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Spectroscopy of 87Sr triplet Rydberg states
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A combined experimental and theoretical spectroscopic study of high-n, 30 � n � 100, triplet S and D

Rydberg states in 87Sr is presented. 87Sr has a large nuclear spin I = 9/2, and at high-n the hyperfine interaction
becomes comparable to, or even larger than, the fine structure and singlet-triplet splittings, which poses a
considerable challenge both for precision spectroscopy and for theory. For high-n S states, the hyperfine shifts
are evaluated nonperturbatively, taking advantage of earlier spectroscopic data for the I = 0 isotope 88Sr, which
results in good agreement with the present measurements. For the D states, this procedure is reversed by first
extracting from the present 87Sr measurements the energies of the 3D1,2,3 states to be expected for isotopes
without hyperfine structure (88Sr), which allows the determination of corrected quantum defects in the high-n
limit.
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I. INTRODUCTION

Rydberg excitation in dense cold-atom samples can lead to
the formation of ultralong-range Rydberg molecules in which
scattering of the Rydberg electron from neighboring ground-
state atoms leads to the binding of one or more ground-state
atoms in multiple possible vibrational levels [1–14]. Measure-
ments of such weakly bound Rydberg molecules have also
been extended to dense Bose-Einstein condensates (BECs)
and higher-n values where the Rydberg electron orbit can
enclose tens to hundreds of ground-state atoms [15–17].

The interaction between the excited Rydberg electron and
a ground-state atom can be described using a Fermi pseu-
dopotential. For strontium, except at short ranges, s-wave
scattering dominates due to the lack of a p-wave resonance.
This results in an oscillating molecular potential that reflects
the modulations in the electron probability density [2]. The
largest, and deepest, potential well is located near the outer
classical turning point and the wave function of the ground
vibrational state of the Rydberg molecule is strongly localized
in this region. Thus, the probability for forming a ground-state
dimer molecule will depend on the likelihood of initially
finding a pair of ground-state atoms at the appropriate in-
ternuclear separation R. By varying n and the location of
the potential minimum, one can probe the pair correlation
function in the ultracold gas. This provides an opportunity
to examine the influence of quantum statistical properties
on Rydberg molecule formation. Strontium is an attractive
candidate for such a study because it possesses both bosonic
(84Sr, 86Sr, and 88Sr) and fermionic (87Sr) isotopes, all of
which have been cooled to degeneracy. The excitation spectra
for the bosonic isotopes are particularly simple as they have
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zero nuclear spin (I = 0) and therefore no hyperfine structure.
In contrast, 87Sr has nuclear spin I = 9/2, which results in
hyperfine interactions that greatly complicate the excitation
spectrum.

Several studies of Rydberg spectra for bosonic 88Sr have
been reported [18–20]. These studies primarily centered on
lower-n states (n � 40) and focused on the perturbations
introduced by channel interactions and their treatment using
multichannel quantum-defect theory (MQDT). Information
on higher-n levels was typically obtained by extrapolating
the measured quantum defects using the Rydberg-Ritz for-
mula. Such extrapolation is known to be an effective method
for predicting the energies of high-n Rydberg states whose
quantum defects are essentially n independent and therefore
nearly constant. This, however, is not true for strontium D

states whose quantum defects exhibit a relatively strong n

dependence.
Experimental and theoretical studies of the spectrum for

87Sr have also been reported [21–26]. These include measure-
ments at low n, where the hyperfine interaction can be treated
as a weak perturbation, and at high n (n ∼ 100), where the
hyperfine shift becomes comparable to or even larger than the
energy spacing between adjacent unperturbed states. Anal-
ysis of the high-n spectrum therefore poses a considerable
challenge and requires use of nonperturbative methods. One
possible approach is to take advantage of the accurate spectral
information available for the bosonic isotope 88Sr and use it
to estimate the spectrum for 87Sr [21–24]. For S states this
approach provides energy levels that agree reasonably well
with measured data [21–24]. A similar method utilizing a
truncated basis set has been used to study low-n (n < 20) 87Sr
D states [27].

However, the high-n levels were analyzed by MQDT [26]
because no corresponding measured levels for the bosonic
isotopes were available. Earlier spectroscopic studies utilized
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a heat pipe, which can introduce uncertainties due to Doppler
and pressure broadening. Moreover, Stark shifts due to the
presence of stray fields could not be controlled. Indeed, for
high-n states, n � 100, additional ad hoc corrections were
introduced to obtain agreement between the theoretical esti-
mates and the experimental measurements.

In this work we measure and analyze the excitation spec-
trum for high-n (50 � n � 100) S and D Rydberg states
created in an 87Sr ultracold gas using two-photon excitation as
a precursor to planned studies of Rydberg molecule formation
in fermionic gases. Measurements using ultracold atoms are
expected to be more accurate than measurements in a heat
pipe because Doppler and pressure broadening are well sup-
pressed and stray fields can also be controlled. In the present
two-photon excitation scheme the intermediate 5s5p 3P1 state
is used instead of the 5s5p 1P1 state employed in earlier stud-
ies. Since the 5s5p 3P1 state has a much longer lifetime than
the 5s5p 1P1 state (τ = 21 μs and τ = 5 ns, respectively),
broadening induced by scattering off the intermediate state is
also suppressed.

We compare our experimental data with predictions de-
rived from a semiempirical theoretical description that ex-
ploits spectroscopic data for the bosonic isotopes. This ap-
proach produces satisfactory agreement with the present mea-
surements. We also derive improved Rydberg-Ritz formulas
for both S and D states at very high n.

II. THEORETICAL APPROACH

An ab initio theoretical description of the electronic struc-
ture of strontium Rydberg atoms with a precision of ∼10 MHz
or better is currently out of reach. Thus, in order to arrive at a
quantitative and predictive description, it is necessary to resort
to semiempirical methods. The theoretical approach adopted
here follows that of earlier work by Beigang and co-workers
[23,24].

