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Hyperfine structure of S states in muonic ions of lithium, beryllium, and boron
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We make precise calculation of hyperfine structure of S states in muonic ions of lithium, beryllium, and boron
in quantum electrodynamics. Corrections of orders α5 and α6 due to the vacuum polarization, nuclear structure,
and recoil in first and second orders of perturbation theory are taken into account. We obtain estimates of the
total values of hyperfine splittings, which can be used for a comparison with future experimental data.
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I. INTRODUCTION

The hyperfine splitting (HFS) of 2S state in muonic hy-
drogen was measured recently by the CREMA collaboration
in [1]:

�Ehfs
expt(2S) = 22.8089(51) meV. (1)

The theoretical value of the HFS of 2S level, which was
calculated with high accuracy as a result of taking into account
numerous corrections for the vacuum polarization, structure,
and recoil of the nucleus, relativism agrees well with the
value (1). At present, several experimental groups plan to
measure the HFS of the ground state in muonic hydrogen with
a record accuracy of 1 ppm. This will allow us to better study
effects of the structure and polarizability of the proton. Since
measurements have already been made of certain transition
frequencies (2P − 2S) in muonic deuterium and muonic he-
lium ion [2–4], it will apparently allow the experimental value
of the HFS of 2S state to be obtained in the near future for
these muonic atoms.

The CREMA collaboration has obtained in recent years
significantly new experimental results that helped to reex-
amine the problem of muon bound states and posed new
questions to the theory that require additional investigation.
One possible future activity of the CREMA collaboration may
be connected with other muonic ions containing light nuclei
of lithium, beryllium, and boron. For these muonic ions, the
description of the electromagnetic interaction of the few-
nucleon systems is particularly important, and, consequently,
the role of the effects of nuclear physics can be studied with
greater accuracy. We may hope that the enormous interest,
which experimental results of the CREMA collaboration have
met over the past years, can ultimately lead to a significant
improvement in the theory of calculating the energy levels of
muonic atoms.

In our previous work, we calculated the Lamb shift in the
muonic ions of lithium, beryllium, and boron [5]. The purpose
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of this paper is to investigate the HFS of the S states in these
ions, that is, in the precise calculation of various corrections
and obtaining reliable estimates for the HFS intervals, which
could be used for comparison with experimental data. It
should be noted that estimates of a number of important
contributions to the HFS of ions have already been made in
[6]. The initial parameters that determine the values of the
corrections in the HFS of muonic ions are the masses of the
nuclei, their spins, magnetic moments, and charge radii. Since
we calculate the corrections immediately for several nuclei,
their parameters are presented separately in Table I [7,8].

A part of the Breit Hamiltonian, responsible for hyperfine
splitting, has a known form in the coordinate representation:

�V hfs
B (r ) = 4πα(1 + aμ)μN

3m1mps2
(s1s2)δ(r), (2)

where the masses of the muon and nuclear will be denoted
further as m1, m2, mp is the proton mass, μN is the nuclear
magnetic moment in nuclear magnetons, aμ is the muon
anomalous magnetic moment (AMM), and s1 and s2 are the
spins of a muon and nucleus. The potential �V hfs

B gives the
main part of hyperfine splitting of order α4, which is called
the Fermi energy:

EF (nS) = 2Z3α4μ3μN

3m1mpn3s2
(2s2 + 1), (3)

where n is the principal quantum number, μ = m1m2/(m1 +
m2). The factor Z3 (Z is the charge of the nucleus in units
of the electron charge) in (3) leads to the essential increase
of numerical values EF (nS) for the muonic ions of lithium,
beryllium, and boron in comparison with muonic hydrogen.
The muon AMM aμ is not included in (3).

The Fermi energy is obtained after averaging (2) over the
Coulomb wave functions. In the case of 1S and 2S states they
have the form

ψ100(r ) = W 3/2

√
π

e−Wr, W = μZα, (4)

ψ200(r ) = W 3/2

2
√

2π
e−Wr/2

(
1 − Wr

2

)
. (5)
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TABLE I. Nucleus parameters of lithium, beryllium, and boron.

Mass Magnetic dipole Charge radius Electroquadrupole Magnetic octupole
Nucleus Spin (GeV) moment (nm) (fm) moment (fm2) moment (nm fm2)

6
3Li 1 5.60152 0.8220473(6) 2.5890 ± 0.0390 −0.083(8) 0
7
3Li 3/2 6.53383 3.256427(2) 2.4440 ± 0.0420 −4.06(8) 7.5
9
4Be 3/2 8.39479 −1.177432(3) 2.5190 ± 0.0120 5.29(4) 4.1
10
5 B 3 9.32699 0.8220473(6) 2.4277 ± 0.0499 8.47(6) 0
11
5 B 3/2 10.25510 0.8220473(6) 2.4060 ± 0.0294 4.07(3) 7.8

The muon AMM correction to hyperfine splitting is presented
separately in Tables II–IV (line 2) taking the experimental
value of muon AMM [9]:

�Ehfs
aμ

(nS) = aμEF (nS). (6)

Numerical value of relativistic correction of order α6 to HFS
can be obtained by means of known analytical expression

from [10,11]:

�Ehfs
rel (nS) =

{
3
2 (Zα)2EF (1S),
17
8 (Zα)2EF (2S).

(7)

Next, we investigate a number of basic corrections to the
hyperfine structure of S states in order to obtain an acceptable
total result. Numerical values of different corrections are
presented for definiteness with the accuracy 10−2 meV.

II. NUCLEAR STRUCTURE AND RECOIL CORRECTIONS

When calculating various corrections in the hyperfine structure of the spectrum, it is important to note the essential role of
corrections for the structure of the Li, Be, and B nuclei. Such corrections are determined by the electromagnetic form factors
of the nuclei. Among the nuclei that we are considering, several nuclei have a spin s2 = 3/2. The amplitude of the one-photon
interaction of such nuclei with a muon can be written in the form [12–14]

iM1γ = −Ze2

k2
[ū(q1)γμu(p1)][v̄α (p2)Oαμβvβ (q2)]

= −Ze2

k2
[ū(q1)γμu(p1)]v̄α (p2)

{
gαβ

(p2 + q2)μ
2m2

F1(k2) − gαβσμν

kν

2m2
F2(k2) + kαkβ

4m2
2

(p2 + q2)μ
2m2

F3(k2)

− kαkβ

4m2
2

σμν

kν

2m2
F4(k2)

}
vβ (q2), (8)

where p1, p2 are four-momenta of particles in the initial state and q1, q2 are four-momenta of particles in the final state, k =
q2 − p2 = p1 − q1. Oαμβ is the vertex function of the spin 3/2 nucleus. Nuclei with a spin 3/2 are described by the spin-vector
vα (p). Four form factors Fi (k2) are related to the charge GE0, electroquadrupole GE2, magnetic dipole GM1, and magnetic
octupole GM3 form factors by the following expressions [12–14]:

GE0 =
(

1 + 2

3
τ

)
[F1 + τ (F1 − F2)] − τ

3
(1 + τ )[F3 + τ (F3 − F4)], GE2 = F1 + τ (F1 − F2) − 1 + τ

2
[F3 + τ (F3 − F4)],

GM1 =
(

1 + 4

3
τ

)
F2 − 2

3
τ (1 + τ )F4, GM3 = F2 − 1

2
(1 + τ )F4, τ = − k2

4m2
2

. (9)

It is useful to consider how the magnitude of the hyperfine splitting in the leading order (the Fermi energy) can be obtained
from the amplitude M1γ . When two moments are added, two states appear with the total angular momentum F = 2 and F = 1.
To distinguish the contribution of the amplitude M1γ to the interaction operator of particles with F = 2 and F = 1, we use the
method of projection operators, which are constructed from the wave functions of free particles in the rest frame [15,16]. Thus
the projection operator on a state with F = 2 is equal to

�̂α = [u(0)v̄α]F=2 = 1 + γ0

2
√

2
γβεαβ, (10)

where the tensor εαβ describes a muonic atom with F = 2. As a result, the projection of M1γ to the state with F = 2 takes the
form

iM1γ (F = 2) = − Ze2

16k2m2
1m

2
2

Tr

{
(q̂1 + m1)γμ(p̂1 + m1)

1 + v̂

2
√

2
γρεαρ (p̂2 − m2)

[
gαβ

(p2 + q2)μ
2m2

F1(k2) − gαβσμν

kν

2m2
F2(k2)

+ kαkβ

4m2
2

(p2 + q2)μ
2m2

F3(k2) − kαkβ

4m2
2

σμν

kν

2m2
F4(k2)

]
(q̂2 − m2)γλ

1 + v̂

2
√

2
ε∗
βλ

}
, (11)
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TABLE II. Hyperfine splittings of S states in muonic ions (μ 6
3Li)2+ and (μ 7

3Li)2+.

(
μ 6

3Li
)2+

(meV)
(
μ 7

3Li
)2+

(meV)

No. Contribution to the splitting 1S 2S 1S 2S

1 Contribution of order α4, the Fermi energy 1416.07 177.01 5026.00 628.25

2 Muon AMM contribution 1.65 0.21 5.87 0.73

3 Relativistic correction of order α6 1.02 0.18 3.62 0.64

4 Nuclear structure correction G; −109.92 G: −13.74 G: −369.25 G: −46.16
of order α5 U: −112.02 U: −14.00 U: −376.31 U: −47.04

5 Nuclear structure and recoil G: −0.20 G: −0.03 G: −30.67 G: −3.83

6 Nuclear structure correction 3.35 0.34 10.67 1.08
of order α6 in 1γ interaction

7 Nuclear structure correction in second- −2.56 −0.90 −8.19 −2.90
order perturbation theory

8 Vacuum polarization contribution 5.22 0.67 18.54 2.38
of order α5 in first-order PT

9 Vacuum polarization contribution 12.05 1.11 42.83 3.94
of order α5 in second-order PT

10 Muon vacuum polarization contribution 0.08 0.01 0.29 0.04
of order α6 in first-order PT

11 Muon vacuum polarization contribution 0.09 0.01 0.31 0.04
of order α6 in second-order PT

12 Vacuum polarization contribution 0.07 0.01 0.24 0.03
of order α6 in first-order PT

13 Vacuum polarization contribution 0.14 0.02 0.53 0.05
of order α6 in second-order PT

14 Nuclear structure and vacuum −1.62 −0.20 −5.85 −0.73
polarization correction of order α6

15 Nuclear structure and muon vacuum −0.14 −0.02 −0.51 −0.06
polarization correction of order α6

16 Hadron vacuum polarization contribution of order α6 0.06 0.01 0.21 0.03

17 Radiative nuclear finite-size correction of order α6 −0.34 −0.04 −1.24 −0.15

Summary contribution 1325.02 164.65 4693.40 583.38

where auxiliary four-vector v = (1, 0, 0, 0). For further construction of the particle interaction potential from (11), we use the
averaging over the projections of the total angular momentum F , which is connected with the calculation of the following sum:

∑
pol

ε∗
βλεαρ = �̂βλαρ = 1

2
XβαXλρ + 1

2
XβρXλα − 1

3
XβλXαρ, Xβα = (gαβ − vβvα ). (12)

To introduce the projection operators for another state of hyperfine structure with F = 1 we use the following expansion:

�s2=3/2,F=1,Fz
=

√
2

3
�S=0,F=1,Fz

+ 1√
3
�S=1,F=1,Fz

, (13)

where the Rarita-Schwinger spinor vα (p) for the state with s2 = 3/2 is presented as a result of adding spin 1/2 and angular
momentum 1. With this method of adding moments, the total spin S can take two values S = 1 and S = 0. When calculating the
matrix elements for the states �01Fz

and �11Fz
, we successively perform the projection on the state with spin S = 0, S = 1, and

then on the state with the total angular momentum F = 1. The corresponding projection operators have the form

�̂α (S = 0, F = 1) = 1 + v̂

2
√

2
γ5εα, (14)

�̂α (S = 1, F = 1) = 1 + v̂

4
γσ εασρωvρεω, (15)
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TABLE III. Hyperfine splittings of S states in muonic ion (μ 9
4Be)3+.

(
μ 9

4Be
)3+

(meV)

No. Contribution to the splitting 1S 2S

1 Contribution of order α4, the Fermi energy −4353.49 −544.19

2 Muon AMM contribution −5.08 −0.64

3 Relativistic correction of order α6 −5.57 −0.99

4 Nuclear structure correction of order α5 G; 441.09 G: 55.14

5 Nuclear structure and recoil G: −97.71 G: −12.21

6 Nuclear structure correction of order α6 in 1γ interaction −17.57 −1.78

7 Nuclear structure correction in second-order perturbation theory 12.64 4.36

8 Vacuum polarization contribution of order α5 in first-order PT −17.97 −2.30

9 Vacuum polarization contribution of order α5 in second-order PT −42.62 −3.92

10 Muon vacuum polarization contribution of order α6 in first-order PT −0.34 −0.04

11 Muon vacuum polarization contribution of order α6 in second-order PT −0.36 −0.05

12 Vacuum polarization contribution of order α6 in first-order PT −0.24 −0.03

13 Vacuum polarization contribution of order α6 in second-order PT −0.54 −0.05

14 Nuclear structure and vacuum polarization correction of order α6 5.31 0.66

15 Nuclear structure and muon vacuum polarization correction of order α6 0.55 0.07

16 Hadron vacuum polarization contribution of order α6 −0.25 −0.03

17 Radiative nuclear finite-size correction of order α6 1.44 0.18

Summary contribution −4080.71 −505.82

where εω is the polarization vector of the state with F = 1. After using (14) and (15), the matrix elements of M1γ according to
the states of �01Fz

and �11Fz
are reduced to the form

〈
�01Fz

∣∣iM1γ (F = 1)
∣∣�01Fz

〉 = πZα

96k2m2
1m

2
2

Tr

{
(q̂1 + m1)γμ(p̂1 + m1)(1 + v̂)γ5(p̂2 − m2)

