatic change of some physical parameter
of the system, has been investigated [23,39,45–47], as well as
the time-dependent Casimir-Polder interactions between two
or more atoms, during the self-dressing of the atoms [19,48].

The interest in nonequilibrium conditions is both theoret-
ical and experimental. In many realistic physical situations,
systems are in a nonequilibrium condition (for example, the
temperatures of the interacting objects can be different from
the environment’s temperature or from each other, or the
objects involved can be in relative motion). On the other hand,
it is also a fundamental issue to investigate whether and how
nonequilibrium initial conditions can influence the dynamics
of a given system or modify radiation-mediated (resonance
or dispersion) interactions between atoms or molecules dur-
ing their dynamic evolution. An important conceptual issue
is also investigating how the new equilibrium condition is
approached by the system [47].

In this paper, we investigate the time-dependent resonance
interaction energy between two identical two-level atoms,
during the dynamical self-dressing process of the system. We
consider the two atoms in free space and interacting with
the electromagnetic field in its vacuum state. We suppose
that our atomic system, with one atom in the excited state
and the other in the ground state, is initially prepared in a
correlated (symmetric or antisymmetric) state. The symmetric
(antisymmetric) state is the well-known super-radiant (subra-
diant) state in the Dicke theory [49]. Dynamical properties of
these states have been extensively explored in the literature,
also in connection with the problem of causality in quantum
electrodynamics [50]. Since the initial state of the system is
not an eigenstate of the interacting Hamiltonian, it evolves in
time, and we investigate the dynamical resonance interaction
during the dressing process of the two-atoms-field interacting
system. The interaction energy is therefore time dependent,
because of the dynamical self-dressing of the atoms that start
from a nonequilibrium state. Using perturbation theory up to
second order, we obtain the time-dependent expression for
the resonance interaction energy between the two atoms. We

find that this interaction is equal to zero when the two atoms
are outside the light cone of each other, in agreement with
relativistic causality, while it sharply settles to its stationary
value after time t = R/c (R being the interatomic distance).
Thus, the system approaches its equilibrium configuration
immediately after the causality time. We investigate in detail
the contributions from virtual and real photons emitted during
the dynamical dressing of the system and show that the virtual
photons contribution (due to the counter-rotating terms of
the Hamiltonian) is essential to ensure the causality in the
time-dependent resonance interaction energy. We show that
the behavior of the time-dependent resonance interaction can
be related to an interference effect between the contributions
from rotating and counter-rotating terms, bringing the sys-
tem to its local equilibrium configuration immediately after
the causality time. We finally investigate the time-dependent
electric energy density in the space around the two correlated
atoms and discuss its behavior in both cases of subradiant
and super-radiant initial states. In particular, we show that
for points at the same distance from the two atoms, the value
of the electric energy density around the two-atom system is
zero if the atoms are prepared in the subradiant state, while
for atoms in the super-radiant superposition it is doubled with
respect to the case of uncorrelated atoms. Finally, we discuss
the possibility to probe this behavior of the electric energy
density through a measurement of the Casimir-Polder force
on a third atom, placed nearby the two-atom system.

This paper is structured as follows. In Sec. II, we introduce
our model and analyze the time-dependent resonance interac-
tion energy between the two atoms, both in the case of super-
radiant and subradiant states. In Sec. III, we investigate the
time-dependent electric energy density surrounding the atoms.
Finally, Sec. IV is devoted to final remarks and conclusions.

II. TIME-DEPENDENT RESONANCE
INTERACTION ENERGY

We consider two identical atoms A and B, respectively,
placed at positions rA and rB , and interacting with the quan-
tum electromagnetic field in the vacuum state. We model the
atoms as two-level systems. The Hamiltonian for the system
in the multipolar coupling scheme in the Coulomb gauge and
within the dipole approximation is [3,4]

