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Exotic molecules consisting of an antiproton and a hydrogen atom
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A theoretical study is conducted on the stability of exotic antiproton-hydrogen molecular anions (p̄H),
which in the separated atom limit correlate with p̄ + H(n = 2) (n being the principal quantum number). The
p̄H molecule in the electronic ground state is highly unstable due to pair annihilation and autodetachment
(→ p̄p + e). However, if the p̄H molecule is electronically excited, the molecular stability can be drastically
improved. Since the excited states of the H atom have accidental degeneracy, the asymptotic form of the
Born-Oppenheimer potential curve of p̄ + H(n = 2) behaves as 1/R2 (R being the relative distance), which
can play a critical role in the bonding and stability of the molecule. It is found that the p̄H molecule in the
first electronic excited state and in a high rotational state is sufficiently stable and has a lifetime dominated by
spontaneous radiative emission (→ p̄ + H + hν). The p̄H system is dynamically similar to H2

−, which had
been commonly considered to be unstable due to autodetachment. However, recent measurements of ion-beam
sputtering unambiguously verified the existence of long-lived H2

− molecules in high rotational states. This
suggests that the p̄H molecules may actually be created if one employs experimental means such as the chemical
sputtering of hydrogen-rich targets with p̄ beams.
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I. INTRODUCTION

The exotic system, in which particles and antiparticles
are bound together by atomic or molecular interaction, is
of interest for the purpose of not merely producing it but
also gaining a deep insight into the physics of antimatter in
matter. The simplest and most fundamental examples of such
exotic combinations are positronium Ps = ee+ (e+ being a
positron), protonium Pn = p̄p (p̄ being an antiproton), true
muonium μ−μ+ (μ± being a muon), and so on. These kinds
of exotic two-body atoms (usually named by adding the suffix
“-onium”), in which a particle and its antiparticle are bound
by the attractive Coulomb interaction, have a decay channel
attributable to pair annihilation. However, the rate of the
pair annihilation decreases rapidly as the angular momentum
of the atomic orbital becomes higher [1–3]. Therefore, the
particle-antiparticle atoms in high angular momentum states
can have long lifetimes. A variety of investigations have been
done, particularly for the Ps atom [4,5]. Recent experimental
studies further demonstrated the existence of positronium ions
Ps− [6] and also so-called di-positronium Ps2 (also known
as positronium molecules) [7]. Another notable example of
the exotic system is an antiprotonic atom [8], in which the
attractive Coulomb interaction between the antiproton and
the atomic nucleus plays an important role in the bonding.
Of particular interest is antiprotonic helium p̄He+ [9–11]. In
high-resolution spectroscopic studies of the p̄He+ atom, the
mass and electric charge of the antiproton can be precisely
compared with the proton values [10–12]. Also for the p̄He+
atom, the annihilation is negligible if the p̄-He+ orbital has
a high angular momentum. This three-body system is com-
posed of one electron and two heavy particles. An interesting
finding is that the Born-Oppenheimer (BO) approximation is
appropriate for describing the high angular momentum states

of p̄He+ [9,13]. In this sense, this exotic system shows a sim-
ilarity to molecules (and is sometimes called an “atomcule”).
It should be noted, however, that an Auger channel is open
in this system, i.e., p̄He+ → p̄He2+ + e. Accordingly, one
of the important subjects in the p̄He+ study is to discuss the
stability against the Auger decay [9–11].

Recently, there has been a great deal of progress in ex-
periments producing antihydrogen H̄ = e+p̄ at very low tem-
peratures (∼10 K) [14–16]. A lively concern is entertained
for the H̄ + H system: it has an attractive dispersion interac-
tion asymptotically, and the BO approximation is appropriate
at least for intermediate and large separations [17–24]. An
interesting question to be posed is whether the H̄H system
can exist as a molecule. Zygelman et al. [19] suggested that
the H̄H molecule could be produced by radiative association
in low-temperature conditions. However, this system has a
decay channel of exoergic rearrangement reaction H̄H →
p̄p + ee+ in addition to pair annihilation. Unfortunately, the
H̄H molecule was found to be always highly unstable due
to the rapid rearrangement decay [19,22–24]. As a similar
subject, the stability of p̄H molecular anions was examined
[25]. Also in the p̄ + H system, the BO approximation works
accurately except at small distances [26–30], and the polar-
ization interaction, which has a range much longer than the
dispersion interaction, was expected to be favorable for the
bonding. However, the p̄H molecule was again found to be
unstable due to electron detachment p̄H → p̄p + e [25]. The
same conclusion can be drawn also for the stability of the
charge conjugation system pH̄.

The p̄H system considered in Ref. [25] was assumed to be
in the electronic ground state. If the H atom is electronically
excited, the BO potential of p̄ + H can have asymptotically
a long-range term proportional to 1/R2, with R being the
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relative distance [29,31,32]. This is because the H atom has a
peculiarity of the degenerate sublevels with the same principal
quantum number n [33]. (The nonrelativistic quantum me-
chanics is assumed for atomic processes.) The presence of the
long-range potential ∝1/R2 was found to drastically influence
the collision processes in p̄ + H(n = 2) at very low energies
[32]. One can further expect that this long-range potential
utterly alters the situation regarding the bonding of p̄H.

The purpose of the present paper is to discuss the pos-
sibility of the existence of vibrational bound states of the
exotic p̄H molecule, which correlates with p̄ + H(n = 2) in
the separated atom limit (R → ∞). The paper is organized as
follows. Section II provides some properties of the p̄H system
obtained within the framework of the BO approximation. If
the p̄H molecules were formed, the following decay processes
could be important:

p̄H → (pair annihilation) (1)

→ p̄p + e (autodetachment) (2)

→ p̄ + H(1s) (predissociation) (3)

→ p̄ + H(1s) + hν (spontaneous radiation). (4)

Of these, the annihilation is negligible for high rotational
states of the p̄H molecule. The BO approximation becomes
meaningless at small R, where the electron detachment oc-
curs immediately [30]. The autodetachment would be the
most central decay channel. A preliminary discussion on
the stability against the autodetachment is given in Sec. III.
Nonadiabatic coupling causes the transition into the electronic
ground state, though it would be insignificant. This transition
appears as predissociation because the energy of p̄H(n = 2) is
higher than the dissociation limit of p̄ + H(1s). In the present
case, the spontaneous radiative emission always leads to the
dissociation p̄ + H(1s). To make a quantitative evaluation of
the molecular stability, Sec. IV provides perturbation treat-
ments for the atomic processes of Eqs. (2), (3) and (4). Section
V presents the results of the calculations. The p̄H system, to
be considered as a sufficiently stable molecule, must have a
lifetime that is comparable to the natural lifetime determined
by the spontaneous radiation. Comparative discussions of H2

+
and H2

− molecules are presented in Sec. VI. Finally, Sec. VII
gives further discussion.