[
gαβ

(p2 + q2)μ
2m2

F1(k2)

− gαβσμν

kν

2m2
F2(k2) + kαkβ

4m2
2

(p2 + q2)μ
2m2

F3(k2) − kαkβ

4m2
2

σμν

kν

2m2
F4(k2)

]
(q̂2 − m2)γ5(1 + v̂)

}

× (−gαβ + vαvβ ), (16)

〈
�11Fz

∣∣iM1γ (F = 1)
∣∣�11Fz

〉 = πZα

192k2m2
1m

2
2

Tr

{
(q̂1 + m1)γμ(p̂1 + m1)(1 + v̂)γσ (p̂2 − m2)

[
gαβ

(p2 + q2)μ
2m2

F1(k2)

− gαβσμν

kν

2m2
F2(k2) + kαkβ

4m2
2

(p2 + q2)μ
2m2

F3(k2) − kαkβ

4m2
2

σμν

kν

2m2
F4(k2)

]
(q̂2 − m2)γε (1 + v̂)

}
× εασρωεβετλ(−gλω + vλvω ). (17)

In addition, the off-diagonal matrix element
〈�01Fz

|iM1γ (F = 1)|�11Fz
〉 is also nonzero. The sum

of all the matrix elements gives, in the nonrelativistic
approximation, the following value of the hyperfine splitting
(the Fermi energy) (see the numerical values in Tables II–IV,
line 1):

�Ehfs
1γ = EF (nS) = 16

9

πZα

m1m2
F2(0)

W 3

πn3
= 16α(Zα)3μ3

9m1mpn3
μN.

(18)

Expressions (16) and (17) are presented in a form that is
convenient for the subsequent calculation of the contribution
in the Form package [17]. We present in detail the results
of calculating the amplitude M1γ , since this calculation tech-
nique is used later in the calculation of two-photon exchange
amplitudes. In the case of nuclei with spin s2 = 1/2 and
s2 = 1 the similar technique of projection operators was used
in [16,18–20].

Basic contribution of the nuclear structure effects of order
α5 to the hyperfine splitting is determined by two-photon
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TABLE IV. Hyperfine splittings of S states in muonic ions (μ 10
5 B)4+ and (μ 11

5 B)4+.

(
μ 10

5 B
)4+

(meV)
(
μ 11

5 B
)4+

(meV)

No. Contribution to the splitting 1S 2S 1S 2S

1 Contribution of order α4, the Fermi energy 11420.56 1427.57 19548.21 2443.53

2 Muon AMM contribution 13.33 1.67 22.82 2.85

3 Relativistic correction of order α6 22.83 4.04 39.08 6.92

4 Nuclear structure correction of order α5 G; −1395.72 G: −174.46 G: −2370.05 G: −296.26
U: −1422.43 U: −177.80 U: −2415.42 U: −301.93

5 Nuclear structure and recoil G: 36.68 G: 4.59

6 Nuclear structure correction 67.06 6.81 112.97 11.47
of order α6 in 1γ interaction

7 Nuclear structure correction in second- −46.40 −15.69 −78.15 −26.45
order perturbation theory

8 Vacuum polarization contribution 50.99 6.51 87.31 11.14
of order α5 in first-order PT

9 Vacuum polarization contribution 123.21 11.38 210.99 19.49
of order α5 in second-order PT

10 Muon vacuum polarization contribution 1.10 0.14 1.89 0.24
of order α6 in first-order PT

11 Muon vacuum polarization contribution 1.21 0.15 2.07 0.26
of order α6 in second-order PT

12 Vacuum polarization contribution 0.71 0.09 1.21 0.15
of order α6 in first-order PT

13 Vacuum polarization contribution 1.63 0.15 2.79 0.27
of order α6 in second-order PT

14 Nuclear structure and vacuum −20.80 −2.60 −35.06 −4.38
polarization correction of order α6

15 Nuclear structure and muon vacuum −1.90 −0.24 −3.26 −0.41
polarization correction of order α6

16 Hadron vacuum polarization 0.81 0.10 1.38 0.17
contribution of order α6

17 Radiative nuclear finite-size −4.76 −0.59 −8.18 −1.02
correction of order α6

Summary contribution 10233.86 1265.03 17572.70 2172.56

exchange diagrams shown in Fig. 1. It is expressed in terms
of electric GE (k2) and magnetic GM (k2) nuclear form factors

FIG. 1. Nuclear structure effects of order α5. The bold point
denotes the nucleus vertex function.

in the form (the Zemach correction)

�Ehfs
str = EF

2μZα

π

∫
dk
k4

[
GE (k2)GM (k2)

GM (0)
− 1

]
. (19)

We have analyzed numerical values of correction (19) for
different parametrizations of nuclear form factors: Gaus-
sian GG

E (k2), dipole GD
E (k2), and uniformly charged sphere

GU
E (k2):

GG
E (k2) = e− 1

6 r2
N k2

, GD
E (k2) = 1(

1 + k2

�2

)2 ,

GU
E (k2) = 3

(kR)3
[sin kR − kR cos kR], (20)

where R = √
5rN/

√
3 is the nucleus radius, �2 = 12/r2

N . A
comparison of functions G2

E (k2) for different parametriza-
tions is presented in Fig. 2 for the nucleus 6

3Li. In the range
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FIG. 2. Gaussian (dashed), dipole (dotted), and uniformly
charged sphere (solid) parametrizations of nuclear form factor
G2

E (k2) as functions of k in GeV.

0.1 � k � 0.4 GeV there is a difference between functions
(19) which leads to different numerical values of the Zemach
correction shown in Tables II–IV (line 4).