The underlying idea is to exploit the much simpler (and
for S states, better known) electronic structure of the bosonic
isotope 88Sr as reference for 87Sr to accurately account for the
perturbations introduced by hyperfine interactions by direct
diagonalization. The spectroscopic data for 88Sr thus serve as
an analog simulation of the full N -electron Schrödinger equa-
tion that accounts for electron correlation and configuration
interactions, which are tacitly assumed to be the same for all
the isotopes. Isotope-specific interactions are then taken into
account nonperturbatively by diagonalizing the full Hamilto-
nian which includes the hyperfine interaction. Accordingly,
the Hamiltonian H (87) for 87Sr is written as

H (87) = H0(88,m87) + Vhf , (1)

where H0(88,m87) plays the role of the unperturbed Hamilto-
nian that yields the eigenstates and eigenenergies, i.e., spectral
lines, for 88Sr but rescaled by the isotope shift corresponding
to the reduced mass m87 = meM87/(me + M87), where me is
the electron mass, M87 is the mass of 87Sr+ ion, and Vhf is
the hyperfine interaction. Corrections beyond the elementary
isotope shift, in particular, the mass polarization correction,
can be estimated from earlier data for helium Rydberg states
[28–30] and, upon rescaling to Sr, are found to be �1 MHz
and can therefore be neglected.

The Hamiltonian H (87) [Eq. (1)] is diagonalized using
the basis states |[(5sn�) 2S+1LJ , I ]F 〉 constructed by the cou-
pling of angular momenta �F = �J + �I , where �I is the nuclear
spin and |(5sn�) 2S+1LJ 〉 are the eigenstates of H0(88,m87).
We note that we retain the conventional Russell-Saunders
2S+1LJ notation for the eigenstates of H0(88,m87) even
though S and L are not exactly conserved quantum numbers
in the presence of the spin-orbit interaction. In this basis
H0(88,m87) is diagonal with corresponding eigenenergies

E
(0)
n,S,L,J = E

(0)
ion − R(m87)(

n − μ
(0)
n,S,L,J

)2 , (2)

where E
(0)
ion is the energy corresponding to the first ionization

threshold of 87Sr assuming I = 0, μ
(0)
n,S,L,J is the quantum de-

fect for the state |(5sn�) 2S+1LJ 〉, and R(m87) = R∞m87/me

with the Rydberg constant R∞. In the following we use either
directly measured or extrapolated (at high-n) quantum defects
for 88Sr as input.

The hyperfine interaction results from the interaction
between an electron and the electric and magnetic multipoles
of the nucleus [31]. For singly excited high-n strontium atoms
with two electrons outside closed shells, Vhf is governed by
the interaction of the 5s valence and n� Rydberg electrons
with the 87Sr nuclear spin I = 9/2. Because of the (n∗)−3

scaling of the hyperfine interaction [32], the hyperfine
shift associated with the Rydberg electron for high-n values
(n > 20) can be estimated to be �1 MHz and can therefore be
safely neglected. (n∗ = n − μ

(0)
n,S,L,J is the effective quantum

number and n∗ � 1.5 for the 5s2 1S0 ground state.) Therefore,
the hyperfine interaction Vhf can be approximated by the
contact interaction of the inner (or valence) 5s electron with
the nucleus [24]

Vhf � a5s�sin · �I , (3)

where �sin is the spin of the inner 5s electron. The hyperfine
coupling constant can be extracted from the ionization
limit yielding a5s � −1.0005 GHz [33] [see the discussion
following Eq. (7)]. Since the interaction of the Rydberg
electron with the nuclear spin is negligibly small, the
hyperfine interaction Vhf is approximately independent
of n. This n independence of Vhf [Eq. (3)] has profound
consequences for the Rydberg spectrum described by the
isotope-rescaled Hamiltonian H (87) [Eq. (1)]. The matrix
elements of the reference Hamiltonian H0(88,m87) depend on
the fine-structure splitting �E

(0)
J = |E(0)

n,S,L,J+1 − E
(0)
n,S,L,J |,

which, taking D states as an example, scales as (in GHz)

�E
(0)
J ∼ 4.4 × 105/n∗3.4 (4)

in the high-n regime (see Fig. 1). The singlet-triplet splittings
scale as (in GHz)

�E
(0)
S = ∣∣E(0)

n,1,L,J − E
(0)
n,0,L,J

∣∣ ∼ 1.8 × 106/n∗3 (5)

and the Coulomb splittings scale as (in GHz)

�E(0)
n = ∣∣E(0)

n+1,S,L,J − E
(0)
n,S,L,J

∣∣ ∼ 5.8 × 106/n∗3. (6)

Therefore, as n∗ increases, Vhf becomes comparable in size
first to the fine structure splitting, then to the singlet-triplet
splitting, and finally to the Coulomb splitting. This is
illustrated in Fig. 1 and leads to strong state mixing.
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FIG. 1. The n scaling of the fine-structure splitting �E
(0)
J

( ), the spin singlet-triplet splitting �E
(0)
S ( ), and the level

separation �E (0)
n ( ) between like states in 88Sr that differ in n

by one. Also shown is the strength of the hyperfine interaction in
87Sr ( ). The splittings �E

(0)
J and Vhf refer to 3D states with

J = 1 and J = 2 and are evaluated using the measured data and their
extrapolation.

In consequence, Eq. (1) cannot in general be treated
perturbatively but rather must be diagonalized.

The present approach is a variant of MQDT [26,34] com-
monly used to analyze the energy levels of multielectron
systems. In MQDT, instead of describing microscopically
the core-electron interaction in each channel and the mixing
of different channels, interactions are represented by a set
of parameters (e.g., scattering phase shifts and K matrices)
which are typically extracted from the measured data. In
the current approach, a different set of parameters, i.e., the
measured quantum defects [or, equivalently, energy levels (2)]
of isotopes with vanishing nuclear spin are used.

An alternative approach to describe the energy levels in
strontium is to use a two-active-electron (TAE) model [35]
which treats the electron-electron interactions between the
outer electrons microscopically while their interaction with
the N − 2 electron core is parameterized in terms of model
potentials. The currently available model potentials yield
quantum defects with an accuracy of ∼0.01. This uncertainty
is larger than that present in current experimental data, es-
pecially for low-n states. Therefore, we do not employ the
TAE approximation in Eq. (1) for deriving results to compare
with experiment. However, we do use TAE calculations to
probe the validity of the approximations entering into our
semiempirical description. For example, the approximation
of the hyperfine interaction by the contact term [Eq. (3)]
is confirmed by TAE calculations. Contributions from the
interactions between the Rydberg electron and the magnetic
dipole and electric quadrupole moments of the core ion are
found to be of the order of 100 Hz (or smaller) around
n = 100. Moreover, the mixing of 4dn� and 5pn� channels in
the |(5sn�) 2S+1LJ 〉 state is negligibly small (less than 0.02%)
and therefore the polarization of the second (inner) valence
electron can be neglected.

