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This paper proposes a revised definition for the entanglement cost of a quantum channel N . In particular,
it is defined here to be the smallest rate at which entanglement is required, in addition to free classical
communication, in order to simulate n calls to N , such that the most general discriminator cannot distinguish
the n calls to N from the simulation. The most general discriminator is one who tests the channels in a
sequential manner, one after the other, and this discriminator is known as a quantum tester [Chiribella et al.,
Phys. Rev. Lett. 101, 060401 (2008)] or one who is implementing a quantum costrategy [Gutoski and Watrous,
in Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing STOC ’07 (ACM Press,
New York, 2007), pp. 565–574]. As such, the proposed revised definition of entanglement cost of a quantum
channel leads to a rate that cannot be smaller than the previous notion of a channel’s entanglement cost [Berta
et al., IEEE Trans. Inf. Theory 59, 6779 (2013)], in which the discriminator is limited to distinguishing parallel
uses of the channel from the simulation. Under this revised notion, I prove that the entanglement cost of certain
teleportation-simulable channels is equal to the entanglement cost of their underlying resource states. Then I
find single-letter formulas for the entanglement cost of some fundamental channel models, including dephasing,
erasure, three-dimensional Werner-Holevo channels, and epolarizing channels (complements of depolarizing
channels), as well as single-mode pure-loss and pure-amplifier bosonic Gaussian channels. These examples
demonstrate that the resource theory of entanglement for quantum channels is not reversible. Finally, I discuss
how to generalize the basic notions to arbitrary resource theories.
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I. INTRODUCTION

The resource theory of entanglement [1] has been one of
the richest contributions to quantum information theory [2–5],
and, these days, the seminal ideas coming from it are influenc-
ing diverse areas of physics [6]. A fundamental question in
entanglement theory is to determine the smallest rate at which
Bell states (or ebits) are needed, along with the assistance of
free classical communication, in order to generate n copies of
an arbitrary bipartite state ρAB reliably (in this introduction,
n should be understood to be an arbitrarily large number) [1].
The optimal rate is known as the entanglement cost of ρAB [1],
and a formal expression is known for this quantity in terms
of a regularization of the entanglement of formation [7]. An
upper bound in terms of entanglement of formation has been
known for some time [1,7], while a lower bound in terms
of a semidefinite programming quantity has been determined
recently [8]. Conversely, a related fundamental question is
to determine the largest rate at which one can distill ebits
reliably from n copies of ρAB , again with the assistance of
free classical communication [1]. This optimal rate is known
as the distillable entanglement, and various lower bounds [9]
and upper bounds [10–13] are known for it.

The above resource theory is quite rich and interesting, but
soon after learning about it, one might immediately question
its operational significance. How are the bipartite states ρAB

established in the first place? Of course, a quantum com-
munication channel, such as a fiber-optic or free-space link,
is required. Consequently, in the same paper that introduced
the resource theory of entanglement [1], the authors there
appreciated the relevance of this point and proposed that the

distillation question could be extended to quantum channels.
The distillation question for channels is then as follows: given
n uses of a quantum channel NA→B connecting a sender
Alice to a receiver Bob, along with the assistance of free
classical communication, what is the optimal rate at which
these channels can produce ebits reliably [1]? By invoking
the teleportation protocol [14] and the fact that free classical
communication is allowed, this rate is also equal to the rate
at which arbitrary qubits can be reliably communicated by
using the channel n times [1]. The optimal rate is known as the
distillable entanglement of the channel [1], and various lower
bounds [9] and upper bounds [15–18] are now known for it,
strongly related to the bounds for distillable entanglement of
states, as given above.

Some years after the distillable entanglement of a channel
was proposed in [1], the question converse to it was proposed
and addressed in [19]. The authors of [19] defined the entan-
glement cost of a quantum channel NA→B as the smallest rate
at which entanglement is required, in addition to the assistance
of free classical communication, in order to simulate n uses of
NA→B . Key to their definition of entanglement cost is the par-
ticular notion of simulation considered. In particular, the goal
of their simulation protocol is to simulate n parallel uses of the
channel, written as (NA→B )⊗n. Furthermore, they considered
a simulation protocol PAn→Bn to have the following form:

PAn→Bn (ωAn ) ≡ LAnA0B0→Bn

(
ωAn ⊗ �A0B0

)
, (1)

where ωAn is an arbitrary input state, LAnA0B0→Bn is a free
channel, whose implementation is restricted to consist of
local operations and classical communication (LOCC) [1,20],
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FIG. 1. Top part of the figure displays a three-round interaction between the discriminator and the simulator in the case that the actual
channel NA→B is called three times. The bottom part of the figure displays the interaction between the discriminator and the simulator in the
case that the simulation of three channel uses is called.