The momentum integration in (19) can be done analyti-
cally, so that the Zemach correction with the Gaussian and
uniformly charged sphere parametrizations has the form (nu-
merical results are presented in Tables II–IV for these two
parametrizations)

�Ehfs
str,G = −EF

72√
3π

μZαrN,

�Ehfs
str,U = −EF

72
√

5

35
√

3
μZαrN . (21)

Acting as in the case of the one-photon interaction, we can
present the contribution of two-photon interactions to HFS at
F = 2 in the form

�Ehfs
2γ (F = 2) = − (Zα)2

640π2m2
1m

2
2

|ψ (0)|2
∫

id4k(k2 − 2k0m2)

k4
(
k4 − 4k2

0m
2
1

)(
k4 − 4k2

0m
2
2

)Tr

{
(q̂1 + m1)s[γμ(p̂1 − k̂ + m1)γν (k2 + 2k0m1)g

+ γν (p̂1 + k̂ + m1)γμ(k2 − 2k0m1)](p̂1 + m1)(1 + v̂)γρ (p̂2 − m2)Oανσ (k)(−p̂2 − k̂ + m2)

×
[
gστ − 1

3
γσγτ − 2

3m2
2

(p2 + k)σ (p2 + k)τ + 1

3m2
[γσ (p2 + k)τ − γτ (p2 + k)σ ]

]

×Oτμβ (−k)(q̂2 − m2)γλ(1 + v̂)

}
�̂βαλρ, (22)

where k is a loop momentum and k0 its zero component. We also give for completeness analogous expressions for two states in
(13) with F = 1, S = 0 and F = 1, S = 1:

�Ehfs
2γ (F = 1, S = 0) = − (Zα)2

384π2m2
1m

2
2

|ψ (0)|2
∫

id4k(k2 − 2k0m2)

k4
(
k4 − 4k2

0m
2
1

)(
k4 − 4k2

0m
2
2

)Tr

{
(q̂1 + m1)[γμ(p̂1 − k̂ + m1)γν

× (k2 + 2k0m1) + γν (p̂1 + k̂ + m1)γμ(k2 − 2k0m1)](p̂1 + m1)(1 + v̂)γ5(p̂2 − m2)Oανσ (k)

× (−p̂2 − k̂ + m2)

[
gστ − 1

3
γσ γτ − 2

3m2
2

(p2 + k)σ (p2 + k)τ + 1

3m2
[γσ (p2 + k)τ − γτ (p2 + k)σ ]

]

×Oτμβ (−k)(q̂2 − m2)γ5(1 + v̂)

}
(−gαβ + vαvβ ), (23)

�Ehfs
2γ (F=1, S=1) = − (Zα)2

768π2m2
1m

2
2

|ψ (0)|2
∫

id4k(k2−2k0m2)

k4
(
k4−4k2

0m
2
1

)(
k4−4k2

0m
2
2

)Tr

{
(q̂1+m1)[γμ(p̂1−k̂ + m1)γν (k2+2k0m1)

+ γν (p̂1 + k̂ + m1)γμ(k2 − 2k0m1)](p̂1 + m1)(1 + v̂)γσ1εασ1ρ1ω1vρ1 (p̂2 − m2)Oανσ (k)

× (−p̂2 − k̂ + m2)

[
gστ − 1

3
γσ γτ − 2

3m2
2

(p2 + k)σ (p2 + k)τ + 1

3m2
[γσ (p2 + k)τ − γτ (p2 + k)σ ]

]

×Oτμβ (−k)(q̂2 − m2)γε1 (1 + v̂)εβε1τ1λ1vτ1

}
(−gλ1ω1 + vλ1vω1 ). (24)

There is also an off-diagonal matrix element between states with F = 1, S = 0 and F = 1, S = 1, which we omit here. The
expressions (21)–(24) are presented in a form convenient for the subsequent calculation in the package Form [17]. As a result
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the value of the hyperfine splitting is determined in Euclidean space by the following formula:

�Ehfs(nS) = |ψnS (0)|2
∫

d4k V2γ (k) = 64

9

(Zα)2

π2
|ψnS (0)|2

∫
d4k

k4
(
k4 + 4m2

1k
2
0

)(
k4 + 4m2

2k
2
0

)
×

[
F1F2

(
k6 − k4k2

0 + 4

15

k4k4
0

m2
2

− 7

10

k6k2
0

m2
2

+ 13

30

k8

m2
2

)
+ F2F4

(
− 1

30

k2k6
0

m2
2

+ 1

15

k4k4
0

m2
2

− 1

30

k6k2
0

m2
2

)

+F2F3

(
− 1

15

k2k6
0

m2
2

+ 11

60

k4k4
0

m2
2

− 7

60

k8

m2
2

)
+ F1F4

(
−1

5

k2k6
0

m2
2

+ 3

10

k4k4
0

m2
2

− 1

10

k8

m2
2

)

+F 2
2

(
1

15

k2k6
0

m2
2

− 1

6
k2k4

0 − 2

15

k4k4
0

m2
2

+ 1

6
k4k2

0 + 23

120

k6k2
0

m2
2

− 1

4

k8

m2
2

)]
. (25)

When investigating this expression, it is useful to distinguish the Zemach correction, which is determined by the integral

J =
∫ ∞

0

∫ π

0

k sin2 φ dk dφ F1(k2)F2(k2)(
k2 + 4m2

1 cos2 φ
)(

k2 + 4m2
2 cos2 φ

) = π

2(m1 + m2)

∫ ∞

0

dk

k2
F1(k2)F2(k2)

+ π

4
(
m2

1 − m2
2

) ∫ ∞

0

dk

k2

[√
k2 + 4m2

1 − 2m1 −
√

k2 + 4m2
2 + 2m2

]
F1(k2)F2(k2). (26)

The divergence in the first term on the right-hand side of (26) is compensated by the subtraction term

�Ehfs
iter = 64

9

(Zα)2

π2
|ψ (0)|2

∫ ∞

0

2π2F2(0)

(m1 + m2)k2
dk. (27)

Thus we have in (25) the main contribution (the Zemach correction) and the recoil correction m1/m2. In the case of Li nucleus
with spin 1 the expression similar to (25) was obtained in [19] for muonic deuterium. We use it for corresponding numerical
estimates of nuclear structure and recoil corrections in 6

3Li. The recoil effects for the nucleus 10
5 B with spin 3 are neglected.

The form factors Fi (k2) are expressed in terms of GE0, GE2, GM1, GM3 for which the Gaussian parametrization is used in
numerical calculations of integrals with respect to k. The values of the form factors at zero have the form

GE0(0) = 1, GM1(0) = m2μN

mpZ
, GE2(0) = m2

2Q, GM3(0) = m2

mpZ
m2

2�. (28)

Different parameters of light nucleus (Li, Be, B) were investigated in electron-scattering experiments [21,22]. The nucleus
multiple moments are presented in Table I. Some of them are unknown with good accuracy, but, nevertheless, one can obtain
approximate estimates of the corresponding contributions. After angular analytical integration in (25) we make numerical
integration over k. Obtained results for nuclear structure and recoil corrections are presented in Tables II–IV in separate lines.