H = H0 + HI , (1)

where

H0 = h̄ω0
(
SA

z + SB
z

) +
∑
kj

h̄ωka
†
kj akj (2)

is the free Hamiltonian and

HI = − μA · E(rA) − μB · E(rB ) (3)

is the interaction Hamiltonian. In the expressions above, Sz =
1
2 (|e〉〈e| − |g〉〈g|) is the pseudospin atomic operator, |g〉 and
|e〉 are the ground and the excited atomic states with energies
∓h̄ω0/2, respectively (ω0 being the transition frequency of
both atoms), and μ = er = μeg (S+ + S−) is the atomic dipole
moment operator, with its matrix elements μeg = 〈e | μ | g〉
assumed real. Also, akj (a†

kj ) is the bosonic annihilation
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(creation) operator for photons with wave vector k and po-
larization j . Finally, E(r, t ) is the transverse displacement
field operator that outside the atoms coincides with the total
(longitudinal plus transverse) electric field,

E(r, t )= i
∑
kj

√
2πh̄ωk

V
ekj (akj (t )eik·r−a

†
kj (t )e−ik·r ) (4)

(ekj are the polarization unit vectors of the electromagnetic
field, assumed real). In our case of two-level atoms, the
interaction Hamiltonian in (3) can be conveniently rewritten
as

HI (t ) = −i
∑

i=A,B

∑
kj

√
2πh̄ck

V

(
ekj · μ

eg

i

)

× [
akj e

ik·ri (Si
+ + λSi

−) − a
†
kj e

−ik·ri (Si
− + λSi

+)
]
,

(5)

where λ = 0, 1 is a parameter that allows us to easily identify
the role of counter-rotating terms: λ = 1 gives the full Hamil-
tonian, while for λ = 0 we get the Hamiltonian in the rotating
wave approximation (RWA).

We assume that the two atoms are initially prepared in one
of the two entangled super-radiant or subradiant Dicke states
[49]

|φ±〉 = 1√
2

(|eA, gB〉 ± |gA, eB〉), (6)

and that the field is in the vacuum state |vac〉. The excitation is
therefore delocalized between the two atoms. The initial state
of the system is thus the bare state

|ψ±〉 = |φ±〉|vac〉, (7)

with bare (noninteracting) energy Eψ = 0. Because of the
atom-field interaction, this state is not an eigenstate of the total
Hamiltonian, and therefore it will evolve in time according to

|ψ±(t )〉 = e−iH t/h̄|ψ±〉, (8)

where H is the total Hamiltonian (3) of the system. We
wish to investigate the time-dependent energy shift of the
two-atom system, during the dynamical self-dressing process
of the system. The physical situation we are considering is
equivalent to switching on the atom-field coupling at t = 0;
after that, the system is not longer in an equilibrium situation
and it will unitarily evolve starting from its bare state |ψ±〉.

In order to obtain the time-dependent interaction energy,
we follow the same approach used in Refs. [39,45,47] for the
dynamical atom-surface Casimir-Polder interaction. Specifi-
cally, we first write down the Heisenberg equations for field
and atomic operators and solve them iteratively at the lowest
significant order; the time-dependent energy shift of the sys-
tem is then obtained by evaluating the quantity

�E(t ) = 1
2 〈ψ±|H (2)

I (t )|ψ±〉, (9)

where H
(2)
I (t ) is the interaction Hamiltonian (5) in the Heisen-

berg representation at second order in the coupling (obtained
by substitution of the second-order solution of the Heisenberg
equations for atom and field operators). This method is a direct
generalization to time-dependent situations of the following

(time-independent) relation, as obtained by second-order sta-
tionary perturbation theory [51],

�E = 1
2 〈ψD|HI |ψD〉, (10)

where |ψD〉 is the second-order interacting (dressed) state
of the system and HI is the interaction Hamiltonian in the
Schrödinger representation.