II. BORN-OPPENHEIMER APPROXIMATION

The Hamiltonian of the whole system (p̄-p-e) is written as

H = − 1

2μ

∂2

∂R2
− 1

R
+ HBO, (5)

where R represents the position vector between p̄ and p, and
μ is the reduced mass of p̄ + H. Here and in the following,
atomic units are used unless otherwise stated. The electron
mass is assumed to be negligible compared with the pro-
ton mass. The Hamiltonian HBO is associated with the BO
electronic state, i.e.,

HBO = −1

2

∂2

∂r2
− 1

r
+ 1

|R − r| , (6)

where r is the electron position vector. Introducing the body-
fixed frame, in which the z axis is chosen along R̂, one can

obtain the BO wave function χn1n2λ(R; r) and the adiabatic
electron energy �n1n2λ(R) from the following Schrödinger
equation:

HBO χn1n2λ(R; r) = �n1n2λ(R) χn1n2λ(R; r), (7)

with the normalization

〈χn′
1n

′
2λ

′ |χn1n2λ〉r = δn′
1n1δn′

2n2δλ′λ, (8)

where 〈 | 〉r indicates the integration over the coordinates r.
The BO potential is given by

Vn1n2λ(R) = �n1n2λ(R) − 1

R
. (9)

Equation (7) is fully separable in prolate spheroidal coor-
dinates [29]. The quantum numbers (n1, n2) are the num-
bers of nodes in the separated wave functions, and λ is the
magnetic quantum number around R̂. In the separated atom
limit (R → ∞), the electron energy becomes �n1n2λ(∞) =
−1/(2n2), with n = n1 + n2 + |λ| + 1 being the principal
quantum number of the H atom. At large R, the quantum num-
bers (n1, n2, λ) are just identical to those introduced in the
Stark effect [33,34]. The adiabatic electron energy �n1n2λ(R)
was accurately calculated and tabulated by Wallis et al. [29].
The present notation (n1, n2, λ) corresponds to “(nλ, nμ,m)”
defined by Wallis et al. [29].

Figure 1 shows the adiabatic electron energies �n1n2λ(R)
for n = 1 and 2 [29] and the BO potentials Vn1n2λ(R) for
n = 2. In the p̄ + H system, there exists a critical distance
An1n2λ such that the electron energy is �n1n2λ(R) < 0 only
at R > An1n2λ. For the (n1, n2, λ) = (0, 0, 0) state, which
correlates with p̄ + H(1s) in the separated atom limit, An1n2λ

is especially known as the Fermi-Teller distance RFT =
0.639 a.u. [26–28]. If n2 = λ = 0, the critical distance An1n2λ

is equal to RFT = 0.639 a.u. for any n1 [35,36]. Coulson
et al. [35] and Crawford [36] presented the critical dis-
tances also for other states, e.g., An1,n2=1,λ=0 = 7.55 a.u. and
An1,n2=0,λ=±1 = 3.79 a.u. Of particular note is that the BO
approximation completely fails at R � An1n2λ.

For the electronic ground state (n1, n2, λ) = (0, 0, 0), the
long-range part of the BO potential has the form −α/(2R4),
with α = −4.5 a.u. being the polarizability of the H(1s) atom.
If the H atom is in an excited state, the BO potential can have
a long-range term much slower than 1/R4. As R → ∞, the
BO potential generally becomes [31,32]

Vn1n2λ(R) −−−→
R→∞

3n(n2 − n1)

2R2
− 1

2n2
. (10)

The BO potential at large R has an attractive long-range
term ∝−1/R2 for the electronic state with n1 > n2 and a
repulsive term for n1 < n2; such long-range terms are missing
for n1 = n2, as seen in Fig. 1. For the BO potential, which
is asymptotically attractive, the vibrational bound motion
may be realized. If the BO approximation is valid over the
whole range of distances related to the vibrational motion, the
vibrational state is given by solving[

− 1

2μ

d2

dR2
+ Veff (R) + 1

2n2

]
FBO(R) = EBOFBO(R),

(11)
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FIG. 1. Adiabatic electron energies �n1n2λ(R) and BO potentials
Vn1n2λ(R) of p̄ + H, taken from Ref. [29]. The critical distances
are An1n2λ = RFT = 0.639 a.u. for (n1, n2, λ) = (0, 0, 0) and (1,0,0);
An1n2λ = 3.79 a.u. for (0, 0, ±1); and An1n2λ = 7.55 a.u. for (0,1,0)
[35,36]. In the lower figure, also plotted is the p̄ + p potential curve
(i.e., −1/R), which intersects with Vn1n2λ(R) at R = An1n2λ.

where

Veff (R) = J (J + 1)

2μR2
+ Vn1n2λ(R) (12)

is the effective potential, with J being the total angular mo-
mentum quantum number, R−1FBO(R) is the vibrational wave
function, and EBO is the vibrational energy relative to the
dissociation limit of p̄ + H(n). Unfortunately, Eq. (11) lacks
meaning at R < An1n2λ. For very high J , however, the relative
motion is always limited to the outer region R 	 An1n2λ,
due to the centrifugal potential J (J + 1)/(2μR2). Therefore,
Eq. (11) is reasonably good for describing the vibrational state
if the system has a sufficiently high angular momentum J .

The n = 2 states consist of three kinds of sublevels
(n1, n2, λ) = (1, 0, 0), (0,1,0), and (0, 0,±1). Of these, only
the first electronic excited state (1,0,0) has the attractive term
∝−1/R2, and the asymptotic form of its effective potential
becomes

Veff (R) −−−→
R→∞

J (J + 1) − 6μ

2μR2
− 1

8
. (13)

The term ∝1/R2 in Eq. (13) remains attractive if J (J + 1) <

6μ. This condition gives J � Jmax = 73, which is extremely
higher than those (J � 30) related to the (0,0,0) state (Figs. 2
and 3). For the (1,0,0) state, it turns out that the effective
potential with very high J can support vibrational states.

FIG. 2. Effective potentials Veff (R) = J (J + 1)/(2μR2 ) +
Vn1n2λ(R) of p̄ + H in the electronic ground state (n1, n2, λ) =
(0, 0, 0) for J = 0 and 25–31. The horizontal line indicates the
H(n = 1) energy −1/2 a.u. The vertical line indicates the position
of RFT = 0.639 a.u.

From another standpoint, as R → ∞, the centrifugal and
intermolecular interactions in Eq. (5) can be expressed by

L2 + 2μR̂ · r
2μR2

, (14)

where L is the orbital angular momentum operator of p̄ +
H. Diagonalizing the numerator with use of the degen-
erate (same n) states of the H atom gives the effective

FIG. 3. Effective potentials Veff (R) = J (J + 1)/(2μR2 ) +
Vn1n2λ(R) of p̄ + H in the first electronic excited state
(n1, n2, λ) = (1, 0, 0) for J = 0 and 54–74. (Only an even
number of J is considered.) The horizontal line indicates the
H(n = 2) energy −1/8 a.u. The critical distance is A100 = RFT, but
is not shown in the figure.
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potential [31,37],

Veff (R) −−−→
R→∞

�

2μR2
− 1

2n2
, (15)

where � is the eigenvalue of the numerator in Eq. (14). The
lowest eigenvalue for n = 2 [31,37], corresponding to the
(1,0,0) state, is

� = J 2 + J + 1 −
√

(6μ)2 + (2J + 1)2. (16)

The condition � < 0 gives J � 73, which is the same as the
one obtained from Eq. (13). In the case of μ 	 J 	 1, indeed
� becomes identical to the numerator of Eq. (13).