Another correction for the structure of the nucleus of order α6, which must be discussed, is obtained as a result of the
decomposition of the magnetic form factor of the nucleus; see Fig. 3(a). The contribution to the interaction potential and HFS in
this case has the form [18,23]

�V hfs
1γ,str (r ) = 4παμN

9m1mp

r2
M (s1s2)∇2δ(r), (29)

�Ehfs
1γ,str = 2

3
μ2Z2α2r2

M

3n2 + 1

n2
EF (nS). (30)

Numerical values on the basis (30) can be obtained assuming that r2
M = r2

E . They are in line 11 of Tables II–IV.
In second-order PT we should take into account a term in which the potential

�V C
str,1γ (k) = −Zα

k2

[
3

(kR)3
(sin kR − kR cos kR) − 1

]
(31)

is considered as a perturbation. The Fourier transform of (31) is

�V C
str,1γ (r ) = − Zα

4R3r
(r − R)(r + 2R)(R − r + |r − R|). (32)

Using the Green’s functions (43) and (44) (see Sec. III) we perform the analytical integration in second-order PT. It gives the
following result:

�Ehfs
str,SOPT(1S) = −EF (1S)

R2W 2

4

[
− 4

75
(−53 + 15C + 15 ln RW ) + RW

12
(−15 + 4C + 4 ln RW )

]
, (33)

�Ehfs
str,SOPT(2S) = EF (2S)

R2W 2

4

[
4

75
(−107 + 60C + 60 ln RW ) + RW

3
(17 − 8C − 8 ln RW )

]
, (34)
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G̃

(a) (b) (c)

(d)

FIG. 3. Nuclear structure effects in one-photon interaction (c) and in second-order perturbation theory (d). G̃ is the reduced Coulomb
Green’s function.

where we present expansions in (RW ) up to terms of first order in square brackets [RW (6
3Li) = 0.038, RW (7

3Li) = 0.036,
RW (9

4Be) = 0.050, RW (10
5 B) = 0.060, and RW (11

5 B) = 0.060]. Numerical values of (33) and (34) are sufficiently important
(see line 7 of Tables II–IV).

III. EFFECTS OF ONE- AND TWO-LOOP VACUUM POLARIZATION IN FIRST AND SECOND
ORDERS OF PERTURBATION THEORY

Another of our tasks is to analyze different vacuum polarization corrections to the total value of the hyperfine splitting.
Primarily, we have to calculate a contribution of one-loop vacuum polarization contribution in first-order PT. Corresponding
potential can be obtained in momentum representation after a standard modification of hyperfine muon-nucleus interaction due
to vacuum polarization effect [24–29]. In coordinate representation it is defined by the following integral expression:

�V hfs
1γ,vp(r ) = 4αgN (1 + aμ)

3m1mp

(s1s2)
α

3π

∫ ∞

1
ρ(ξ )dξ

(
πδ(r) − m2

eξ
2

r
e−2meξr

)
, (35)

where gN = μN/s2 and spectral function ρ(ξ ) =
√

ξ 2 − 1(2ξ 2 + 1)/ξ 4. We include in (35) the anomalous magnetic moment
of muon, which leads to the additional contribution of order α6. Averaging (35) over wave functions (4) and (5), we get the
contribution of order α5 to hyperfine structure of 1S and 2S states (a1 = me/W , W = μZα):

�Ehfs
1γ,vp(1S) = 4α2(Zα)3μ3gN (1 + aμ)

9m1mpπ
〈(s1s2)〉

∫ ∞

1
ρ(ξ )dξ

[
1 − m2

eξ
2

W 2

∫ ∞

0
x dx e

−x
(

1+ meξ

W

)]

= EF (1S)
α(1 + aμ)

9π

√
1 − a2

1

[√
1 − a2

1

(
1 + 6a2

1 − 3πa3
1

) + (
6 − 3a2

1 + 5a4
1

)
ln

1 +
√

1 − a2
1

a1

]
, (36)

�Ehfs
1γ,vp(2S) = α2(Zα)3μ3gN (1 + aμ)

18m1mpπ
〈(s1s2)〉

∫ ∞

1
ρ(ξ )dξ

[
1 − 4m2

eξ
2

W 2

∫ ∞

0
x
(

1 − x

2

)2
dx e

−x
(

1+ 2meξ

W

)]

= EF (2S)
α(1 + aμ)

18π
(
4a2

1 − 1
)5/2

{√
4a2

1 − 1
[
11 + 2a2

1

(−29 + 8a1
[ − 22a1 + 48a13 − 3π

(
4a2

1 − 1
)2])]

+ 12
(
1 − 10a2

1 + 66a4
1 − 160a6

1 + 256a8
1

)
arctan

√
4a2

1 − 1

}
. (37)
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(a) (b) (c) (d)

FIG. 4. Effects of one- and two-loop vacuum polarization in one-photon interaction.

We present in detail the results of (36) and (37) to demonstrate the general structure of the obtained analytical expressions.
After integrating over particle coordinates, the results have a fairly simple form, but the following integration over the spectral
parameters gives, as a rule, rather cumbersome expressions, which we will omit in the following.

With a simple replacement me to muon mass m1 in Eqs. (36) and (37) one can obtain the muon vacuum polarization
correction to HFS of order α6. The numerical values of the muon vacuum polarization corrections are included in Tables II–
IV in the corresponding line (line 6). Another contribution of order α6 is represented by two-loop vacuum polarization
diagrams [see Figs. 4(b)–4(d)] (the Källen and Sabry potential [30]). The construction of the interaction potentials from these
diagrams is completely analogous to (35). They have the form of a double and a single spectral integral in coordinate space
[23,31]:

�V hfs
1γ,vp-vp(r ) = 4παgN (1 + aμ)

3m1mp

(s1s2)
( α

3π

)2
∫ ∞

1
ρ(ξ )dξ

∫ ∞

1
ρ(η)dη

[
δ(r) − m2

e

πr (η2 − ξ 2)
(η4e−2meηr − ξ 4e−2meξr )

]
, (38)

�V hfs
1γ,2-loop vp(r ) = 8α3gN (1 + aμ)

9π2m1mp

(s1s2)
∫ 1

0

f (v)dv

1 − v2

[
πδ(r) − m2

e

r (1 − v2)
e
− 2mer√

1−v2

]
, (39)

where two-loop spectral function

f (v) = v

{
(3 − v2)(1 + v2)

[
Li2

(
−1 − v

1 + v

)
+ 2 Li2

(
1 − v

1 + v

)
+ 3

2
ln

1 + v

1 − v
ln

1 + v

2
− ln

1 + v

1 − v
ln v

]

+
[

11

16
(3 − v2)(1 + v2) + v4

4

]
ln

1 + v

1 − v
+

[
3

2
v(3 − v2) ln

1 − v2

4
− 2v(3 − v2) ln v

]
+ 3

8
v(5 − 3v2)

}
, (40)

where Li2(z) is the Euler dilogarithm. Averaging (38),(39)
over wave functions (5),(6) the integration over r can be done
analytically, while two other integrations over ξ and η are
calculated numerically with the use of Wolfram Mathematica.
Summary two-loop vacuum polarization correction of order
α6 is written in Tables II–IV (line 7).