It should be observed that, since the time evolution is
unitary, the total energy of the system is conserved during
its self-dressing process. In particular, this means that the
average value of the total Hamiltonian H (2)(t ) (Heisenberg
representation and evaluated at second order in the coupling)
on the initial bare state |ψ±〉 does not depend on time, that is,

〈ψ±|H (2)(t )|ψ±〉 = 〈ψ±|H (2)
0 (t )|ψ±〉 + 〈ψ±|H (2)

I (t )|ψ±〉
= 0, (11)

for any t , where H (2)(t ) is the total Hamiltonian in the
Heisenberg representation, evaluated at the second order in the
coupling. Equation (11) can be easily verified by evaluating,
at the second order in the coupling, the single contributions
to the total energy of the system, that is the average value of
atomic, field and interaction Hamiltonians on the initial bare
state of the system, similarly to the case of the atom-plate
dynamical Casimir-Polder interaction energy [52]. This shows
that the time evolution is unitary at the order considered. Nev-
ertheless, we will see that the average value of the interaction
Hamiltonian H

(2)
I (t ) on the bare state |ψ±〉, related to the local

interaction energy of the atoms with the field evaluated at their
position, is nonvanishing and depends on time; actually, it
gives the time-dependent resonance interaction energy of our
two-atom system.

As mentioned above, we first obtain the expressions of field
and atomic operators in the Heisenberg representation, at the
lowest significant order. After some algebra, we obtain

akj (t ) = e−iωkt akj (0) +
∑

i=A,B

e−ik·ri e−iωkt

√
2πωk

h̄V

[
μ

eg

i · ekj

]

× [Si
+(0)F (ω0 + ωk, t ) + λSi

−(0)F (ωk − ω0, t )],

(12)

Si
−(t ) = e−iω0t Si

−(0) + 2Si
z(0)e−iω0t

∑
kj

√
2πωk

h̄V

[
μ

eg

i · ekj

]

× [akj (0)eik·ri F (ω0 − ωk, t )

− λa
†
kj (0)e−ik·ri F (ωk + ω0, t )] , (13)

(i = A,B ), where we have defined the function

F (x, t ) = eixt − 1

ix
. (14)

Now, using Eqs. (12) and (13) in the expression of H
(2)
I (t ),

as given in (5), and taking only terms up to the second order
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in the coupling, we obtain the explicit expression of H
(2)
I (t )

H
(2)
I (t ) = −2πi

V

∑
q=A,B

∑
s=A,B

∑
kj

ωk

(
ekj · μeg

q

)(
ekj · μeg

s

)
eik·(rq−rs )e−iωkt (Sq

+(0)eiω0t + λS
q
−(0)e−iω0t )

× [Ss
−(0)F (ωk − ω0, t ) + λSs

+(0)F (ωk + ω0, t )] − 4πi

V

∑
q=A,B

∑
kj

∑
k′j ′

√
ωkωk′

(
ekj · μeg

q

)(
ek′j ′ · μge

q

)

× Sq
z (0)akj (0)ei(k·rq−ωkt )[a†

k′j ′ (0)e−ik′ ·rq (F ∗(ω0 − ωk′ , t )eiω0t − λ2F (ω0 + ωk′ , t )e−iω0t ) − λak′j ′ (0)eik′ ·rq

× (F ∗(ω0 + ωk′ , t )eiω0t − F (ω0 − ωk′ , t )e−iω0t )] + H.c., (15)

We now evaluate the average value of (15) on each of
the two correlated states |ψ±〉. We take into account only
terms depending on the interatomic distance R = rA − rB ,
which are the only ones relevant for the dynamical interatomic
interaction energy, from which in a quasistatic approach the
resonance force can be obtained by taking the negative deriva-
tive with respect to the interatomic distance; the other terms
just give single-atom energy shifts. After some algebra, we
obtain the time-dependent resonance interaction energy

�E(t ) = 1

2
〈ψ±|H (2)

I (t )|ψ±〉

= ∓i
πc

2V

∑
q,s=A,B(q �=s)

∑
kj

k
(
ekj · μeg

q

)(
ekj · μge

s

)

× [eik·(rq−rs )(F ∗(ωk − ω0, t ) + λ2F ∗(ωk + ω0, t ))]

+ c.c., (16)

where the upper (lower) sign respectively refers to the sym-
metric (antisymmetric) state, and in the summation over q, s

we must take q �= s. In the continuum limit, using
∑

k →
V/(2π )3d3k and the polarization sum

∑
j (ekj )�(ekj )m =

δ�m − k̂�k̂m (�,m = x, y, x), the angular integration yields∫
d�k(δ�m − k̂�k̂m)e±ik·R