In the following we consider two-photon excitation of
87Sr from the ground state to S or D Rydberg states. In the
limit n → ∞ both the S and D Rydberg states converge to
the 87Sr+(5s 2S1/2) ionization limit. Because of the hyperfine
interaction, this ionization limit is split into two components
with F = 4 or 5,

Eion(F ) = E
(0)
ion + a5s

2

(
F (F + 1) − I (I + 1) − 3

4

)
, (7)

where E
(0)
ion is the threshold for 87Sr assuming its nuclear

spin I = 0. From the splitting of the ionization thresholds
Eion(F = 4) − Eion(F = 5), the hyperfine constant a5s is de-
termined. (Note that F has integer values for 87Sr+ rather than
half-integer values for 87Sr.)

A. Energy shift of S states

In 87Sr, there are four S basis states present within
a single Rydberg n manifold with, e.g., mF = 1/2, i.e.,
|[(5sns) 1S0, I ] F = I 〉 and |[(5sns) |3S1〉, I ] F = I, I ± 1〉.
(Note that the hyperfine interaction is independent of mF .) For
evaluation of the matrix elements of the hyperfine interaction
Vhf in this basis, the angular integrals can be performed ana-
lytically [36]. Since F is an exact quantum number, substates
of different F remain decoupled under the action of Vhf .
Consequently, the hyperfine shifts of the states F = I ± 1 are
given by the diagonal elements of the matrix Vhf (in GHz),

〈[(5sns) 3S1, I ]F = I + 1|Vhf |[(5sns) 3S1, I ]F = I + 1〉
= 1

2a5sI � −2.25 (8)

and

〈[(5sns) 3S1, I ]F = I − 1|Vhf |[(5sns) 3S1, I ]F = I − 1〉
= − 1

2a5s (I + 1) � 2.75. (9)

Because of the orthogonality of the radial wave functions,
states with different n belonging to the same spin multiplet are
decoupled. In the limit n → ∞, these states converge to the
ionization limits Eion(F = I ± 1/2) [Eq. (7)] associated with
the states 5s 2S1/2, F = 5 [Eq. (8)] or F = 4 [Eq. (9)] of the
87Sr+ ion. For F = I , the hyperfine interaction causes singlet-
triplet mixing and leads to a breakdown of the LS-coupling
scheme. Since the radial functions belonging to different spin
multiplets are not pairwise orthogonal, the matrix Vhf for the
subspace F = I becomes

〈[(5sn′s) 1S0, I ]F = I | Vhf |[(5sns) 1S0, I ]F = I 〉 = 0,

(10)

〈 [(5sn′s) 3S1, I ]F = I |Vhf |[(5sns) 3S1, I ]F = I 〉
= − 1

2a5sδn,n′ , (11)

〈 [(5sn′s) 1S0, I ]F = I |Vhf |[(5sns) 3S1, I ]F = I 〉
= 1

2a5s

√
I (I + 1)On,n′ , (12)

where On,n′ is the overlap between the singlet and the triplet
radial wave functions and can be estimated semiclassically
[37]. For example, On,n′ � 0.98 for n = n′, On,n′ � 0.1 for
|n − n′| = 1, and continues to rapidly decrease with increas-
ing |n − n′|.
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FIG. 2. Solid lines show hyperfine energy shifts of the 5sns 1,3S

states in 87Sr relative to the eigenvalues of H0(88,m87) [see Eq. (1)].
The state labels for the mixed F = I submanifold [Eqs. (10)–(12)]
indicate the state with the largest overlap. Dashed lines show hyper-
fine energy shifts for F = I states when mixing of adjacent n levels
due to the hyperfine interaction is neglected, i.e., setting On,n′ = δn,n′

in Eq. (12).

Using this hyperfine interaction matrix together with the
Hamiltonian H0(88,m87) derived from the measured energies
for n � 70 1S0 states [38] and for n � 40 3S1 states [20]
in 88Sr as well as values obtained by extrapolation [18] to
higher n using the Rydberg-Ritz formula, the Hamiltonian
(1) is diagonalized. (Note that the Rydberg-Ritz formula is
also used for low-n states when the measured data show large
fluctuations.) H0(88,m87) is constructed by first converting
the measured energies and ionization threshold [39] for 88Sr
to quantum defects using Eq. (2) with the Rydberg constant
R(m88) mass scaled for 88Sr. These quantum defects are
then converted back to energies appropriate to 87Sr using the
ionization threshold for 87Sr and the corresponding 87Sr mass-
scaled Rydberg constant R(m87). The ionization threshold for
87Sr has only been measured for the 5s 2S1/2, F = 4 state.
The threshold E

(0)
ion is therefore estimated by subtracting the

hyperfine shift −(1/2)a5s (I + 1) [Eqs. (7) and (9)] from the
measured value. Figure 2 shows the calculated hyperfine shift
E − E

(0)
n,S,L,J , where E is an eigenenergy of the Hamiltonian

H (87). As reference we use the eigenvalues E
(0)
n,S,L,J of

H0(88,m87). In the case of singlet-triplet mixing (for F = I )
we use the eigenvalue of the S state that features the largest
overlap. For low-n states, the hyperfine interaction is much
smaller than the singlet-triplet splitting. Therefore, the hyper-
fine interaction can be treated perturbatively and the first-order
term in the energy shift vanishes for 1S0 states [Eq. (10)] and is
−(1/2)a5s � 0.5 GHz for 3S1 states [Eq. (11)] as observed in
Fig. 2 for n � 20. As n increases, the mixing of the singlet and
triplet states leads to strong deviations from the perturbative
estimates and eventually, in the high-n limit, the shifts of the
two F = I states approach that of either the F = I + 1 or
the F = I − 1 state, the splitting of which corresponds to that
of the ionization limits. For very high n the inter-n mixing

becomes non-negligible. The comparison between the full
calculation and the one in which inter-n mixing is switched off
[i.e., On,n′ = δn,n′ in Eq. (12)], also shown in Fig. 2, reveals
that only for n > 80 do the contributions from different n

levels become visible. Around n = 100, the difference be-
tween the two calculations is ∼70 MHz. We note that the
accuracy of the calculations is limited by the uncertainties
in the measurement of the Rydberg states and the ionization
thresholds as well as by the Rydberg-Ritz fitting used to
derive the energies E

(0)
n,S,L,J . An order of magnitude estimate

of the uncertainty can be obtained as follows. Taking, for
example, the measured data [20] for n � 40 with an accuracy
of 0.01 cm−1 � 300 MHz, this uncertainty translates into an
error of at most 0.002 in the quantum defect. For high n,
assuming that the quantum defect can be extrapolated with the
same accuracy of 0.002, the resulting error in high Rydberg
states would be 0.002/n3, corresponding to ∼35 MHz for
n ∼ 70 and ∼13 MHz for n ∼ 100.