To achieve the desired accuracy of calculations one-loop
and two-loop contributions of order α5 and α6 to HFS
have to be taken into account in second-order perturbation
theory. The second-order perturbation theory (PT) correc-
tions to the energy spectrum are determined by the reduced
Coulomb Green’s function G̃n(r, r′) The radial part g̃nl (r, r ′)
of G̃n(r, r′) was obtained in [32] in the form of the Sturm
expansion in the Laguerre polynomials. The main contribution
of the electron vacuum polarization to HFS in second-order
PT (SOPT) has the form [see Fig. 5(a)]

�Ehfs
SOPT vp 1 = 2〈ψ |�V C

VPG̃�V hfs
B |ψ〉, (41)

where the Coulomb potential, modified by the one-loop vac-
uum polarization effect, has the form

�V C
vp(r ) = α

3π

∫ ∞

1
ρ(ξ )dξ

(
−Zα

r

)
e−2meξr . (42)

Since hyperfine part of the Breit potential �V hfs
B (r ) is pro-

portional to δ(r), it is necessary to use the reduced Coulomb
Green’s function with one zero argument. For this case it
was obtained on the basis of the Hostler representation after
a subtraction of the pole term in [32]. We represent for the
sake of completeness the explicit expressions for the Green’s
functions, used in later calculations:

G̃1S (r, 0) = Zαμ2

4π

e−x

x
g1S (x),

g1S (x) = [4x(ln 2x + C) + 4x2 − 10x − 2], (43)
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FIG. 5. Effects of one- and two-loop vacuum polarization in
second-order PT.

G̃2S (r, 0) = −Zαμ2

4π

e−x/2

2x
g2S (x),

g2S (x) = [4x(x − 2)(ln x + C) + x3 − 13x2 + 6x + 4],

(44)

where C = 0.5772 . . . is the Euler constant and x = Wr .
Then the necessary vacuum polarization corrections of order
α5 to HFS of muonic ions can be presented as follows:

�Ehfs
SOPTvp1(1S) = −EF (1S)

2α

3π
(1 + aμ)

∫ ∞

1
ρ(ξ )dξ

×
∫ ∞

0
e
−2x

(
1+ meξ

W

)
g1S (x)dx, (45)

�Ehfs
SOPT vp1(2S) = EF (2S)

α

3π
(1 + aμ)

∫ ∞

1
ρ(ξ )dξ

×
∫ ∞

0
e
−x

(
1+ 2meξ

W

)
g2S (x)

(
1 − x

2

)
dx,

(46)

where we use its designation by the index (SOPT vp 1).
The result of integration is in line 5 of Tables II–IV. The
factor (1 + aμ) is included in (45) and (46); therefore, these
expressions contain corrections of orders α5 and α6. Changing
me → m1 in (45),(46) we calculate a one-loop muon vacuum
polarization contribution in second-order PT of order α6 (see
line 7 of Tables II–IV).

Two-loop corrections in Figs. 5(b)–5(e) are of order α6. Let
us consider first contribution which is related with potentials
(35) and (42), reduced Coulomb Green’s functions (43), (44),
and reduced Coulomb Green’s function with nonzero argu-
ments. General structure of this contribution takes the form

�Ehfs
SOPT vp 2 = 2〈ψ |�V hfs

1γ,vpG̃�V C
vp|ψ〉. (47)

The convenient representation for reduced Coulomb Green’s
function with nonzero arguments was obtained in [32]:

G̃1S (r, r ′) = −Zαμ2

π
e−(x1+x2 )g1S (x1, x2),

g1S (x1, x2) = 1

2x>

− ln 2x> − ln 2x< + Ei(2x<)

+ 7

2
− 2C − (x1 + x2) + 1 − e2x<

2x<

, (48)

G̃2S (r, r ′) = − Zαμ2

16πx1x2
e− x1+x2

2 g2S (x1, x2),

g2S (x1, x2) = 8x< − 4x2
< + 8x> + 12x<x> − 26x2

<x>

+ 2x3
<x> − 4x2

> − 26x<x2
> + 23x2

<x2
> − x3

<x2
>

+ 2x<x3
> − x2

<x3
> + 4ex< (1 − x<)(x> − 2)x>

+ 4(x< − 2)x<(x> − 2)x>

× [−2C + Ei(x<) − ln(x<) − ln(x>)], (49)

where x1 = Wr , x2 = Wr ′, x< = min(x1, x2), x> =
max(x1, x2), C = 0.577216 . . . is the Euler constant, and
Ei(x) is the integral exponential function. The substitution of
(35), (42), (43), (44), (48), and (49) into (47) provides two
terms for each 1S and 2S level in integral form:

�Ehfs
SOPTvp21(1S) = −2EF (1S)

α2

9π2
(1 + aμ)

∫ ∞

1
ρ(ξ )dξ

×
∫ ∞

1
ρ(η)dη

∫ ∞

0
dx e−2x(1+ meη

W
)g1S (x),

(50)

�Ehfs
SOPT vp 22(1S) = 2EF (1S)

α2

9π2
(1 + aμ)

16m2
e

W 2

×
∫ ∞

1
ρ(ξ )ξ 2dξ

∫ ∞

1
ρ(η)dη

×
∫ ∞

0
x1dx1e

−2x1(1+ meη

W )

×
∫ ∞

0
x2dx2e

−2x2

(
1+ meξ

W

)
g1S (x1, x2),

(51)

�Ehfs
SOPTvp21(2S)

= EF (2S)
α2

9π2
(1 + aμ)

∫ ∞

1
ρ(ξ )dξ

∫ ∞

1
ρ(η)dη

×
∫ ∞

0

(
1 − x

2

)
dx e

−x
(

1+ 2meη

W

)
g2S (x), (52)

�Ehfs
SOPT vp 22(2S)

= −EF (2S)
α2

9π2
(1 + aμ)

2m2
e

W 2

∫ ∞

1
ρ(ξ )ξ 2dξ

∫ ∞

1
ρ(η)dη
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FIG. 6. Two photon exchange amplitudes accounting for effects
of vacuum polarization and nuclear structure. The wavy line denotes
the photon. The bold point denotes the nucleus vertex function.