and �A0B0
is a maximally entangled resource state. For ε ∈

[0, 1], the simulation is then considered ε distinguishable from
(NA→B )⊗n if the following condition holds:

1
2‖(NA→B )⊗n − PAn→Bn‖♦ � ε, (2)

where ‖ · ‖♦ denotes the diamond norm [21]. The physical
meaning of the above inequality is that it places a limitation
on how well any discriminator can distinguish the channel
(NA→B )⊗n from the simulation PAn→Bn in a guessing game.
Such a guessing game consists of the discriminator preparing
a quantum state ρRAn , the referee picking (NA→B )⊗n or
PAn→Bn at random and then applying it to the An systems
of ρRAn , and the discriminator finally performing a quantum
measurement on the systems RBn. If the inequality in (2)
holds, then the probability that the discriminator can correctly
distinguish the channel from its simulation is bounded from
above by 1

2 (1 + ε), regardless of the particular state ρRAn

and final measurement chosen for his distinguishing strategy
[21–24]. Thus, if ε is close to zero, then this probability
is not much better than random guessing, and in this case,
the channels are considered nearly indistinguishable and the
simulation thus reliable.

In parallel to the above developments in entanglement the-
ory, there have indubitably been many advances in the theory
of quantum channel discrimination [25–30] and related devel-
opments in the theory of quantum interactive proof systems
[31–34]. Notably, the most general method for distinguishing
a quantum memory channel from another one consists of a
quantum-memory-assisted discrimination protocol [26,27]. In
the language of quantum interactive proof systems, memory
channels are called strategies and memory-assisted discrimi-
nation protocols are called costrategies [31–33]. For a visual
illustration of the physical setup, please consult Fig. 2 of

Ref. [26] or Fig. 2 of Ref. [31]. In subsequent work after
[26,31], a number of theoretical results listed above have been
derived related to memory channel discrimination or quantum
strategies.

The aforementioned developments in the theory of quan-
tum channel discrimination indicate that the notion of channel
simulation proposed in [19] is not the most general notion that
could be considered. In particular, if a simulator is claiming
to have simulated n uses of the channel NA→B , then the
discriminator should be able to test this assertion in the most
general way possible, as given in [26,27,31]. That is, we
would like for the simulation to pass the strongest possible
test that could be performed to distinguish it from the n uses
of NA→B . Such a test allows for the discriminator to prepare
an arbitary state ρR1A1 , call the first channel use NA1→B1 or its
simulation, apply an arbitrary channel A(1)

R1B1→R2A2
, call the

second channel use or its simulation, etc. After the nth call
is made, the discriminator then performs a joint measurement
on the remaining quantum systems. See Fig. 1 for a visual
depiction. If the simulation is good, then the probability
for the discriminator to distinguish the n channels from the
simulation should be no larger than 1

2 (1 + ε), for small ε.
In this paper, I propose an alternative definition for the en-

tanglement cost of a channel NA→B , such that it is the smallest
rate at which ebits are needed, along with the assistance of
free classical communication, in order to simulate n uses of
NA→B , in such a way that a discriminator performing the most
stringest test, as described above, cannot distinguish the sim-
ulation from n actual calls of NA→B (Sec. II B). Here I denote
the optimal rate by EC (N ), and the prior quantity defined in
[19] by E

(p)
C (N ), given that the simulation there was only

required to pass a less stringent parallel discrimination test,
as discussed above. Due to the fact that it is more difficult to
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pass the simulation test as specified by the alternative defi-
nition, it follows that EC (N ) � E

(p)
C (N ) (discussed in more

detail in what follows). After establishing definitions, I then
prove a general upper bound on the entanglement cost of a
quantum channel, using the notion of teleportation simulation
(Sec. III A). I prove that the entanglement cost of certain
“resource-seizable,” teleportation-simulable channels takes on
a particularly simple form (Sec. III B), which allows for
concluding single-letter formulas for the entanglement cost of
dephasing, erasure, three-dimensional Werner-Holevo chan-
nels, and epolarizing channels (complements of depolarizing
channels), as detailed in Sec. IV. Note that the result about
entanglement cost of dephasing channels solves an open ques-
tion from [19]. I then extend the results to the case of bosonic
Gaussian channels (Sec. V), proving single-letter formulas
for the entanglement cost of fundamental channel models,
including pure-loss and pure-amplifier channels (Theorem 2
in Sec. V G). These examples lead to the conclusion that the
resource theory of entanglement for quantum channels is not
reversible. I also prove that the entanglement cost of thermal,
amplifier, and additive-noise bosonic Gaussian channels is
bounded from below by the entanglement cost of their “Choi
states.” In Sec. VI, I discuss how to generalize the basic
notions to other resource theories. Finally, Sec. VII concludes
with a summary and some open questions.