As in the case of the Coulomb potential, the long-range tail
�/(2μR2) with � < 0 in Veff (R) supports an infinite number
of bound states. This can be directly verified by using the
Bohr-Sommerfeld quantization rule:∫ R2

R1

p(R) dR =
(

v + 1

2

)
π, (17)

where

p(R) =
√

2μ

[
EBO − 1

2n2
− Veff (R)

]
, (18)

R1 (or R2) is the inner (or outer) classical turning point, and
v is the vibrational quantum number. In the case in which the
vibrational energy is EBO ∼ 0, there exists the region Rdip �
R � R2, where Veff (R) can be expressed by Eq. (15). In the
limit of EBO → 0, it is easy to show that Eq. (17) becomes ∞
(i.e., v → ∞) and offers

EBO = − exp

[
−2(v − v0)π

|�|
]
, (19)

where v0 is the adjustment parameter coming from the short-
range part, i.e.,∫ Rdip

R1

p(R) dR =
(

v0 + 1

2

)
π. (20)

Shimamura [31] derived the relation of Eq. (19) using the
analytic property of the modified Bessel function, which rep-
resents the solution for the dipole potential. In a precise sense,
only if � < −1/4 can the potential tail �/(2μR2) support
an infinite number of bound states [33]. In the p̄ + H(1, 0, 0)
system, the condition of � < −1/4 still gives J � 73.

III. ELECTRON DETACHMENT

In the p̄ + H system, the electron cannot be bound at small
distances R � An1n2λ, and the electron detachment (autode-
tachment for the molecular system) is considered a critical
decay process. As a practical matter, the electron detachment
would be significantly promoted even at distances much larger
than An1n2λ. Therefore, it would be useful if one could define
the minimum distance R0 (>An1n2λ) such that the electron
detachment occurs rarely at R > R0: If the vibrational region
is outside the range R0, the vibrational state is expected to
be sufficiently stable against autodetachment, and to be rea-
sonably described by the BO approximation. Several studies
tried to make a rough estimate of R0 so far by introducing a
diabatic representation or by carrying out a p̄ + H collision

FIG. 4. Reaction probabilities of p̄ + H(1, 0, 0) → p̄p + e plot-
ted as a function of the classical turning point of the p̄ + H radial
motion at collision energies of 0.0001–0.1 eV [32].

calculation, and suggested R0 ∼ 1.5 a.u. for the electronic
ground state [30,38,39]. In this section, the stability of p̄H
is discussed by using Veff (R) and R0.

Figure 2 shows several effective potentials Veff (R) for the
electronic ground state (0,0,0). The cut of the potential curve
exists at R = RFT. Figure 2 indicates that the vibrational re-
gion moves outward with increasing J , although the effective
potential with too high J (�30) cannot support vibrational
levels below the dissociation limit −1/2 a.u. (n = 1). It seems
that the vibrational states may be supported for J = 26–29.
However, the value of R0 ∼ 1.5 a.u. excludes the possibility
of the vibrational motion for all J . Actually in a rigorous
calculation, any stable and even metastable vibrational states
with high J could not be found [25]. A peculiar case is
very high vibration just below the dissociation limit for J ∼
0 [25]. In this case, although the electron detachment and
pair annihilation occur at small distances, the vibrational
wave function can still have finite amplitudes even up to
very large distances R ∼ 100 a.u. This vibrational motion
is highly unstable and has a very short lifetime (<10−12 s)
[25].

Figure 3 shows the effective potentials for the electronic
excited state (1,0,0). As is expected, the effective potential
can support vibrational levels even for very high J (�Jmax =
73), and the vibrational motion occurs in the distant region
(R 	 1). It should be pointed out, however, that the distance
R0 for electronically excited H would be much longer than
that (∼1.5 a.u.) for H(1s). To estimate the value of R0 in
p̄ + H(1, 0, 0), a previous calculation of the reaction p̄ +
H(n = 2) → p̄p + e [32] is helpful. In this calculation, a
semiclassical impact-parameter method was employed. Ac-
cordingly, one can plot the probability of the detachment
reaction as a function of the classical turning point of the p̄ +
H radial motion. Figure 4 shows such results for H(1, 0, 0)
at collision energies of 0.0001–0.1 eV [32], and suggests
R0 ∼ 4 a.u. Then, choosing R > 4 a.u. as the stable region in
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Fig. 3 indicates that the effective potentials with high angular
momenta 60 � J � 73 are favorable and can support stable
vibrational states. Actually, the electron detachment cannot
necessarily be neglected even for high J , and the vibrational
states with 60 � J � 73 would have finite (but sufficiently
long) lifetimes due to autodetachment. Such autodetachment
decays are fully investigated in Sec. IV D.

For the other electronic excited states (0, 0,±1) and (0,1,0)
shown in Fig. 1, the BO potential has no long-range attractive
(∝−1/R2) term, and additionally the critical distances An1n2λ

are much longer: Thereby, the related effective potentials are
always above the dissociation limit −1/8 a.u. at R > An1n2λ.
The (0, 0,±1) and (0,1,0) states cannot support any stable
vibrational motion, and they are of no concern in the present
study.

In Ref. [25], which is a full quantum-mechanical treat-
ment based on an R-matrix method, the electron detachment
process for p̄H(0, 0, 0) was calculated rigorously without
assuming the BO approximation. One may expect that the
R-matrix method is also applicable to p̄H(1, 0, 0). How-
ever, it is not easy to carry out the R-matrix calculation for
p̄H(1, 0, 0), because the R-matrix diagonalization relevant to
a more extended spacial domain is required for the large value
of R0, and a huge number of very high R-matrix diagonalized
states are required for the electronic excited molecule. The
semiclassical approximation [32] is free from such limita-
tions, but it is not suitable for an accurate description of the
molecular vibration. In the present study, since only the region
of R 	 An1n2λ is related to the vibrational state, an approach
based on the BO approximation is appropriate.

IV. p̄H MOLECULES IN THE (1, 0, 0) STATE

In this section, the discussion is given specifically for the
first electronic excited state (n1, n2, λ) = (1, 0, 0) of the p̄H
molecule, which has asymptotically the attractive long-range
term ∝−1/R2 in the BO potential. As shown in Sec. III, the
existence of the vibrational states of the p̄H(1, 0, 0) molecule
is promising. First, the vibrational energy levels of p̄H(1, 0, 0)
are calculated on the basis of the BO approximation and
by neglecting the decay processes. The most important de-
cay channel is the autodetachment. For other atomic decay
channels, the predissociation and the spontaneous radiative
dissociation are considered. Here, perturbation treatments are
presented for calculating the energy widths of the vibrational
levels attributable to the decay processes. Since high angular
momenta are considered for the p̄H rotation, the annihilation
decay can be neglected.