×
∫ ∞

0

(
1 − x1

2

)
dx1e

−x1

(
1+ 2meξ

W

) ∫ ∞

0

(
1 − x2

2

)

× dx2e
−x2

(
1+ 2meη

W

)
g2S (x1, x2). (53)

Separately, the contributions (27),(28) and (35),(36) are diver-
gent but their sum is finite. Corresponding numerical values
are

�Ehfs
vp,vp(1S) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

6
3Li : 0.05 meV,
7
3Li : 0.20 meV,
9
4Be : −0.21 meV,
10
5 B : 0.65 meV,
11
5 B : 1.11 meV,

�Ehfs
vp,vp(2S) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

6
3Li : 0.01 meV,
7
3Li : 0.02 meV,
9
4Be : −0.02 meV,
10
5 B : 0.06 meV,
11
5 B : 0.11 meV.

(54)

The contributions of two other amplitudes in Figs. 5(c)–
5(e) to HFS can be calculated by means of (47), where the
replacement of the potential (42) on the following potentials
should be made [23]:

�V C
VP-VP(r ) =

( α

3π

)2
∫ ∞

1
ρ(ξ )dξ

∫ ∞

1
ρ(η)dη

(
−Zα

r

)

× 1

ξ 2 − η2
(ξ 2e−2meξr − η2e−2meηr ), (55)

�V C
2-loop VP(r ) = −2Zα3

3π2r

∫ 1

0

f (v)dv

(1 − v2)
e
− 2mer√

1−v2 . (56)

Omitting further intermediate expressions we include in Ta-
bles II–IV total numerical values of two-loop vacuum polar-
ization corrections in second-order PT [Figs. 5(b)–5(e)] in line
9.

There is another correction for the polarization of the
vacuum, which also includes the effect of the nuclear struc-
ture discussed in Sec. II (see Fig. 6). To calculate it, it is
necessary to use the potential V2γ (k) from (25), modifying
it accordingly. As a result, the contribution to the HFS spec-
trum is determined by the following expression (the factor 2

corresponds to two exchange photons):

Ehfs
2γ,vp = −2μ3Z3α4

9π2n3

∫
V2γ (k)d4k

k3

[
5k3 − 12mek

2

− 6
(
k2 − 2m2

e

)√
k2 + 4m2

earccoth

(
k√

k2 + 4m2
e

)]
.

(57)

Numerical integration in (39) can be carried out exactly as in
(25) (line 12 of Tables II–IV). The contribution of muon VP
in 2γ amplitudes with the nuclear structure is written in line
13 of Tables II–IV.

In order to increase the accuracy of the calculation we
consider also the hadron vacuum polarization (HVP) con-
tribution which arises, like the electron polarization of the
vacuum, in the first-order PT, in the second-order PT, and
in two-photon exchange amplitudes. To obtain it we use a
standard replacement in photon propagator of the form [33]

1

k2
→

(α

π

) ∫ ∞

sth

ρhad(s)ds

k2 + s
,

ρhad(s) =
(
s − 4m2

π

)3/2

12s5/2
|Fπ (s)|2, (58)

where Fπ (s) is the pion form factor. The total hadron vacuum
polarization contribution is presented in Tables II–IV (line
14).

IV. RADIATIVE CORRECTIONS TO TWO
PHOTON EXCHANGE DIAGRAMS

The results already obtained in Tables II–IV clearly show
that the corrections to the structure of the nucleus are domi-
nant. In this connection, it seems useful to consider another
correction for the structure of the nucleus of order α6 shown
in Fig. 7 to refine the results. The amplitudes of two-photon
exchange with radiative corrections to the muon line can
be calculated in the framework of the calculation method
formulated in Sec. II. For a radiative photon, the Fried-Yennie
gauge is used, in which each of the amplitudes in Fig. 7
(muon self-energy, muon vertex correction, and amplitude
with the spanning photon) can be represented by a finite
integral expression. The general structure of the amplitudes
in Fig. 7 is the following:

iM = (Zα)2

π2

∫
d4k[ū(q1)Lμνu(p1)]Dμω(k)Dνλ(k)

× [v̄ρ (p2)OρωβDβτ (p2 + k)Oτλαvα (q2)], (59)

where the vertex operator Oρωβ describing the photon-nucleus
interaction is determined by the nucleus electromagnetic form
factors as in (8) for the nucleus of spin 3/2.

The spin-3/2 particle propagator and the photon propaga-
tor in the Coulomb gauge are equal to

Dαβ (p) = p̂ + m2

p2 − m2
2 + i0

[
gρβ − 1

3
γργβ

− 2pρpβ

3m2
2

− γρpβ − γβpρ

3m2

]
, (60)
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(b)(a) (c)

FIG. 7. Direct two-photon exchange amplitudes with radiative corrections to muon line giving contributions of order EF α(Zα) to the
hyperfine structure. Wave line on the diagram denotes the photon. Bold point on the diagram denotes the vertex operator of the nucleus.

Dλσ (k) = 1

k2 + i0

[
gλσ + kλkσ − k0kλgσ0 − k0kσ gλ0

k2

]
.

(61)

The lepton tensor Lμν is equal to a sum of three terms coming
from three amplitudes in Fig. 7:

Lμν = Lse
μν + Lvertex

μν + Ljellyfish
μν . (62)

All three terms of the lepton tensor were obtained in integral
form and are written explicitly in [18,34–36].

The construction of hyperfine potential by means of am-
plitudes in Fig. 7 in the case of the spin-3/2 nucleus can
be performed by the method of projection operators as in
Sec. II. Neglecting the recoil effects in the denominator of the
nucleus propagator we obtain that a sum of direct and crossed
amplitudes is proportional to δ(k0):

1

2m2k0 + i0
+ 1

−2m2k0 + i0
= − iπ

m2
δ(k0). (63)

As a result three types of contributions of order EF α(Zα)
to HFS of muonic ions of lithium, beryllium, and boron are
expressed in integral form over the loop momentum k and the
Feynman parameters:

�Ehfs
se = EF 6

α(Zα)

π2

∫ 1

0
x dx

∫ ∞

0

GE (k2)GM (k2)dk

x + (1 − x)k2
,

(64)

�Ehfs
vertex-1 = −EF 24

α(Zα)

π2

∫ 1

0
dz

∫ 1

0
x dx

×
∫ ∞

0

GE (k2)GM (k2) ln
[

x+k2z(1−xz)
x

]
dk

k2
, (65)

�Ehfs
vertex-2 = EF 8

α(Zα)

π2

∫ 1

0
dz

∫ 1

0
dx

∫ ∞

0

dk

k2

×
{

GE (k2)GM (k2)

[x + k2z(1 − xz)]2
[−2xz2(1 − xz)2k4

+ zk2(3x3z − x2(9z + 1) + x(4z + 7) − 4)

+ x2(5 − x)] − 1

2

}
, (66)

�Ehfs
jellyfish = EF 4

α(Zα)

π2

∫ 1

0
(1 − z)dz

∫ 1

0
(1 − x)dx

×
∫ ∞

0

GE (k2)GM (k2)dk

[x + (1 − xz)k2]3

[
6x + 6x2 − 6x2z

+ 2x3 − 12x3z − 12x4z + k2(−6z + 18xz

+ 4xz2 + 7x2z − 30x2z2 − 2x2z3 − 36x3z2

+ 12x3z3 + 24x4z3) + k4(9xz2

− 31x2z3 + 34x3z4 − 12x4z5)
]
. (67)

All contributions (64)–(67) are expressed in terms of electric
and dipole magnetic form factors. The term 1/2 in figure
brackets (66) is related to the subtraction term of the quasipo-
tential. All corrections (64), (65), (66), and (67) are expressed
through the convergent integrals. Numerical results for the
corrections (64)–(67) are presented in Tables II–IV (line 17).