= 4π

k3
(−δ�m∇2 + ∇�∇m)

sin(kR)

R
, (17)

(the differential operators act on R =| R |), and we obtain

�E(t ) = ∓ c

π

(
μ

eg

A

)
�

(
μ

eg

B

)
m
FR

�m

1

R

∫ ∞

0
dk sin(kR)

×
[

1 − cos(ck − ω0)t

ck − ω0
+ λ2 1 − cos(ck + ω0)t

ck + ω0

]
,

(18)

where we have defined the differential operator FR
�m =

(−δ�m∇2 + ∇�∇m)R acting on the variable R. The Einstein
convention for repeated indices has been used.

In the expression (18), we can distinguish a time-
independent term that is the same obtained in the static case
[26,27] and a term explicitly depending on time, related to
the time-dependent self-dressing of the entangled two-atom
system. We note that, in contrast to the stationary case where
a pole at ck = ω0 appears (related to the emission of a real
photon from the excited atom), in the present case there
are no poles in (18); therefore, there is not ambiguity in

circumventing the pole in the frequency integration. We
should, however, note that perturbative approach is valid only
for times much smaller than the lifetime of the excited atom.
This observation is relevant also in connection with controver-
sial results in the literature concerning with the long-distance
behavior (with space oscillations or not) of the dispersion
Casimir-Polder interaction between an excited- and a ground-
state atom [19,20,22].

To obtain the explicit expression of the dynamical res-
onance interaction, we now evaluate the integrals in (18).
Since the time-dependent integrals diverge on the light cone,
R = ct , we perform the calculation by considering separately
the two time regions t < R/c and t > R/c (i.e., before and
after the causality time). As discussed in Refs. [45,47], these
divergences are related to the assumption of pointlike field
sources, as well as to our bare-state initial condition [37–39].
Similar divergences appear during the time-dependent self-
dressing of a single initially bare source [50], as well as in
the field energy densities nearby a reflecting mirror [53–55]
or a pointlike field source [56,57]. For t < R/c, we obtain

�E(t ) = ±1 − λ2

2π

(
μ

eg

A

)
�

(
μ

eg

B

)
m
FR

�m

1

R
[sin(k0R)(2Ci[k0R]

− Ci[k0(R − ct )] − Ci[k0(R + ct )]) − cos(k0R)

× (2si[k0R] − si[k0(R − ct )] − si[k0(R + ct )])],

(19)

while for t > R/c we have

�E(t ) = ∓(
μ

eg

A

)
�

(
μ

eg

B

)
m
FR

�m

1

R
cos(k0R)

± 1 − λ2

2π

(
μ

eg

A

)
�

(
μ

eg

B

)
m
FR

�m

1

R
[sin(k0R)(2Ci[k0R]

− Ci[k0(ct − R)] − Ci[k0(ct + R)]) − cos(k0R)

× (2si[k0R] + si[k0(ct − R)] − si[k0(ct + R)])],

(20)

where the cosine and sine integral functions, Ci(x) and
si(x) = Si(x) − π/2, have been introduced [58,59]. Equa-
tions (19) and (20) give the dynamical resonance interaction
energy as a function of t , during the self-dressing process
of the two-atom system. The upper (lower) sign respectively
refers to symmetric (antisymmetric) state, yielding correlation
(anticorrelation) between the atomic dipole moments at t = 0,
being

〈ψ±|(μA)i (μB )j |ψ±〉 = ±(
μ

eg

A

)
i

(
μ

ge

B

)
j

(21)
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(on the contrary, in fourth-order dispersion forces the atomic
dipoles are correlated by vacuum fluctuations [60–62]).

For λ = 0 (RWA), only the rotating terms of the Hamil-
tonian contribute to the dynamical resonance interaction, and
they give a nonvanishing time-dependent interaction energy,
even before the causality time t = R/c. On the contrary, if we
also include the contribution from virtual photons given by
the counter-rotating terms in the Hamiltonian (that is, if we
set λ = 1), we immediately obtain

�E(t ) = ∓(μA)�(μB )mFR
�m

cos(k0R)

R
θ (ct − R), (22)

and the causal behavior is fully recovered. This clearly shows
that the contribution of virtual photons given by the counter-
rotating terms is essential to ensure the causal behavior of the
dynamical resonance interaction energy, similarly to the case
of two ground-state atoms [50] or in the Fermi problem [63].