B. Energy shift of D states

Extending the method used for the S states to D states
presents considerable difficulties. The available measured
levels for the 3D states of 88Sr are limited to n � 40 [20].
Moreover, the quantum defects extracted from these mea-
surements feature a non-negligible n dependence which pre-
cludes the accurate extrapolation to very high-n states. In
fact, attempts to employ quantum defects derived from earlier
measurements of low-n states [18] to describe the present
data for higher n failed to provide any reasonable degree of
agreement. Therefore, for the 3D states we apply the method
outlined above, only in reverse. Following Eq. (1), we use the
present experimental data for 87Sr to determine spectroscopic
information for the bosonic isotope. In practice, the quantum
defects μ

(0)
n,S,L,J [Eq. (2)] are treated initially as free param-

eters and the eigenvalues of H (87) are evaluated for each
guess of μ

(0)
n,S,L,J . By scanning through the parameter space in

μ
(0)
n,S,L,J the set of quantum defects that yield, for the hyperfine

energy levels of 87Sr, the best agreement with the measured
data are identified. The quantum defects for the n = 50, 60,
and 98 levels obtained in this manner are used to update the
Rydberg-Ritz formula for the 3D states, in particular for their
high-n limits. These quantum defects are then tested against
data for n � 50 and 80 Rydberg states in 88Sr. Moreover, the
updated Rydberg-Ritz formula can be used to calculate the
hyperfine structure for higher-n 87Sr Rydberg D states and
the resulting predictions tested against measured data for very
high-n (n ∼ 100, 280) D states [26,40]. In our analysis, we
include all singlet and triplet D states, i.e., |[(5snd ) 1D2, I ]F 〉
and |[(5snd ) 3D1,2,3, I ] F 〉 states with |I − J | � F � I + J .

For Rydberg D states, the spin-orbit interaction (see Fig. 1)
leads to a breakdown of the LS coupling even in the ab-
sence of nuclear spin. This small but non-negligible cou-
pling induces a weak mixing between the 1D2 and the 3D2

states [19,26]. To account for this mixing, the D states for
I = 0, i.e., eigenstates of the Hamiltonian H0(88,m87), are
expanded as

|(5snd ) 1D2〉 = cos θ
∣∣n∗

1
1D2

〉 + sin θ
∣∣n∗

1
3D2

〉
,

|(5snd ) 3D2〉 = − sin θ
∣∣n∗

3
1D2

〉 + cos θ
∣∣n∗

3
3D2

〉
.

(13)
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The |n∗
1,3

1,3D2〉 states denote pure singlet and triplet states
while the mixed singlet or triplet states are denoted by
|(5snd ) 2S+1D2〉. With the help of an independent TAE cal-
culation we have verified that the radial wave functions of
both pure singlet and triplet states |n∗

2S+1
1D2〉 and |n∗

2S+1
3D2〉

follow the same asymptotic behavior characterized by the
same scattering phase shift or, equivalently, effective quantum
number n∗

2S+1 = n − μ
(0)
n,S,L=2,J=2.

The mixing of singlet and triplet states is known to be
strong around n = 15 and the value of θ is sensitive to the
value of n [19]. Indeed, the singlet and the triplet states
include a sizable admixture of the 4d6s configuration around
n = 15, modifying the magnitude of the electron-electron
interaction. Consequently, the spin-orbit interaction becomes
comparable to the electron-electron interaction, leading to
strong mixing of the singlet and triplet states. This results in
a pronounced deviation of the singlet-triplet splitting from the
n−3 scaling around n = 15 (Fig. 1). For higher n, on the other
hand, the singlet-triplet mixing becomes nearly n independent
and θ is estimated to converge towards θ ∼ −0.14. (The
TAE calculation yields a similar value, θ ∼ −0.16.) As will
be shown later, the current experimental data can be well
reproduced when θ is set to −0.14 and this value is used in the
following calculations. Including this admixture, the matrix
elements of the hyperfine operator Vhf in the D sector can be
calculated (see the Appendix).

Using the measured quantum defects for 88Sr [20,38] and
the Rydberg-Ritz formula, the hyperfine structure is calcu-
lated and plotted in terms of quantum defects (see Fig. 3).
This quantum defect should converge to a constant value
as n → ∞ provided that the Rydberg series is pure, i.e.,
converges to a well-defined ionization threshold. However,
since for 87Sr two ionization limits Eion(F = 4, 5) [Eq. (7)]
are present and the channels are strongly mixed by the hy-
perfine interaction, it is not straightforward to identify the
proper ionization limit for each Rydberg series. We illustrate
this point in Fig. 3, where the fractional part of the quan-
tum defect (μ mod1) relative to just one of the two thresh-
olds Eion(F = 4) is plotted. The quantum defect relative to
Eion(F = 4) is defined as

μ(νF=4) = n− νF=4 with νF=4 =
√

R(m87)

Eion(F = 4) − E
,

(14)

where E is the eigenenergy of the Hamiltonian H (87)
[Eq. (1)] and is expressed in terms of the effective quan-
tum number νF=4 for the different F manifolds. A few dif-
ferent νF=4 dependences in μ(νF=4) can be distinguished:
A near constant μ(νF=4) as seen for F = I − 3 indicates
convergence to Eion(F = 4) and a monotonically increasing
μ(νF=4) (F = I + 3) signals the approach of the other ion-
ization threshold Eion(F = 5),

μ(νF=4) = n −
√

R(m87)

Eion(F = 5) + �Eion − E

� μ(νF=5) + �Eion

2R(m87)
ν3

F=5, (15)
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FIG. 3. Solid lines show the fractional part of quantum defect
μ(νF=4) evaluated relative to the F = 4 ionization threshold [see
Eq. (14)] as a function of the effective quantum number νF=4 for
different F manifolds of 87Sr in the D sector. Each state is labeled
by its dominant 2S+1DJ state component.

with νF=5 = {R(m87)/[Eion(F = 5) − E]}1/2 and �Eion =
Eion(F = 4) − Eion(F = 5) > 0. In the high-n limit, while
μ(νF=5) becomes a constant, μ(νF=4) increases with n.
Around νF=4 � 110, �Eion becomes comparable to n−3 and
the quantum defect will be shifted by 1 (equivalent to ap-
proaching the same value for its fractional part) compared
to its value for lower n. Consequently, the inter-n mix-
ing becomes strong and, correspondingly, the formation of
avoided crossings is clearly observed. The existence of multi-
ple thresholds affects the extraction of proper quantum defects
as for high n the hyperfine interaction can become comparable
to the energy splittings between states with �n � 1 and the
asymptotic behavior of the quantum defects may become even
more complicated.