V. CONCLUSION

In this work we carry out a calculation of S-states hyperfine
splittings in a number of muonic ions. We consider that
light muonic ions of the lithium, beryllium, and boron can
be used in experiments of the CREMA collaboration. Our
precise calculation of the HFS includes taking into account
the various corrections of the fifth and sixth orders in α,
which were previously taken into account also in the study
of the hyperfine structure of the spectrum of other muonic
atoms [16,18–20]. One significant difference between these
calculations and the previous ones is due to the fact that in
this paper we investigate the nuclei of spins 1, 3/2, and 3. For
spin-3/2 nuclei we have included the effects of two-photon
interactions in the framework of quantum electrodynamics of
spin particles 3/2. Corrections to the structure of the nucleus,
which are determined by two-photon exchange amplitudes, as
follows from the results of the Tables II–IV, play a very impor-
tant role in achieving high accuracy of calculation. They are
defined in our approach by the electromagnetic form factors
of the nuclei, which in this case must be taken from experi-
mental data. Intensive experimental studies of the scattering
of leptons by light nuclei were carried out several dozen years
ago. The results obtained then are reflected in [21,22]. We
use these results, although the accuracy of determining all the
required form factors is not very high, as would be desirable.
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FIG. 8. Relative order contributions δ in percent of vacuum
polarization (solid line, order α5) and nuclear structure (dashed line,
order α5) to hyperfine structure of muonic ions of lithium, beryllium,
and boron.

For this reason, we use different parametrizations (Gaussian,
uniformly charged sphere) for form factors and compare the
numerical results for them to understand how they can differ.
Complete numerical values for hyperfine splittings of S levels
are presented in Tables II–IV for the Gaussian parametriza-
tion. Numerous corrections for vacuum polarization are taken
into account in the traditional way, which is connected with
the modification of the photon propagator [29].

We present in Tables II–IV all obtained results for a calcu-
lation of corrections in first and second orders of perturbation
theory. In the text of our work we give numerous references
on the results indicating the lines of Tables II–IV where these
corrections are presented. The dependence of basic correc-
tions of order α5 on the nucleus is shown in Fig. 8. As pointed
out above the hyperfine structure of muonic ions of lithium,
beryllium, and boron was investigated previously in [6]. The
authors of [6] gave only estimates of basic contributions
in hyperfine structure. In this work we make an attempt to
improve their results accounting for different corrections.

The results of calculating various corrections are presented
with an accuracy of 0.01 meV. A number of corrections for
the polarization of a vacuum have precisely this order. But this
does not mean that the accuracy of our calculation is so high.
There are already mentioned above corrections to the structure
of the nucleus which give the main theoretical uncertainty
in the total obtained results. This uncertainty, due to the
electromagnetic form factors of the nuclei, can be about 1% of
the correction to the structure of the nucleus of the order α5.
Thus we estimate approximately the errors in the calculation
of the HFS spectrum in the following form: δEhfs(6

3Li) =
±1 meV, δEhfs(7

3Li) = ±4 meV, δEhfs(9
4Be) = ±4.5 meV,

δEhfs(10
5 B) = ±14 meV, and δEhfs(11

5 B) = ±24 meV. It is
appropriate to note here that corrections to the structure of

the nucleus of order α5 (the Zemach correction) significantly
exceed all other corrections listed in Tables II–IV (see Fig. 8).
We can say that in this respect the hyperfine splitting differs
from the Lamb shift (2P1/2 − 2S1/2) in which the correction
of the leading order to the structure of the nucleus and the
correction for one-loop vacuum polarization are comparable
in magnitude and have different signs. Thus a precise mea-
surement of the HFS in muonic ions of lithium, beryllium, and
boron, taking into account the obtained theoretical results, will
allow obtaining more accurate values of the Zemach radius for
these atoms.

There is another correction for the polarizability of the
nucleus, which is not considered in this paper. In the case of
muonic deuterium, this correction was calculated in [37,38].
For tritium and helium-3 nuclei, this type of correction was
investigated in [39]. The correction for the polarizability of
the nucleus is determined by the interaction of a multinucleon
system with an external electromagnetic field, as a result of
which the nucleus passes into an excited state. In [40], general
expressions were obtained for calculating the various parts of
the correction for the nuclear polarizability in the HFS spec-
trum. Another approach to solving this problem is connected
with the use of the dispersion method, in which the correction
for the nuclear polarizability is determined by known general
formulas and is expressed in terms of the spin-dependent
structure functions of the nucleus. If such spin-dependent
structure functions of the nuclei were measured exactly exper-
imentally as electromagnetic form factors, then they could be
used in calculations. Otherwise, we must consider the motion
of the nucleons of the nucleus in the effective potential field
and their interaction with an external field. In the case of
the Lamb shift, such calculations were performed in [41]. In
Refs. [37,39,40], the correction for the polarizability in the
HFS was discussed together with effects on the structure of
the nucleus, so that the total correction was represented in the
form δEhfs = δEhfs

Low + δEhfs
Zemach + δEhfs

pol. In our approach, in
which we use the electromagnetic form factors of the nucleus,
the correction for the nuclear structure of order α5 (lines
4–5) corresponds to the sum δEhfs

Low + δEhfs
Zemach, in calculating

which nucleus is represented as the sum of nucleons. The
correction for the polarizability is of order O(Zαm1/m2),
so its possible numerical value for different nuclei [0.6 meV
(6
3Li), 1.8 meV (7

3Li), −1.6 meV (9
4Be), 4.7 meV (10

5 B), and
7.3 meV (11

5 B)] is comparable in magnitude to those errors
that are connected with errors in measuring nuclear form
factors. At the same time, it should be noted that the correction
for the polarizability for a deuteron substantially exceeds
this estimate. Therefore, its exact calculation becomes a very
urgent problem. Our work in this direction is in progress.
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