Performing the derivatives with respect to R in (22), we get

�E(t ) = ±(μA)�(μB )mV�m(k0, R)θ (ct − R), (23)

where V�m(k0, R) is the potential tensor [3]

V�m(k0, R) = 1

R3

[
(δ�m − 3R̂�R̂m)[cos(k0R) + k0R sin(k0R)]

− (δ�m − R̂�R̂m)k2
0R

2 cos(k0R)
]
. (24)

Thus, there is not interaction between the two atoms be-
fore time t = R/c. After this time, the dynamical resonance
interaction instantaneously settles to its stationary value. An
observer measuring the resonance force on one atom (for
example, atom A), will detect the full value of the stationary
force immediately after the causality time t = R/c. This
behavior is very different from that of the dynamical Casimir-
Polder interaction between two uncorrelated atoms (which
is a fourth-order effect) [19], or the dynamical atom-plate
Casimir-Polder energy between an atom and a conducting
plate (which is a second-order effect) [39,45]; in fact, in the
latter cases the time-dependent interaction energy settles to
its stationary value only for times larger than ω−1

0 , which is
the timescale of the dynamical atomic dressing. Otherwise,
in the present case, the time-dependent contributions related
to the dynamical dressing process of the two atoms cancel
with each other (at least for what concerns the interaction
energy), and the system approaches its local equilibrium
configuration immediately after the causality time R/c.

The sharp change of the time-dependent resonance inter-
action energy (23) at t = R/c is related to the assumption of
pointlike atoms inherent in the dipole approximation and to
the specific bare initial state considered (two correlated atoms,
one excited and the other in the ground state, and the field in
the vacuum state). In our initial state, correlations between
the two atoms are present, leading to a cancellation of the
time-dependent contributions to the dynamical self-dressing
of the system. Thus, the peculiar behavior of the interaction
at the causality time t = R/c can be ascribed to an inter-
ference effect between the contributions of real and virtual
processes occurring during the time-dependent self-dressing
of the two-atom system. Also, we have a bare initial state, so
the two atoms can feel each other only after the causality time
t = R/c, and this explains why the interaction energy vanishes

for t < R/c. On the other hand, in the multipolar coupling
scheme the interaction between the atoms is mediated by the
transverse displacement field that, outside the atoms, coin-
cides with the total electric field, thus obeying a fully retarded
wave equation with pointlike sources. This yields retarded
solutions at any order of the coupling, and we thus expect that
this sharp behavior should not be limited to our second-order
solution.

This conclusion can be mathematically understood by con-
sidering the integrals in (18). For λ = 1, evaluation of the
two integrals in (18) can be easily performed by considering
separately time-independent and time-dependent terms. For
the time-independent terms, we have

I1 = P

∫ ∞

0
dk sin(kR)

(
1

ck − ω0
+ 1

ck + ω0

)

= P

∫ ∞

−∞
dk

sin(kR)

ck + ω0
, (25)

where P indicated the principal value and in the first integral
we performed the variable change k → −k. This integral has
a pole in k = −k0 = −ω0/c and, using the residue theorem,
we obtain

I1 = π

c
cos(k0R). (26)

The time-dependent integral can be similarly evaluated, ob-
taining

I2(t ) = P

∫ ∞

0
dk sin(kR)

×
(

cos[(ck − ω0)t]

ck − ω0
+ cos[(ck + ω0)t]

ck + ω0

)

= P

∫ ∞

−∞
dk

sin(kR)

ck + ω0
cos[(ck + ω0)t]

= π

c
cos(k0R)θ (R − ct ). (27)

This clearly shows that the time-dependent resonance inter-
action energy, depending on I1 − I2, vanishes for t < R/c,
while it is nonvanishing and time independent for t > R/c.
The system thus sharply approaches its equilibrium configu-
ration at the causality time R/c. For t > R/c, the dynamical
energy shift of the two-atom system (23) coincides with
the stationary value obtained for the time-independent fully
dressed state [26], that is,