III. EXPERIMENTAL METHOD

A schematic diagram of the present experimental arrange-
ment is presented in Fig. 4. The cooling and trapping of
strontium is described in detail elsewhere [41–45]. Briefly,
starting from a Zeeman slowed atomic beam, 87Sr atoms
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FIG. 4. (a) Diagram of the experimental arrangement showing
the 461-nm cooling beams and the counterpropagating 689- and
319-nm Rydberg excitation lasers. (b) Two-photon excitation scheme
utilizing either the (i) 5s5p 3P1, F = 11/2 or (ii) 5s5p 3P1, F =
9/2 intermediate states. The detunings �11/2 ∼ 12 MHz and
�9/2 ∼ 36 MHz remain fixed. (c) Arrangement of the electrodes
used for ionizing Rydberg atoms and guiding the electrons towards
the MCP detector.

are first cooled and trapped using a “blue” magneto-optical
trap (MOT) operating on the 461-nm 5s2 1S0 → 5s5p 1P1

transition. The atoms are then further cooled in a narrow-line
“red” MOT utilizing the 5s2 1S0 → 5s5p 3P1 intercombina-
tion line at 689 nm. Approximately 106 atoms at ∼2 μK are
captured before turning off all trapping fields for spectroscopy
measurements.

Rydberg atoms are created by two-photon excitation
using counterpropagating cross-linearly polarized 689-nm
and 319-nm laser beams which drive transitions to the
5sns 3S1 and 5snd 3D1,2,3 Rydberg levels via the intermediate
5s5p 3P 1, F = 9/2 or 11/2 states. These intermediate states
were selected to take advantage of selection rules to aid
in identifying the Rydberg hyperfine states populated [see
Fig. 4(b)]. The typical detunings of the 689-nm laser were
�9/2 ∼ 36 MHz and �11/2 ∼ 12 MHz. The 689-nm laser was
chopped into (10–20)-μs-long pulses to generate temporally
localized groups of Rydberg atoms. The number of Rydberg
atoms produced by each pulse was determined by using the
electrodes in Fig. 4(c) to generate a ramped electric field
sufficient to ionize the Rydberg atoms. The resulting electrons
were directed towards, and detected by, a microchannel plate
(MCP) whose output was fed into a multichannel scalar.
Typically 100–500 measurement cycles were performed be-
fore loading a new sample and changing the 319-nm laser
frequency. Spectroscopic measurements at high n using 84Sr
showed that the stray fields in the trapping region were less
than 10 mV cm−1. Any resultant Stark shifts should therefore
be at most a few megahertz even at n ∼ 90.

The 319-nm radiation was generated by frequency dou-
bling the output of a 638-nm optical parametric oscillator
(OPO). A sample of the output is sent though a broadband
fiber electro-optic modulator from which one of the sidebands

(a)

(b)

FIG. 5. (a) Wavelength dependence of the offset δ between the
measured and published transition frequencies used to calibrate
the wavemeter. The black line shows the linear fit used to obtain
the offset at 638 nm and the shaded region the uncertainty in the
wavemeter calibration obtained from Monte Carlo simulations (see
the text). The inset shows the offset of the 689-nm transition in 88Sr
measured at different times.

was locked to a transfer cavity, allowing the 319-nm laser
to be scanned over multiple gigahertz. The transfer cavity
was stabilized using a 689-nm master laser locked to the
5s2 1S0 → 5s5p 3P1 transition in 88Sr. The linewidth of the
319-nm laser is estimated to be �500 kHz based on the
narrowest observed spectroscopic features.

A wavemeter (EXFO WA-1500) was used to measure the
wavelength of the 638-nm output from the OPO and hence
determine the Rydberg state energies with a resolution-limited
statistical uncertainty (σstat) of about ±15 MHz (±30 MHz)
at 638 nm (319 nm). In order to estimate systematic off-
sets in the wavemeter, the frequencies of lasers locked to
atomic transitions in 88Sr (5s2 1S0 → 5s5p 3P1 at 689 nm
[39,46]) and in 6Li (2s 2S1/2, F = 3/2 → 2p 2P3/2 at 671 nm
and 2s2S1/2, F = 3/2 → 3p 2P3/2 at 646 nm/2 = 323 nm
[47–49]) were measured and then compared to the published
values for the same transitions and the differences δ between
the measured and published frequencies are shown in Fig. 5.
A linear fit yields an offset of ≈140 MHz at 638 nm. In an at-
tempt to estimate the systematic uncertainty in this calibration
factor, a Monte Carlo sampling was adopted in which linear
fits to points drawn at random from the Gaussian uncertainty
distributions appropriate to each point in the calibration were
repeated, resulting in a systematic uncertainty (σsys) of about
±25 MHz (±50 MHz) at 638 nm (319 nm). To check for
drifts in the wavemeter calibration, each 638-nm wavelength
measurement was followed by a reference measurement of the
689-nm master laser. As shown in the inset in Fig. 5(b), the
day-to-day variations were relatively small compared to the
wavemeter’s systematic uncertainty. Whereas our waveme-
ter limits the measurements of individual term energies to
∼60 MHz, line separations can be measured to kilohertz-level
accuracies when scanning within a single free spectral range
(FSR) of the transfer cavity and to megahertz-level accuracies
when piecing together scans over successive FSRs.
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TABLE I. Experimentally measured and theoretically calculated energies of selected 5sns 1S0 and 5sns 3S1 states in 87Sr. Here �Eexpt

and �Etheor are the measured and predicted separations from the 5sns 3S1, F = 11/2 state of the same n which is used as a reference. The
uncertainties shown include both the statistical and systematic uncertainties in the wavemeter calibration.