A. Vibrational bound states

By neglecting all the decay channels, the bound-state wave
function of the p̄H molecule in the (n1, n2, λ) = (1, 0, 0) state
may be expressed by

�100
vJM (R, r) = R−1DJ

M0(R̂)FvJ (R)χ100(R; r), (21)

where

DJ
Mλ(R̂) =

(
2J + 1

4π

)1/2[
DJ

Mλ(R̂)
]∗

(22)

is the normalized form of the Wigner D-function DJ
Mλ, and

R−1FvJ (R) is normalized to unity: 〈R−1Fv′J |R−1FvJ 〉R =
δv′v , with v being the vibrational quantum number. Rather than
Eq. (11), here the equation of vibrational motion is given by
considering 〈

DJ
M0χ100

∣∣H − E
∣∣�100

vJM

〉
R̂r = 0, (23)

with the total energy

E = EvJ − 1

8
, (24)

where EvJ is the vibrational energy (EvJ → 0 as v → ∞).
Equation (23) becomes[

− 1

2μ

d2

dR2
+ J (J + 1) + 〈χ100|l2|χ100〉r

2μR2

− 1

2μ
〈χ100| d2

dR2
|χ100〉r + V100(R) + 1

8

]
FvJ (R)

= EvjFvJ (R), (25)

which includes the diagonal parts of nonadiabatic
coupling matrix elements 〈χn′

1n
′
2λ

′ |l2|χn1n2λ〉r and
〈χn′

1n
′
2λ

′ |d2/dR2|χn1n2λ〉r other than the expression of Eq. (11).
The nondiagonal matrix elements closely relevant to the
(1,0,0) state are those of the coupling with the next higher
states (0, 0,±1) and (0,1,0) and with the ground state (0,0,0).
As mentioned previously, the high-J effective potential
curves for the (0, 0,±1) and (0,1,0) states are above the
dissociation limit of p̄ + H(n = 2). Thus, the couplings with
the (0, 0,±1), (0,1,0), and still higher electronic states are
less significant, and they are neglected in the present study.
Because of the nonadiabatic coupling with the (0,0,0) state,
the p̄H(1, 0, 0) molecule cannot be permanently stable, and it
has a decay channel of predissociation, which is discussed in
Sec. IV B.

To obtain the nonadiabatic coupling matrix elements,
Eq. (7) was solved by using a discrete-variable-representation
(DVR) method in polar coordinates [40,41]: 90-point La-
guerre meshes for the radial coordinate r , and 6-point Leg-
endre meshes for the polar angle of r. To check the accuracy
of this calculation, the adiabatic electron energies obtained
in the present study are compared with the accurate ones of
Wallis et al. [29] in Table I. In calculating the coupling matrix

TABLE I. Adiabatic electron energies �n1n2λ(R) of p̄ + H for
(n1, n2, λ) = (1, 0, 0): the accurate results of Wallis et al. [29] and
the present DVR results.

R (a.u.) Wallis et al. (a.u.) Present (a.u.)

3.0 −4.2187 × 10−3 −4.2072 × 10−3

5.0 −1.8990 × 10−2 −1.8953 × 10−2

10.0 −5.1862 × 10−2 −5.1804 × 10−2

15.0 −7.0682 × 10−2 −7.0622 × 10−2

20.0 −8.2053 × 10−2 −8.1992 × 10−2

25.0 −8.9555 × 10−2 −8.9495 × 10−2

30.0 −9.4851 × 10−2 −9.4791 × 10−2
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FIG. 5. Nonadiabatic (rotational and radial) coupling matrix el-
ements, related to (n1, n2, λ) = (0, 0, 0) and (1,0,0), plotted as a
function of R.

elements, the following relations were used:

〈χγ ′ | d

dR
|χγ 〉r = − 1

Vγ ′ (R) − Vγ (R)
〈χγ ′ |∂HBO

∂R
|χγ 〉r,

〈χγ ′ | d2

dR2
|χγ 〉r =

∑
γ ′′

〈χγ ′ | d

dR
|χγ ′′ 〉r 〈χγ ′′ | d

dR
|χγ 〉r

+ d

dR
〈χγ ′ | d

dR
|χγ 〉r,

where γ abbreviates (n1, n2, λ). Figure 5 shows the nona-
diabatic coupling matrix elements related to (n1, n2, λ) =
(0, 0, 0) and (1,0,0). One can see that the nonadiabatic cou-
pling is weak unless R is small. In the present calculation,
the BO potential data of Wallis et al. [29] were used, and
the cubic spline interpolation was applied to the values at
distances not reported by them. Table II shows the lowest (v =
0) vibrational energies for J = 50–70, calculated by using
Eq. (11) of the BO approximation and by using Eq. (25) of the
BO approximation with the nonadiabatic correction, which is
found to yield only a minor (0.2–0.6 %) contribution.

B. Predissociation

The nonadiabatic coupling induces the dynamical transi-
tion (n1, n2, λ) = (1, 0, 0) → (0, 0, 0). As seen in Fig. 6, the
high-J vibrational levels of p̄H(1, 0, 0) are always far above
the dissociation limit of p̄ + H(1s). Therefore, due to the
nonadiabatic coupling, the p̄H(1, 0, 0) molecule decays into

TABLE II. The lowest (v = 0) vibrational energies of the p̄H
molecule in the first electronic excited state (1,0,0) for J = 50–70,
obtained from Eqs. (11) and (25). Lmax is the largest angular mo-
mentum quantum number of the p̄p atom such that the p̄p energy
is lower than Ev=0,J − 1/8. The parameter l0 = J − Lmax, necessary
for the discussion about autodetachment, is also shown.

J EBO (eV) Ev=0,J (eV) Lmax l0

50 −1.5109 −1.5052 49 1
51 −1.3476 −1.3429 50 1
52 −1.1967 −1.1928 51 1
53 −1.0575 −1.0542 51 2
54 −0.92939 −0.92669 52 2
55 −0.81176 −0.80951 53 2
56 −0.70407 −0.70220 54 2
57 −0.60582 −0.60427 54 3
58 −0.51652 −0.51524 55 3
59 −0.43576 −0.43469 56 3
60 −0.36310 −0.36223 56 4
61 −0.29818 −0.29746 57 4
62 −0.24062 −0.24003 57 5
63 −0.19008 −0.18961 57 6
64 −0.14625 −0.14587 58 6
65 −0.10881 −0.10851 58 7
66 −0.077472 −0.077240 58 8
67 −0.051959 −0.051785 59 8
68 −0.032002 −0.031877 59 9
69 −0.017331 −0.017246 59 10
70 −0.0076283 −0.0075788 59 11

dissociative continua in the electronic ground state:

p̄H(v, J ) → p̄ + H(1s). (26)

FIG. 6. Effective potentials Veff (R) = J (J + 1)/(2μR2 ) +
Vn1n2λ(R) relevant to the predissociation (n1, n2, λ) = (1, 0, 0) →
(0, 0, 0) of p̄H. The total angular momentum is J = 50, 60, and 70.
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This process is known as predissociation, and the conservation
of the total energy E is

E = EvJ − 1

8
= E − 1

2
, (27)

where E is the kinetic energy of p̄ + H(1s).
The present system shows no notable avoided-crossing

(Fig. 6), and the nonadiabatic coupling is very weak except
at small distances (Fig. 5). Therefore, the predissociation is
expected to be very slow. The energy width attributable to
predissociation [42] is given by

�dis = 4μ

k
|Tdis|2, (28)

with k = √
2μE and

Tdis = 〈
�000

EJM

∣∣H ∣∣�100
vJM

〉
, (29)

where 〈 | | 〉 indicates the integration over all the coordinates
(R, r). The wave function of the final dissociative-continuum
state is expressed by