�E(t ) = 1
2 〈ψ±|H (2)

I (t )|ψ±〉 → �E = 〈ψD|H |ψD〉, (28)

|ψD〉 being the dressed state of the atom-field system and H

the total Hamiltonian. This behavior is clearly illustrated in
Figs. 1 and 2 that show the contributions to the dynamical
resonance interaction energy from the rotating and counter-
rotating terms, in the two time intervals, t < R/c and t >

R/c, as a function of t . Figure 1 shows that for t < R/c the
two contributions oscillate in time out of phase and diverge
on the light cone t = R/c. As mentioned, their sum vanishes,
coherently with relativistic causality. Figure 2 shows that,
after the causality time, time-dependent contributions cancel
out and the resonance-interaction static value is recovered.
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FIG. 1. Plots of the time-dependent contributions to the dynami-
cal resonance interaction energy as a function of time, for t < R/c.
Energy and time are in arbitrary units. The interatomic distance is
set to R = 20, while c = 1 and k0 = 1; thus t < R/c means t < 20.
The orange dotted line and the green dashed line represent, respec-
tively, the time-dependent contributions from rotating [δERWA(t )]
and counter-rotating [δECR (t )] terms. The blue solid line is the total
dynamical resonance interaction energy, before the causality time.
This plot points out that the contributions δERWA and δECR oscillate
in time out of phase and that their sum vanishes at all times t < R/c.
Both contributions diverge on the light cone t = R/c.

This finding suggests that the peculiar sharp behavior of
the dynamical resonance interaction is due to an interference
effect between the virtual-photon and the real-photon con-
tributions; these photons are generated by the two identical
atoms during their dynamical self-dressing process.

As mentioned, our results are valid for times shorter
than the decay time of the excited state (of the order of
10−8 s). For typical values of the atomic parameters μ �
10−29 C m, k0 � 107 m−1, and for an interatomic distance
of 10−6 m, the resonance force between the two atoms is
of the order of 10−21 N, which is several orders of mag-
nitude larger than the dispersion Casimir-Polder interaction
between atoms, that can be measured directly [64], and
comparable with the atom-surface Casimir-Polder interactions
for which many measurements exist [9]. However, the res-
onance interaction energy, and the consequent interatomic
force, is very difficult to observe directly, since it requires
the system be prepared and maintained in an entangled
state for a sufficiently long time. The correlated state is
very fragile, and the coherent superposition can be easily
destroyed by spontaneous emission. Very recently, the pos-
sibility to control decoherence effects through a structured
environment, such as a photonic crystal, has been explored
[26,27], thus suggesting possible experimental setups to ob-
serve such interaction for atoms placed inside a structured
environment.

In order to gain further physical evidence of the processes
involved during the dynamical dressing, in the next section
we shall investigate the time-dependent electric field energy
density during the self-dressing of the two-atom system.

20 24 28 32
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FIG. 2. Plots of the time-dependent contributions, δERWA(t ) and
δECR(t ), to the dynamical resonance interaction energy, for t > R/c.
Energy and time are in arbitrary units. Parameters are R = 20, c = 1,
and k0 = 1; thus t is larger than 20. The orange dotted line and the
green dashed line represent the time-dependent contributions from
rotating [δERWA(t )] and counter-rotating [δECR (t )] terms, respec-
tively. The solid blue line is the dynamical resonance interaction en-
ergy, after the causality time. The plots show that both contributions
from real and virtual photons oscillate in time, and that their sum,
immediately after t = R/c, is time independent and coincides with
the stationary value of the resonance interaction energy, as obtained
by a time-independent approach. The two inserts are enlargements
showing the presence of time oscillations of both contributions soon
after the causality time.