Series n Term F Eexpt (cm−1) �Eexpt (GHz) Etheor (cm−1) �Etheor (GHz)

5sns 40 1S0 9/2 45 850.8762(21) 16.35(8) 45 850.8702 16.22
60 45 898.1444(22) 7.28(9) 45 898.1421 7.26
72 45 909.0252(20) 6.10(9) 45 909.0240 6.1
74 45 910.3230(21) 5.98(9) 45 910.3211 5.99
76 45 911.5148(20) 5.91(8) 45 911.5127 5.89
77 45 912.0738(20) 5.84(9) 45 912.0725 5.85
78 45 912.6114(20) 45 912.6100 5.81
82 45 914.5606(22) 5.66(9) 45 914.5589 5.67
86 45 916.2336(21) 5.56(8) 45 916.2321 5.56
90 45 917.6802(19) 5.46(8) 45 917.6791 5.47
94 45 918.9402(19) 5.40(8) 45 918.9388 5.39
98a 45 920.0438(22) 5.325(5) 45 920.0423 5.327

5sns 40 3S1 7/2 45 850.4974(21) 4.99(8) 45 850.4960 5.0
60 45 898.0688(21) 5.02(8) 45 898.0668 5.0

5sns 40 3S1 9/2 45 850.4078(21) 2.31(8) 45 850.4061 2.31
50 45 881.7138(22) 1.88(9) 45 881.7119 1.89
72 45 908.8546(21) 0.99(9) 45 908.8528 0.97
74 45 910.1518(22) 0.85(9) 45 910.1516 0.91
76 45 911.3460(19) 0.85(8) 45 911.3445 0.85
77 45 911.9068(21) 0.83(9) 45 911.9049 0.83
78 45 912.4444(19) 45 912.4429 0.8
82 45 914.3958(21) 0.72(9) 45 914.3935 0.71
86 45 916.0696(21) 0.64(8) 45 916.0677 0.63
90 45 917.5172(21) 0.57(8) 45 917.5155 0.56
94 45 918.7774(22) 0.52(9) 45 918.7759 0.51
98a 45 919.8816(22) 0.46302(7) 45 919.8800 0.46164

5sns 30 3S1 11/2 45 777.3637(20) 45 777.3621
31 45 788.3644(21) 45 788.3624
32 45 798.2325(22) 45 798.2302
33 45 807.1179(19) 45 807.1158
34 45 815.1469(21) 45 815.1452
35 45 822.4253(21) 45 822.4252
36 45 829.0469(20) 45 829.0460
37 45 835.0865(21) 45 835.0851
38 45 840.6098(14) 45 840.6085
39 45 845.6759(22) 45 845.6734
40 45 850.3308(15) 45 850.3291
42 45 858.5807(21) 45 858.5793
43 45 862.2455(20) 45 862.2439
44 45 865.6435(21) 45 865.6413
45 45 868.7988(15) 45 868.7968
49 45 879.4140(19) 45 879.4124
50 45 881.6510(21) 45 881.6488
55 45 890.9526(20) 45 890.9511
60 45 897.9014(19) 45 897.9000
65 45 903.2294(19) 45 903.2272
72 45 908.8216(22) 45 908.8205
74 45 910.1236(22) 45 910.1213
76 45 911.3178(19) 45 911.3161
77 45 911.8790(21) 45 911.8774
82 45 914.3718(22) 45 914.3699
86 45 916.0482(19) 45 916.0467
90 45 917.4982(19) 45 917.4967
94 45 918.7600(21) 45 918.7590
98 45 919.8662(22) 45 919.8646
99a 45 920.1210(22) 45 920.1196

aMeasured relative to the 5s98s 3S1, F = 11/2 state, see Table II.
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FIG. 6. Quantum defects μ
(0)
n,S,L,J for the 5sns 3S1 levels: mea-

surements from earlier work [20,38] ( ), present measurements of
the 5sns 3S1, F = 11/2 states derived from the earlier ionization
limit [39] ( ), and present measurements with modified ionization
limit (see the text) ( ). Also shown are the predictions using the
Rydberg-Ritz formula from [18] ( ) and the modified Rydberg-
Ritz formula ( ). The inset shows the higher-n region on an
expanded scale.

IV. RESULTS AND DISCUSSION

Table I lists the measured term energies for multiple
5sns 1,3S states with 30 � n � 99. Figure 6 shows quantum
defects μ

(0)
n,S,L,J for the 5sns 3S1 states either measured for

88Sr [20,38] or obtained using the corresponding Rydberg-
Ritz formula [18] together with those extracted from the cur-
rent measurement of the 5sns 3S1, F = 11/2 states for 87Sr.
Since the hyperfine energy shift for the 5sns 3S1, F = 11/2
states is constant [Eq. (8)], the quantum defects μ

(0)
n,S,L,J of the

corresponding bosonic isotope can be uniquely determined.
The quantum defects obtained in this manner deviate from the
values predicted by the earlier Rydberg-Ritz formula display-
ing a slow decrease in μ

(0)
n,S,L,J with increasing n. In line with

the earlier discussion [Eq. (15)], such a systematic decrease
in μ

(0)
n,S,L,J with n is typically observed when the ionization

threshold is slightly shifted. In the current study the previously
reported ionization threshold for 87Sr [38,39] is used in Eq. (2)
to convert between the energy and the quantum defect. After
subtracting the hyperfine energy correction its value is E

(0)
ion =

45 932.1943 cm−1. The present measured energy levels can be
converted to a converged, nearly constant quantum defect if a
slightly higher threshold energy E

(0)
ion � 45 932.1956 cm−1 is

used (see Fig. 6). This would correspond to an energy shift
of ∼40 MHz. (We note that other sources of uncertainty such
as specific isotope effects, mass polarization contributions, or
stray field effects can be ruled out.) Due to the fluctuations
in the measured quantum defects (Fig. 6) for high n, the
ionization threshold can be determined only within an error
of ∼±20 MHz.

Another feature observed in Fig. 6 is a nearly constant shift
of the measured μ

(0)
n,S,L,J from the Rydberg-Ritz prediction

for low-lying states 30 < n < 40. Since the quantum defects
at low n are insensitive to small differences in the ionization
threshold, the observed shift suggests the Rydberg-Ritz for-
mula for the 3S states needs to be updated. The combined data
from the earlier measurements [20,38] for 88Sr and the current
measurements for 87Sr can be well fit using the Rydberg-Ritz
expression