�000
EJM (R, r) = R−1DJ

M0(R̂)GEJ (R)χ000(R; r), (30)

where the radial function GEJ (R) is given by solving[
− 1

2μ

d2

dR2
+ J (J + 1) + 〈χ000|l2|χ000〉r

2μR2

− 1

2μ
〈χ000| d2

dR2
|χ000〉r + V000(R) + 1

2

]
GEJ (R)

= EGEJ (R), (31)

and it is assumed to have the asymptotic form

GEJ (R) −−−→
R→∞

sin(kR + η), (32)

with η being a constant phase. Explicitly, Eq. (29) becomes

Tdis = − 1

2μ

∫ ∞

0
GEJ (R)〈χ000| d2

dR2
|χ100〉r FvJ (R) dR

+ 1

2μ

∫ ∞

0
GEJ (R)

1

R2
〈χ000|l2|χ100〉r FvJ (R) dR

− 1

μ

∫ ∞

0
GEJ (R)〈χ000| d

dR
|χ100〉r

dFvJ

dR
(R) dR. (33)

C. Spontaneous radiative dissociation

The radiative transition between the electronic states
(n1, n2, λ) = (1, 0, 0) and (0,0,0) is optically allowed. As
can be seen in Fig. 6, since no potential well exists in the
(0,0,0) effective potential for high J , the spontaneous radiative
emission of the p̄H(1, 0, 0) molecule always leads to the
dissociation:

p̄H(v, J ) → p̄ + H(1s) + hν, (34)

which brings about a continuum photon emission. In this case,
the energy conservation becomes

E = EvJ − 1

8
= E − 1

2
+ hν, (35)

where hν is the photon energy, and the p̄ + H(1s) kinetic
energy E varies over a range of 0 to E + 1/2.

FIG. 7. Electronic dipole moment D(R) for the (1, 0, 0)-(0, 0, 0)
transition of p̄H as a function of R. In the separated atom limit,
D(∞) = 0.527 a.u.

For the energy width attributable to spontaneous radiative
dissociation, perturbation theory [43] gives

�rad =
∫ E+1/2

0
ω(E ) dE, (36)

where

ω(E ) = 8μ

3πkc3

(
E − E + 1

2

)3 1

2J + 1

∑
J ′M ′M

|Trad|2, (37)

with c being the speed of light, and

Trad = 〈
�000

EJ ′M ′
∣∣z∣∣�100

vJM

〉
. (38)

Equation (37) has the P - and R-branch contributions: i.e.,

∑
J ′M ′M

|Trad|2 =
[

(J + 1)

∣∣∣∣
∫ ∞

0
GE,J+1(R)D(R)FvJ (R)dR

∣∣∣∣
2

+ J

∣∣∣∣
∫ ∞

0
GE,J−1(R)D(R)FvJ (R)dR

∣∣∣∣
2
]
, (39)

where

D(R) = 〈χ000|z|χ100〉r (40)

is the electronic dipole transition moment.
Figure 7 shows the electronic dipole moment D(R) for the

(0, 0, 0)-(1, 0, 0) transition. In the separated atom limit, the
dipole moment becomes D(∞) = 〈1s|z|2p0〉/

√
2 = 0.527

a.u. Except at small distances, the dipole moment D(R)
increases monotonically with R, and it is lower than D(∞).

D. Autodetachment

As mentioned in Sec. III, the p̄H molecule in the
(n1, n2, λ) = (1, 0, 0) state has a finite lifetime due to autode-
tachment:

p̄H(v, J ) → p̄p(N,L) + e, (41)
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where (N,L) is the principal and angular momentum quan-
tum numbers of the p̄p atom, and 0 � L � N − 1. The total
energy is represented as

E = EvJ − 1

8
= EN + ε, (42)

where EN = −μ/(2N2) is the energy of p̄p(N,L), and ε

is the kinetic energy of the detached electron. In the present
study, because of E < 0, the breakup channel (→ p̄ + p + e)
is closed. The autodetachment decay can also be considered as
the nonadiabatic process. However, since the final electronic
states are continua, it is not clever to calculate the autode-
tachment decay width by using the nonadiabatic treatment as
in Sec. IV B. Fortunately, the essential part of the dynamical
mechanism of the autodetachment is quite similar to that of
the Auger transition of antiprotonic atoms [9,31,44–46]. It
is found furthermore that conventional perturbation treatment
is sufficiently accurate for this Auger decay process [9,45].
Since the autodetachment decay rate is expected to be low for
high J , the present study employs the conventional perturba-
tion theory.

The energy width attributable to autodetachment is given
by

�det =
∑
NLl

�det (N,L, l), (43)

where l is the orbital angular momentum of the detached
electron, and the partial width is

�det (N,L, l) = 4

κ
|Tdet (N,L, l)|2, (44)

with κ = √
2ε. Perturbation theory [45] gives

Tdet (N,L, l) = 〈
�JM

NLl

∣∣H − E
∣∣�100

vJM

〉
. (45)

The wave function �J
NLl for the final state is given by

�JM
NLl (R

′, r′) = R−1YJM
Ll (R̂′, r̂′)ϒNL(R)fεl (r ), (46)

where (R′, r′) are described in the space-fixed frame,

YJM
Ll (R̂′, r̂′) =

∑
mLml

(LmLlml|JM )YLmL
(R̂′)Ylml

(r̂′) (47)

is the eigenfunction of the total angular momentum (J,M ),
R−1ϒNL(R) is the radial (Coulomb) wave function of
p̄p(N,L), and fεl (r ) = κjl (κr ), with jl being the spheri-
cal Bessel function, represents the continuum state of the
detached electron. In Eq. (47), ( | ) is the Clebsch-Gordan
coefficient, and YLm is the spherical harmonics.

To calculate Eq. (45), first one should notice the following
relation between the space-fixed and body-fixed angular basis
functions [47]:

YJMJ

Ll (R̂′, r̂′) =
∑

λ

UJl
LλDJ

MJ λ(R̂)Ylλ(r̂), (48)

with

UJl
Lλ =

(
2L + 1

2J + 1

)1/2

(L0lλ|Jλ). (49)

FIG. 8. Effective potentials relevant to the autodetachment
p̄H(v, J ) → p̄p(N,L) + e: Veff (R) = J (J + 1)/(2μR2) + V100(R)
of p̄H for J = 50, and L(L + 1)/(2μR2) − 1/R of p̄p for L =
45–55. The horizontal line indicates the lowest (v = 0) vibrational
energy level of p̄H (J =50), and the vibrational region is 2.5 � R �
3.4 a.u., which is inside the range R0.

Then, one can easily perform the integration over R̂ in
Eq. (45): i.e.,

Tdet (N,L, l) = UJl
L0

∫ ∞

0
ϒNL(R)tεl (R)FvJ (R)dR, (50)

where

tεl (R) = 〈Yl0fεl| − 1

r
+ 1

|R − r| |χ100〉r. (51)

Due to the factor UJl
L0, the detachment can take place only

for J + L + l = even. The BO wave function χ100(R; r) was
calculated by using the present DVR method, as described in
Sec. IV A.