III. TIME-DEPENDENT ELECTRIC ENERGY DENSITY
AROUND THE TWO ENTANGLED ATOMS

In order to further investigate the time-dependent self-
dressing process of the two entangled atoms and its relation
with the resonance interaction energy, we now evaluate the
(time-dependent) electric energy density nearby the two-atom
system, for both symmetric and antisymmetric states. It is
given by

〈ψ±|Hel (r, t )|ψ±〉 = 1

8π
〈ψ±|E2(r, t )|ψ±〉 (29)

(the electric field operator is in the Heisenberg representation).
Up to second order in the coupling, we have

1

8π
E2(r, t )

= 1

8π
[E(0)(r, t ) · E(0)(r, t ) + E(1)(r, t ) · E(1)(r, t )

+ E(2)(r, t ) · E(0)(r, t ) + E(0)(r, t ) · E(2)(r, t )], (30)

where the superscript indicates the perturbative order. Iterative
solution of the Heisenberg equations for the field annihilation
operators at the leading order gives

a
(0)
kj (t ) = akj (0)e−iωkt , (31)
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a
(1)
kj (t ) =

(
2πωk

V h̄

)1/2 ∑
q=A,B

[(
μeg

q · ekj

)
e−ik·rq e−iωkt (Sq

+(0)F (ω0 + ωk, t ) + S
q
−(0)F (ωk − ω0, t ))

]
, (32)

a
(2)
kj (t ) = − 4π

h̄V

∑
q=A,B

Sq
z (0)e−i(k·rq−ωkt )

∑
k′j ′

√
ωkωk′

(
μeg

q · ekj

)(
μge

q · ek′j ′
)

× i

{
ak′j ′ (0)ek′ ·rq

[
iF (ωk − ωk′, t )

(
1

ω0 + ωk

+ 1

ω0 − ωk′

)
− 1

ω0 + ωk′
F (ω0 + ωk, t ) − 1

ω0 − ωk′
F ∗(ω0 − ωk, t )

]

− a
†
k′j ′ (0)e−ik′ ·rq

[
F (ωk + ωk′ , t )

(
1

ω0 − ωk′
+ 1

ω0 + ωk′

)
− 1

ω0 − ωk′
F (ω0 + ωk, t ) − 1

ω0 + ωk′
F ∗(ω0 − ωk, t )

]}
.

(33)

Since second-order field operators depend on SA
z (0) and SB

z (0), as expressed by (33), the contribution 〈ψ±|E(2)(r, t ) ·
E(0)(r, t )|ψ±〉 in (30) vanishes, being 〈ψ±|SA,B

z (0)|ψ±〉 = 0. The only nonvanishing term comes from 〈ψ±|E(1)(r, t ) ·
E(1)(r, t )|ψ±〉 and, to evaluate it, we first substitute (32) into the expression of the electric field (4), obtaining

E(1)(r, t ) = i
2π

V

∑
q=A,B

∑
kj

ωkekj

(
μeg

q · ekj

)
[eik·(r−rq )e−iωkt (Sq

+(0)F (ω0 + ωk, t ) + S
q
−(0)F (ωk − ω0, t ))] + H.c. (34)

The time-dependent electric energy density is then ob-
tained by substitution of (34) into (30) (we disregard the bare
space-uniform vacuum field contributions coming from the
zeroth-order term). After some algebra involving polarization
sum and integration over k, we finally obtain

〈ψ±|Hel|ψ±〉 = 〈ψ±|H(A)
el |ψ±〉 + 〈ψ±|H(B )

el |ψ±〉
+ 〈ψ±|H(AB )

el |ψ±〉, (35)

where

〈ψ±|H(A)
el |ψ±〉

= 1

8π
Re

((
μ

eg

A

)
m

(
μ

ge

A

)
n
F

RA

�m

eik0RA

RA

F
RA

�n

e−ik0RA

RA

)

× θ (ct − RA), (36)

〈ψ±|H(B )
el |ψ±〉 = 〈ψ±|H(A)

el |ψ±〉 with A � B, (37)

〈ψ±|H(AB )
el |ψ±〉 = ± 1

8π
Re

((
μ

eg

A

)
m

(
μ

ge

B

)
n
F

RA

�m

eik0RA

RA

F
RB

�n

× e−ik0RB

RB

+ c.c.