μ
(0)
n,S,L,J = μ0 + α

(n − μ0)2
+ β

(n − μ0)4
(16)

and the values of μ0, α, and β given in Table III, which
also includes the corresponding values derived from the ear-
lier measurements at lower n [18]. The change in quan-
tum defect is small (∼0.0035) but, when converted to en-
ergy, the difference can be non-negligible for low-n states
(∼80 MHz for n = 30). Table I includes theoretical pre-
dictions based on diagonalization of the rescaled Hamilto-
nian (1). The calculations use the modified Rydberg-Ritz
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FIG. 7. Shown in blue are the measured spectra for 5snd 3D

states of 87Sr in the vicinity of (a) n = 50, (b) n = 60, and (c) n = 98.
Energies are given relative to the 5s50s, 5s60s, and 5s98s 3S1, F =
11/2 states, respectively. Rydberg excitation was performed follow-
ing scheme (ii) in (a) and (b) and scheme (i) in (c). The vertical bars
above the data show the calculated positions for the various hyperfine
states (see the text). The measured levels and splittings are given in
Table II.
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TABLE II. Comparison of measured and calculated positions of 5snd 3D1,2,3 lines for n = 50, 60, and ∼98. The splittings �Eexpt between
those lines that could be measured during a single FSR scan of the 319-nm laser frequency or, for n ∼ 98, where neighboring scans could be
accurately patched together are included together with the corresponding theoretical predictions. For the n = 98–99 scan, all differences are
referenced to the 5sns 3S1, F = 11/2 level.

Series n Term F Eexpt (cm−1) �Eexpt (MHz) Etheor (cm−1) �Etheor (MHz)

5snd 50 3D1 7/2 45 883.1440(22) −295.60(7) 45 883.1414 −299.01
50 3D1 9/2 45 883.1538(22) 0 45 883.1514 0
50 3D2 11/2 45 883.1685(22) 439.39(7) 45 883.1662 443.71

5snd 50 3D2 7/2 45 883.2882(21) 0 45 883.2855 0
50 3D2 9/2 45 883.2922(21) 118.91(7) 45 883.2893 114.7
50 3D1 11/2 45 883.2972(21) 269.12(7) 45 883.2942 260.55

5snd 50 3D3 11/2 45 883.3849(22) −890.64(7) 45 883.3814 −890.22
50 3D3 9/2 45 883.4146(22) 0 45 883.4111 0

5snd 50 3D3 7/2 45 883.4374(22) 45 883.4339

5snd 60 3D1 7/2 45 898.7367(21) −183.64(7) 45 898.7347 −178.89
60 3D1 9/2 45 898.7428(21) 0 45 898.7407 0
60 3D2 11/2 45 898.7521(21) 277.34(7) 45 898.7497 270.37

5snd 60 3D2 7/2 45 898.8568(22) −79.40(7) 45 898.8544 −72.67
60 3D2 9/2 45 898.8594(22) 0 45 898.8569 0
60 3D3 11/2 45 898.8618(22) 71.37(7) 45 898.8588 58.8

5snd 60 3D1 11/2 45 898.9223(22) −626.40(7) 45 898.9197 −609.77
60 3D3 9/2 45 898.9432(22) 0 45 898.9400 0
60 3D3 7/2 45 898.9608(22) 526.18(7) 45 898.9573 517.37

5sns 98 3S1 11/2 45 919.8662(22) 0 45 919.8646 0
98 3S1 9/2 45 919.8816(22) 463.02(7) 45 919.8800 461.64

5snd 97 3D1 11/2 45 919.9565(22) 2707.6(35) 45 919.9552 2716.6
97 3D2 9/2 45 919.9593(22) 2792.4(35) 45 919.9579 2796.2
97 1D2 9/2 45 919.9896(22) 3701(4) 45 919.9879 3697
97 1D2 11/2 45 919.9925(22) 3785(4) 45 919.9909 3786
97 1D2 13/2 45 919.9946(22) 3850(4) 45 919.9933 3857

5sns 98 1S0 9/2 45 920.0438(22) 5325(5) 45 920.0423 5327
5snd 98 3D1 9/2 45 920.0474(22) 5432(5) 45 920.0460 5439

98 3D2 11/2 45 920.0501(22) 5512(5) 45 920.0485 5514
98 3D2 13/2 45 920.0544(22) 5641(5) 45 920.0526 5636
98 3D3 13/2 45 920.0916(22) 6756(6) 45 920.0901 6761
98 3D3 11/2 45 920.0956(22) 6877(6) 45 920.0943 6886
98 3D3 9/2 45 920.0982(22) 6954(6) 45 920.0971 6970

5sns 99 3S1 11/2 45 920.1210(22) 7639(6) 45 920.1196 7643

formula for μ
(0)
n,S,L,J together with the measured ionization

threshold [38,39]. On average, the present theoretical esti-
mates lie slightly below the measured energy levels and, in
the high-n limit, their differences converge to a near-constant
value of 40–50 MHz. This provides another indication that the
ionization threshold should be modified.

To remove the uncertainty in the ionization limit from
the comparison between experiment and theory, we also in-
clude in Table I the measured energy differences between
the 5sns 1S0, F = 9/2 or the 5sns 3S1, F = 7/2, 9/2 states
and the corresponding 5sns 3S1, F = 11/2 states together
with the values predicted by theory. As seen in Table I, the
discrepancies between these values are typically well below
0.0005 cm−1 � 15 MHz. Therefore, in the following, we fo-
cus on relative energies in our analysis of D states.

Figure 7 shows the positions of the measured 5snd 3D

spectral lines for n = 50, 60, 97, and 98 relative to the

energy of the 5sns 3S1, F = 11/2 state. The corresponding
term values are listed in Table II. The n = 50 and 60 states
were excited via the intermediate 5s5p 3P1, F = 9/2 state,
allowing the creation of states with F = 7/2, 9/2, and 11/2.
The n = 97 and 98 states were excited via the intermediate
5s5p 3P1, F = 11/2 state, allowing the creation of F = 9/2,
11/2, and 13/2 states. Figure 7 also includes the best theoret-
ical fit to the data that could be obtained. This was realized by
first determining the values of the quantum defects μ

(0)
n,S,L,J

that best reproduce the measured energy levels and then using
these to update the Rydberg-Ritz expression (16) for the n

dependence of the quantum defect at high n (see Table III).
The predicted levels shown in Fig. 7 are derived using the
updated Rydberg-Ritz formulas. However, since the measured
quantum defects of 88Sr 1D2 states (with I = 0) are available
up to n = 70, the Rydberg-Ritz expression from [18] is used
for these states. The measured quantum defects for the 3D
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TABLE III. Values of the parameters μ0, α, and β for the
Rydberg-Ritz formula obtained in this and earlier work.