Figure 8 shows the effective potential of p̄H(1, 0, 0) with
J = 50 and its lowest (v = 0) vibrational energy level. This
is the case in which the vibrational region is inside R =
R0. In Eq. (42), because of ε > 0, the p̄p energy must
be EN < EvJ − 1/8. Therefore, in the autodetachment of
p̄H(v = 0, J = 50), the final product p̄p(N,L) must have
L � 49. The critical importance is whether the final states
of L � J are energetically allowed [9,31,44,46]: Since the
detached electron can carry away only low angular momenta
l, the restriction l � |J − L| implies that the autodetachment
would be very slow unless the difference |J − L| is small.
Table II shows Lmax, which is the highest angular momentum
L such that Ev=0,J − 1/8 > EN . Since the relation l � J −
L � J − Lmax > 0 is always satisfied for the open channels
associated with v = 0, the difference l0 = J − Lmax (also
shown in Table II) is a basic parameter for measuring the
importance of the autodetachment. For J = 50 (Fig. 8), the
small value of l0 = 1 means that the autodetachment can
be highly promoted. It is seen in Fig. 8 furthermore that
the Franck-Condon overlap integral is also huge between
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FIG. 9. Effective potentials relevant to the autodetachment
p̄H(v, J ) → p̄p(N,L) + e: Veff (R) = J (J + 1)/(2μR2 ) + V100(R)
of p̄H for J = 65, and L(L + 1)/(2μR2) − 1/R of p̄p for L =
45–60. The horizontal line indicates the lowest (v = 0) vibrational
energy level of p̄H(J =65), and the vibrational region is 6.3 � R �
8.8 a.u., which is outside the range R0.

p̄H(v = 0, J = 50) and p̄p(N,L = 49). This fact firmly es-
tablishes the high rate of autodetachment for p̄H(v = 0, J =
50).

Figure 9 shows the effective potential for p̄H(J = 65) and
the lowest (v = 0) vibrational energy level. In this case, the
vibrational region is outside R = R0. In contrast to p̄H(J =
50), the energetically allowed states of p̄p are L � Lmax =
58; namely, the value of l0 = 7 is very large. Furthermore,
the Franck-Condon factor between p̄H(v = 0, J = 65) and
p̄p(N,L 	 45) is negligibly small. The autodetachment
would be very slow for p̄H(v = 0, J = 65). Generally, one
can expect that the autodetachment rate becomes lower with
increasing J . Incidentally, the effective potentials relevant to
the autodetachment of p̄H(0, 0, 0) with J � 31 (cf., Fig. 2)
have features that are essentially the same as those seen in
Fig. 8 and not in Fig. 9. This demonstrates that the autode-
tachment rate of p̄H(0, 0, 0) is always very high.

V. DECAY WIDTHS AND LIFETIMES

Figure 10 shows the predissociation widths �dis calculated
by Eq. (28) for p̄H(v=0) with J = 50–70. The width �dis

is <10−8 eV, and it decreases rapidly with increasing J .
The predissociation process can be properly described by a
straightforward approach based on two-state close coupling
(CC): The p̄H(1, 0, 0) species are represented as closed-
channel resonances in the elastic p̄ + H(0, 0, 0) collisions.
In the present study, the CC calculation was tentatively car-
ried out for (v, J ) = (0, 50). It offers the same value of the
resonance energy as EvJ in the number of digits shown in
Table II, and the resonance width is 2.80 × 10−9 eV while
Eq. (28) gives �dis = 2.65 × 10−9 eV. This result guarantees
the accuracy of the perturbation treatment of Eq. (28). For

FIG. 10. Energy widths of p̄H(v=0, J ) for J = 50–70, at-
tributable to predissociation (�dis), spontaneous radiative dissocia-
tion (�rad), and autodetachment (�det). Vibrational energy differences
�E = Ev=1,J − Ev=0,J are also plotted.

higher J , unfortunately the CC method becomes inefficient
in the numerical calculation because of too narrow resonance
widths, and the perturbation treatment would be rather much
more suitable. At any rate, the predissociation is found to be
always insignificant for p̄H(v = 0, J �50).

Figure 10 also shows the radiation widths �rad calculated
by Eq. (36) for p̄H(v=0). The radiation width is �rad �
10−8–10−7 eV for J = 50–70, and it increases slowly with J .
These values are smaller than, but not so different from, the
radiation width (= 4.11 × 10−7 eV) of the isolated H(2p)
atom. Figure 11 shows the energy distribution ω of the emitted
photon, which is given by Eq. (37) using the relation hν =
EvJ + 3/8 − E . With increasing J , the distribution becomes
narrower, and the peak position moves toward the Ly-α line of
H(2p→1s). This can be understood by looking at the feature
of the effective potential shown in Fig. 6. For higher J , the
Franck-Condon region where the vibrational wave function of
p̄H(1, 0, 0) has a finite amplitude moves to a distant place
of larger R, and there the related effective potential of the
(0,0,0) state becomes flatter and closer to −1/2 a.u.: The
steeper R dependence of the (0,0,0) effective potential in the
Franck-Condon region makes the energy distribution broader.

Figure 10 further plots the autodetachment widths �det

calculated by Eq. (43) for p̄H(v=0). The width �det is
significantly large for low J , and it decreases tremendously
with increasing J : accordingly, �det 	 �rad for J � 58, and
�rad 	 �det for J > 58. Figure 10 shows the vibrational
energy difference �E = Ev=1,J − Ev=0,J . For J ∼ 50, since
the width �det is comparable to �E, the perturbation treatment
of Eq. (45) is of no use. Although a more sophisticated method
should be applied to the autodetachment for such low J ,
it is evident that the p̄H molecules with J � 50 only have
highly unstable states. In the present calculation, the 6-point
Legendre meshes were applied to the polar angle of r. It
means that the electronic angular momenta of l = 0, 1, . . . , 5
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FIG. 11. Distributions ω of the emitted photon energy hν (hν =
EvJ + 3/8 − E) in the spontaneous radiative dissociation of p̄H(v=
0, J ) for J = 60, 65, and 70. The position of the Ly-α line is
indicated.

are taken into account, and that no transition occurs for l0 =
J − Lmax � 6. From Table II, one can see that the autodetach-
ment makes no contribution to the decay of p̄H(v=0, J �63)
in the present calculation.

The J dependence of �det shown in Fig. 10 is slightly
crank: there seems to be a small dip at J = 53, 57, and 59. The
L-state distribution of p̄p in the autodetachment is reflected

FIG. 12. L-state distributions �(L) = �det (L)/�det , with
�det (L) = ∑

Nl �det (N, L, l), in the autodetachment of p̄H(v=0, J )
for J = 50–59.