)
θ (ct − RA)θ (ct − RB ),

(38)

where RA(B ) = r − rA(B ) is the distance between the observa-
tion point r (where the electric energy density is evaluated)
and atom A(B ). The +/− sign refers to the super-radiant
or subradiant state given in Eq. (5). Equation (35) describes
the time-dependent electric energy density emitted by atoms
A and B, and we may separate two contributions. The first
contribution, given by (36) and (37), is related to the retarded
field emitted by each atom, and it is causal, due to the
presence of the Heaviside step function. This contribution
vanishes if point r is outside the causality sphere of both
atoms A and B, that is, if RA,RB > ct , as expected. On
the other hand, the second contribution, Eq. (38), is a sort
of interference term, related to the electric field radiated by

the overall two-atom system. Inspection of (36)–(38) clearly
shows that if the point r is outside the light-cone of both
atoms, the electric energy density (35) vanishes. On the other
hand, if point r is inside the causality sphere of one atom
only, for example, if RA < ct but RB > ct , then the electric
energy density in r is only related to the presence of atom A.
This is compatible with relativistic causality, of course. Yet,
interesting results are obtained if point r is inside the causality
sphere of both atoms A and B. In this case, all terms in (35)
contribute to the time-dependent electric energy density. In
particular, assuming atoms with identical dipole moments,
and for distances such that RA = RB < ct , we find that the
electric energy density emitted by the two-atom system during
the self-dressing process is doubled for atoms in the super-
radiant-state (with respect to the single-atom case), while it
vanishes in the subradiant state. This is due to the presence
of the interference term in (35) and clearly shows that the
super-radiant or subradiant behavior of the two-atom system
can be understood, as far as the electric field energy density is
concerned with, in terms of an interference effect between the
electric energy densities emitted by the atoms.

We wish to point out that these features of the time-
dependent electric energy density can be investigated through
the retarded Casimir-Polder interaction energy with an ap-
propriate polarizable body with static polarizability α. As is
known, in the far-zone limit, that is when the distance is larger
than relevant wavelengths associated to the atomic transitions,
the Casimir-Polder energy can be written as

�E = − 1
2α〈E2(r)〉, (39)

where the electric field operator E(r) is evaluated at the posi-
tion of the polarizable body. Then, a third atom (C) located at
some distance from atoms A and B feels a force that is directly
related to the local electric field energy density generated at its
position by the two entangled atoms. In particular, assuming
that the distance of C from A and B is such that |rC − rA| =
|rC − rB |, the force on C is enhanced if the two atoms are
prepared in a correlated symmetric (super-radiant) state, while
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it is zero if the atoms are prepared in a subradiant state, even
if atom C is inside the light-cone of both atoms A and B.
Thus, the subradiant or superradiant behavior of the two-atom
system is strictly related to the field energy density, which
can be experimentally probed through a measurement of the
Casimir-Polder force on a third atom.

IV. CONCLUSIONS

We have considered the time-dependent resonance inter-
action energy between two identical atoms, one in the ground
state and the other in an excited state, interacting with the vac-
uum electromagnetic field, during the dynamical self-dressing
process of the two atoms. In a quasistatic approach, it yields
a resonance force between the atoms. This physical process
is also strictly related to the resonant energy transfer between
atoms. Using perturbation theory up to second order, we have
obtained the time-dependent resonance interaction energy be-
tween the two atoms. We have shown that the resonance inter-
action vanishes when the two atoms are outside the light cone
of each other, while it settles to its stationary value immedi-

ately after the causality time t = R/c (this is at variance of
other dynamical Casimir-Polder interaction energies such as
the dispersion atom-surface interaction [39,45,47]). We have
related these findings to a sort of interference between the
contributions of real and virtual processes occurring during
the time evolution of the system. We have also discussed the
time-dependent electric energy density in the space around the
two entangled atoms, both for subradiant and super-radiant
states, and pointed out that its behavior is due to interference
effects of the field emitted by the two atoms. Finally, we have
shown that the behavior of the time-dependent electric energy
density for the two entangled atoms can be probed through the
Casimir-Polder force on a third atom located in the vicinity of
the two-atom system.
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