Series Term μ0 α β Reference

5sns 1S0 3.268 96(2) −0.138(7) 0.9(6) [18]

5sns 3S1 3.370 65 0.443 −0.553 this work
3.371(2) 0.5(2) −1(2) × 101 [18]

5snd 1D2 2.3807(2) −39.41(6) −109(2) × 101 [18]

5snd 3D1 2.673 −5.4 −8166 this work
2.658(6) 3(2) −8.8(7) × 103 [18]

5snd 3D2 2.662 −15.4 −9804 this work
2.636(5) −1(2) −9.8(9) × 103 [18]

5snd 3D3 2.612 −41.4 −15 363 this work
2.63(1) −42.3(3) −18(1) × 103 [18]

states are shown in Fig. 8 together with the values given by
both the present and the earlier Rydberg-Ritz expressions. The
differences between the predicted quantum defects [Eq. (16)]
based on the present data for 87Sr and previous data for 88Sr
[18] appear to be small ∼0.02. However, when converted to
energy, this small difference translates into discrepancies of
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FIG. 8. Quantum defects μ
(0)
n,S,L,J for the 5snd 3D1,2,3 levels:

measurements from earlier work [20,38] ( ), present measurements
( ), predictions using the Rydberg-Ritz formulas developed previ-
ously [18] ( ), and predictions based on the present updated
Rydberg-Ritz formulas (see the text) ( ). The insets show the
high-n region on an expanded scale.

130 MHz for n = 100 and 1 GHz for n = 50 well outside the
uncertainty of the current experiment.

The present Rydberg-Ritz formulas can also be tested
against earlier measured quantum defects for D states in 87Sr
(n > 100) [26]. The data are reproduced to within an average
difference of ∼60 MHz. When the modified ionization limit
discussed above is used to evaluate the quantum defect, the
average difference is reduced to ∼25 MHz. These residual
differences could be caused by stray fields present in the
heat pipe used for the earlier work. Additionally, the current
theoretical model can predict the hyperfine structure of D

states around n � 280, which can again be compared with
the earlier measurements [40]. Due to the uncertainty in the
ionization threshold, the exact energies cannot be evaluated
but the size of the hyperfine splittings is well reproduced
within an error of 10 MHz.

Finally, the improved Rydberg-Ritz formulas for the 3D

states determined from the present data for 87Sr can be used
to determine spectroscopic information for 88Sr. When we
compare energies for the 5s50d and 5s80d 3D1,2 states derived
using the present updated Rydberg-Ritz formulas with earlier
measurements [50,51] the agreement is significantly improved
over that obtained using the earlier Rydberg-Ritz parametriza-
tion, the differences between theory and experiment being
reduced by several hundred megahertz.

As a further test of the present theoretical approach, Ta-
ble II includes the frequency separations between selected
pairs of levels that could be measured during a single FSR
scan of the 319-nm laser and that are known to high pre-
cision. Table II also includes the corresponding theoretical
predictions. In all but one case the measured and theoretical
separations agree to better than ±10 MHz.

V. SUMMARY

The present work demonstrates that the energies of high-n
87Sr Rydberg states can be accurately determined by diago-
nalizing an isotope-rescaled Hamiltonian. This Hamiltonian is
constructed using spectral information for the bosonic isotope
(88Sr) which has vanishing nuclear spin combined with the
hyperfine interaction present in 87Sr. The present approach
can be implemented for fermionic atoms whenever the energy
levels for an isotope with vanishing nuclear spin are available.
The method can also be applied in reverse, allowing deter-
mination of spectroscopic information, in particular quantum
defects, for bosonic isotopes from the hyperfine-resolved
spectrum of the fermionic isotope. The major limitation on
the accuracy of the present analysis is the uncertainty in the
hyperfine-resolved ionization threshold. This uncertainty can
be removed by focusing on energy differences to a reference
level whereupon accuracies of the order of a few megahertz
can be achieved.
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APPENDIX: MATRIX ELEMENTS OF THE HYPERFINE
OPERATOR Vhf

The matrix elements of the hyperfine operator Vhf can be
evaluated analytically [36] and they are listed in the following.
For the diagonal elements of J = 2 states we find

〈[(5sn′d ) 1D2, I ]F | Vhf |[(5snd ) 1D2, I ]F 〉
= −a5sλK cos(θ + ξ ) sin θδn,n′ ,

〈[(5sn′d ) 3D2, I ]F | Vhf |[(5snd ) 3D2, I ]F 〉
= a5sλK sin(θ + ξ ) cos θδn,n′ , (A1)

with K = F (F + 1) − J (J + 1) − I (I + 1), λ = (2� + 1)/
[4�(� + 1)], ξ = arcsin[1/(2� + 1)], and � = 2. The diagonal
elements of J = 1, 3 states are

〈[(5sn′d ) 3D1, I ]F | Vhf |[(5snd ) 3D1, I ]F 〉
= − 1

4�
a5sKδn,n′ ,

〈[(5sn′d ) 3D3, I ]F | Vhf |[(5snd ) 3D3, I ]F 〉
= 1

4(� + 1)
a5sKδn,n′ . (A2)

The off-diagonal elements between states with the same
J = 2 are

〈[(5sn′d ) 1D2, I ]F | Vhf |[(5snd ) 3D2, I ]F 〉
= −λ

2
a5sK cos(2θ + ξ )On,n′ (A3)

and those with different J are

〈[(5sn′d ) 1D2, I ]F | Vhf |[(5snd ) 3D1, I ]F 〉

= − 1

4�
a5sK− sin(θ − η)On,n′ ,

〈[(5sn′d ) 1D2, I ]F | Vhf |[(5snd ) 3D3, I ]F 〉

= 1

4(� + 1)
a5sK+ cos(θ − η)On,n′ ,

〈[(5sn′d ) 3D2, I ]F | Vhf |[(5snd ) 3D1, I ]F 〉

= 1

4�
a5sK− cos(θ − η)On,n′ ,

〈[(5sn′d ) 3D2, I ]F | Vhf |[(5snd ) 3D3, I ]F 〉

= 1

4(� + 1)
a5sK+ sin(θ − η)On,n′ ,

〈[(5sn′d ) 3D1, I ]F | Vhf |[(5snd ) 3D3, I ]F 〉
= 0, (A4)

with

η = arcsin
√

�/(2� + 1),

K− =
√

[�2 − (F − I )2][(F + I + 1)2 − �2],

and

K+ =
√

[(� + 1)2 − (F − I )2][(F + I + 1)2 − (� + 1)2].

Similar to the S states, the overlap integral On,n′ of the radial
wave functions can be evaluated semiclassically [37] and
depends only on the effective quantum number n − μ

(0)
n,S,L,J .
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