FIG. 13. Energy widths of p̄H(v, J =60) for v = 0–6, at-
tributable to spontaneous radiative dissociation (�rad) and autode-
tachment (�det).

in this structure. Figure 12 shows the L-state distribution,

�(L) = 1

�det

∑
Nl

�det (N,L, l). (52)

For example, the highest allowed L is the same (Lmax = 51)
in both autodetachment processes with J = 52 and 53 (see
also Table II). As a result, the important final channel of
l = 1 is missing for J = 53 and not for J = 52. This makes
the width �det for p̄H(v=0, J =53) relatively smaller than
expected. The same thing happens also for J = 56 and 57.
In the autodetachment processes with J = 58 and 59, the
values of Lmax are different (Lmax = 55 and 56, respectively).
However, the Franck-Condon factor is very small between
p̄H(v = 0, J = 59) and p̄p(N,L = 56), and this makes the
fraction �(L = 56) less significant in the autodetachment
with J = 59 (Fig. 12). This is the origin of the dip in �det

at J = 59.
The v dependence of the energy widths �rad and �det

is shown in Fig. 13 for p̄H(J = 60). The v dependence is
much stronger for �det than for �rad: accordingly, �rad 	 �det

for v < 2, and �det 	 �rad for v > 2. Figure 14 shows the
effective potential of p̄H(J = 60) and several (v = 0–5) vi-
brational energy levels. In the autodetachment, as v increases,
the final channels with smaller |J − L| become open, and
furthermore the Franck-Condon factor between the related
states becomes more significant. This is the reason for the
strong v-dependence of �det for J = 60.

As for higher J , the effective potential Veff (R) with J =
65 is shown in Fig. 9. At the dissociation limit E = −1/8
a.u. (namely, v → ∞), the inner classical turning point is
R1 = 4.9 a.u. Hence, the Franck-Condon factor between
any vibrational state of p̄H(J = 65) and any p̄p state with
L � 60 is quite small. As J increases further from 65, the
Franck-Condon factors between p̄H(v, J ) and p̄p(N,L) with
|J − L| � 5 become much smaller and negligible. Thus, one
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FIG. 14. Effective potentials relevant to the autodetachment
p̄H(v, J ) → p̄p(N,L) + e: Veff (R) = J (J + 1)/(2μR2 ) + V100(R)
of p̄H for J = 60, and L(L + 1)/(2μR2) − 1/R of p̄p for L =
55–60. The horizontal lines indicate the vibrational energy levels
(v = 0–5) of p̄H(J =60). For high v, the vibrational region overlaps
the unstable area R < R0.

can conclude that no autodetachment takes place for all the
vibrational states (0 � v < ∞) of p̄H if 65 � J � 73.

Figure 10 shows that the predissociation is always negligi-
ble, and that the energy width is dominated by the autodetach-
ment for low J and is dominated by the radiative dissociation
for high J . The lifetime τ of p̄H is defined by

τ = 1

�dis + �rad + �det
, (53)

and is shown for p̄H(v = 0) in Fig. 15. For J � 59, the
lifetime (∼10−8 s) is essentially the radiative one. If the

FIG. 15. Lifetimes of p̄H(v=0, J ) for J = 50–70.

lifetimes were determined by only the spontaneous radiative
emission, such species could be regarded as stable molecules.
Thus, the p̄H(v, J ) species are stable molecules for all the
vibrational states if 65 � J � 73 and at least for a few lowest
vibrational states if 59 � J < 65. This is consistent with the
finding obtained from the qualitative approach based on the
detachment interaction range R0 (Sec. III). If the stable p̄H
molecules were produced in experiments, several (v, J ) states
would be distributed. Then, as imagined from Fig. 11, the
emitted photons would have continuum spectra that have a
peak at the Ly-α position and a broad tail toward a low-energy
side.

VI. COMPARATIVE DISCUSSION

In this section, discussions are held by comparing p̄H with
hydrogen molecular ions H2

+ and H2
−. In some respects, the

p̄H system shows similarities to these molecular ions.

A. H2
+

The p + H and p̄ + H systems have the same mass combi-
nation, and their difference is only the opposite charge sign of
p and p̄. The H2

+ molecule in the electronic ground (1sσg)
state has no autoionization channel, and it is permanently
stable. Due to the charge sign difference, the two systems are
clearly distinct in the molecular stability. At large internuclear
distances, however, the charge sign is irrelevant, and the
p + H system exhibits the same electronic properties as those
of p̄ + H. Of the H2

+ potential curves that correlate with the
separated atom H(n=2), the 2p πu, 3d σg, and 4f σu ones
support vibrational levels [31,48]. The asymptotic state of
p̄H(1, 0, 0) is equivalent to the H2

+(3d σg) and H2
+(4f σu)

states at large internuclear distances RH2
+ : The 3dσg and 4f σu

potentials have the long-range attractive term −3/R2
H2

+ , and
they support an infinite number of vibrational levels for any
JH2

+ � Jmax (JH2
+ being the rotational quantum number of

H2
+) [31]. Because of the same mass combination, Jmax = 73

is just the same as that for p̄H(1, 0, 0). In this respect, the
H2

+(3d σg) and H2
+(4f σu) molecules show an interesting

similarity to p̄H(1, 0, 0). The H2
+(2s σg) and H2

+(3p σu)
states have the same asymptotic behavior as p̄H(0, 1, 0),
and they have the long-range repulsive term +3/R2

H2
+ at

large RH2
+ [31]. The H2

+(2p πu) molecule corresponds to
p̄H(0, 0,±1): The 2p πu potential has no long-range term
∝±1/R2

H2
+ , and it can support only a finite number of

vibrational levels [31].
One may expect that the experimental study of electron-

ically excited H2
+ molecules is helpful for examining the

creation of the p̄H(1, 0, 0) molecules. So far, however, no
direct spectroscopic measurements have been successfully
performed for any electronic exited state of H2

+ [49]. A
translational energy-loss study of H2

+, produced by electron
impacts on CH4, confirmed the 2p πu state [50], but no
experimental evidence was offered for the 3dσg and 4f σu

states. The reason for the experimental difficulty is that, for
example, the Franck-Condon factor is not large for the opti-
cally forbidden 1sσg-3dσg transition and is negligibly small
for the optically allowed 1sσg-4f σu transition. (The positions
of the potential minimum are RH2

+ � 8 a.u. for 2p πu, RH2
+ �
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9 a.u. for 3d σg, and RH2
+ � 21 a.u. for 4f σu, which are

much greater than RH2
+ � 2 a.u. for 1s σg [48].) Even though

the ground-state H2
+(1s σg) molecules are readily available,

unfortunately the production and detection of H2
+(3d σg) and

H2
+(4f σu) are not easy in experimental studies.
The vibrational levels of H2

+(2p πu), H2
+(3d σg), and

H2
+(4f σu) are far above the dissociation limit of p +

H(1s). Hence, the predissociation channel is open for these
H2

+ states. Nakashima et al. [51] carried out the quantum-
chemistry calculation of H2

+(3d σg) including the nonadia-
batic coupling, and they were thereby able to investigate the
predissociation process. They found that the predissociation
was negligible for H2

+(3d σg), as in the case of p̄H(1, 0, 0).

B. H2
−

In a dynamical aspect, the five-body system of H− + H
has a close similarity to p̄ + H. The electron cannot be bound
at small internuclear distances RH2

− in the electronic ground
(2	+

u ) state, and the detachment promptly occurs in this
system at RH2

− � 3 a.u. [52]. The feature of the H2
−(2	+

u )
effective potentials is very similar to that shown in Fig. 2.
The H2

− molecule had been considered to be highly unsta-
ble due to autodetachment [53]. However, the existence of
long-lived H2

− species was confirmed by Golser et al. [54]
using secondary-ion mass spectroscopy. In this experiment,
the long-lived H2

− species were produced by sputtering of
TiH2 targets with Cs+ ion beams with an impact energy of
∼5.4 keV. In theoretical studies, Čížek et al. [52,55] showed
that this long-lived species could be H2

−(2	+
u ) in a high

angular momentum state with the vibrational energy above
the dissociation limit, identified as a tunneling type of shape
resonance. As in the case of p̄H, with increasing the rotational
quantum number JH2

− , the autodetachment of H2
− is expected

to become inhibited. The theoretical calculation provided the
lifetime τH2

− ∼ 0.3 μs (controlled by the tunneling through
the centrifugal barrier) for the resonance with JH2

− = 26 [55],
while the experimental value was τH2

− � 8.2 μs for the long-
lived species [56]. The reason for this discrepancy has not
been explained in a precise sense [55].

Unfortunately, one cannot expect the existence of long-
lived p̄H(0, 0, 0) species attributable to the tunneling type of
shape resonance, which is dismissed in the present case of
p̄ + H(1s) collisions [25,57]. For the H− + H system with
JH2

− = 26, the vibrational region of the resonance is located
at RH2

− > 3 a.u. [55]. On the contrary, Fig. 2 shows that the
vibrational regions are inside the detachment interaction range
(∼1.5 a.u.) for p̄ + H(1s). This difference happens because
the H− + H potential is much more attractive than the polar-
ization potential at 4 � RH2

− � 10 a.u. [58]. [The p̄ + H(1s)
potential is not largely different from the polarization potential
at R � 4 a.u.]

If the distance RH2
− is very large, the H− ion can be

assumed to be a point charge when viewed from the H-
atom side. Then, also for H− + H(n=2), the potential curve
has asymptotically the long-range attractive term (−3/R2

H2
−)

(although no theoretical investigation has been done for such
electronic states). In the same way as p̄H(1, 0, 0), the corre-
sponding electronically excited H2

− molecules with very high
JH2

− would be stable against autodetachment. In sputtering

experiments using high-energy ion impacts, it would be pos-
sible to yield molecular products in electronic excited states.
At the present time, the existence of long-lived H2

− molecules
in electronic excited states has not yet been confirmed in the
experiments.

However, the sputtering experiment for H2
− is sugges-

tive. Indeed, chemical sputtering is available for producing
various kinds of molecular species [59]. One may be able
to expect that the experiments of the chemical sputtering of
hydrogen-rich surfaces with p̄ beams are useful for creating
the p̄H(1, 0, 0) molecules.

VII. SUMMARY AND FURTHER DISCUSSION

The p̄H molecule in the electronic ground state
(n1, n2, λ) = (0, 0, 0) is always unstable. The present study
shows that the stable p̄H molecule can exist if it is in
the first electronic excited state (n1, n2, λ) = (1, 0, 0). The
p̄H(1, 0, 0) molecule has a notable decay channel of au-
todetachment that takes place at R � 4 a.u., and the vibra-
tional motion reaching such a detachment region cannot be
a stable state. Nonetheless, since the p̄H(1, 0, 0) molecule
has asymptotically the long-range attractive potential −3/R2,
the stable high-J bound states can be realized: If J is very
high, the vibrational motion remains far outside, and the
autodetachment is suppressed. These high-J vibrational states
can be reasonably described by the BO approximation. For
the p̄H(1, 0, 0) molecule with J � 59, the autodetachment
becomes negligible and the lifetime is dominated by the spon-
taneous radiative emission. If the angular momentum becomes
J � 74, the p̄H(1, 0, 0) molecule is dissociated by a cen-
trifugal force and cannot be stable. Although the p̄H(1, 0, 0)
molecule has another decay channel of predissociation, it is
always negligible.

It would be very interesting if the p̄H(1, 0, 0) molecules
were created in elementary atomic and molecular pro-
cesses. Over the course of the resonance collisions p̄ +
H(1s) � p̄H(1, 0, 0), the p̄H(1, 0, 0) species can be tempo-
rally formed. However, this would be unrealistic for creating
the p̄H(1, 0, 0) molecules because the resonance width �dis is
quite small in the collisions. High-energy collisions of p̄ with
H2

+ or H2 may be a candidate process. Since the electronic
excitation must be accompanied, the collision energy is nec-
essarily �keV. At such high energies, although the exchange
chemical reaction is normally inefficient, equal-mass billiard-
ball collisions between p̄ and p may make it possible to
produce the p̄H(1, 0, 0) molecules.

The long-range attractive interaction ∝−1/R2 also works
in p̄ + H(n) with n � 3. Therefore, one can expect that stable
p̄H molecules exist for high Rydberg states. The term ∝1/R2

in Eq. (10) is the most attractive for (n1, n2, λ) = (n−1, 0, 0).
In this case, the effective potential becomes attractive at large
R if J satisfies

J <

[
3n(n − 1)μ − 1

4

]1/2

− 1

2
, (54)

which becomes, for example, J � 128 for n = 3, J � 181 for
n = 4, and J � 234 for n = 5. Since the radiative emission
rate decreases rapidly with increasing n, the lifetime of the
Rydberg p̄H molecule would become very long. The p̄H
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molecule having high n and very high J is expected to be quite
stable. However, the nonadiabatic coupling becomes stronger
for higher n, and hence the simple BO picture may not be
appropriate for describing the Rydberg p̄H molecular states.
Exactly the same conclusion as in the present study can be
derived also for the charge-conjugation system pH̄. In recent
experimental studies of H̄ production [14–16], the H̄ atoms
are cold and are found to be in high Rydberg states [60]. This
suggests that the p + H̄(n�2) system rather than p̄ + H may
be more favorable for realizing the creation of stable exotic
molecules.

The three-body system of p̄-p-e may have another type
of resonance states (p̄p-e): the dipole interaction between
p̄p(N ) and e can support the electron bound state at a
total energy E = EN + ε with ε < 0 [31,37,61]. Unlike in
the molecular state, the electron is not localized around the
nucleus in this resonance. As r → ∞, the centrifugal and
dipole interactions for the electron can be expressed by

l2 + 2r̂ · R
2r2

, (55)

where l is the electron angular momentum operator. By
diagonalizing the numerator with use of the degenerate
states of p̄p(N ), the effective potential for the electron
becomes

V
(e)

eff (r ) −−−→
r→∞

�(e)

2r2
+ EN. (56)

The numerical calculation shows that the lowest eigenvalue
becomes �(e) < −1/4 for J � 26 if N = 30 (corresponding
to E ∼ −0.5 a.u.), for J � 48 if N = 50 (E ∼ −0.2 a.u.),
and for J � 69 if N = 70 (E ∼ −0.1 a.u.). In this case, the
long-range tail in Eq. (56) can support an infinite number of
bound states [33]. Unfortunately, no such resonances could
be found at E ∼ −0.5 a.u. in rigorous collision calculations
[25,61]. Whether the resonance state supported by Eq. (56)
can really exist at higher energies is an interesting subject.
To examine this, a sophisticated calculation such as was done
in Refs. [25,61] is necessary. However, such a calculation
becomes much more troublesome at high energies, and it
remains a goal of future work.
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[53] J. Horáček, M. Čížek, K. Houfek, and P. Kolorenč, in
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