II. NOTIONS OF QUANTUM CHANNEL SIMULATION

In this section, I review the definition of entanglement cost
of a quantum channel, as detailed in [19], and I also review
the main theorem from [19]. After that, I propose the revised
definition of a channel’s entanglement cost.

Before starting, let us define a maximally entangled state
�AB of Schmidt rank d as

�AB ≡ 1

d

d∑
i,j=1

|i〉〈j |A ⊗ |i〉〈j |B, (3)

where {|i〉A}i and {|i〉B}i are orthonormal bases. An LOCC
channel LA′B ′→AB is a bipartite channel that can be written in
the following form:

LA′B ′→AB =
∑

y

Ey

A′→A ⊗ Fy

B ′→B, (4)

where {Ey

A′→A}y and {Fy

B ′→B}y are sets of completely pos-
itive, trace-non-increasing maps, such that the sum map∑

y E
y

A′→A ⊗ Fy

B ′→B is a quantum channel (completely pos-
itive and trace preserving) [20]. However, not every channel
of the form in (4) is an LOCC channel [there are separable
channels of the form in (4) that are not implementable by
LOCC [35]]. The diamond norm of the difference of two
channels RA→B and SA→B is defined as [21]

‖R − S‖♦ ≡ sup
ψRA

‖RA→B (ψRA) − SA→B (ψRA)‖1, (5)

where the optimization is with respect to all pure bipartite
states ψRA with system R isomorphic to system A and the
trace norm of an operator X is defined as ‖X‖1 ≡ Tr{

√
X†X}.

The operational interpretation of the diamond norm is that it
is related to the maximum success probability psucc(R,S ) for

any physical experiment, of the kind discussed after (2), to
distinguish the channels R and S:

psucc(R,S ) = 1
2

(
1 + 1

2

∥∥R − S
∥∥
♦
)
. (6)

A. Entanglement cost of a quantum channel from [19]

Let us now review the notion of entanglement cost from
[19]. Fix n,M ∈ N, ε ∈ [0, 1], and a quantum channel
NA→B . According to [19], an (n,M, ε) (parallel) LOCC-
assisted channel simulation code consists of an LOCC channel
LAnA0B0→Bn and a maximally entangled resource state �A0B0

of Schmidt rank M , such that together they implement a sim-
ulation channel PAn→Bn , as defined in (1). In this model, to be
clear, we assume that Alice has access to all systems labeled
by A, Bob has access to all systems labeled by B, and they are
in distant laboratories. The simulation PAn→Bn is considered ε

distinguishable from n parallel calls (NA→B )⊗n of the actual
channel NA→B if the condition in (2) holds. Note here again
that the condition in (2) corresponds to a discriminator who
is restricted to performing only a parallel test to distinguish
the n calls of NA→B from its simulation. Let us also note here
that the condition in (2) can be understood as the simulation
PAn→Bn providing an approximate teleportation simulation of
(NA→B )⊗n, in the language of the later work of [36].

A rate R is said to be achievable for (parallel) channel sim-
ulation of NA→B if for all ε ∈ (0, 1], δ > 0, and sufficiently
large n, there exists an (n, 2n[R+δ], ε) LOCC-assisted channel
simulation code. The (parallel) entanglement cost E

(p)
C (N )

of the channel N is equal to the infimum of all achievable
rates, with the superscript (p) indicating that the test of the
simulation is restricted to being a parallel discrimination test.

The main result of [19] is that the channel’s entanglement
cost E

(p)
C (N ) is equal to the regularization of its entanglement

of formation. To state this result precisely, recall that the
entanglement of formation of a bipartite state ρAB is defined
as [1]

EF (A; B )ρ

≡ inf

{∑
x

pX(x)H (A)ψx : ρAB =
∑

x

pX(x)ψx
AB

}
,

(7)

where the infimum is with respect to all convex decomposi-
tions of ρAB into pure states ψx

AB and

H (A)ψx ≡ − Tr
{
ψx

A log2 ψx
A

}
(8)

is the quantum entropy of the marginal state ψx
A = TrB{ψx

AB}.
The entanglement of formation does not increase under the
action of an LOCC channel [1]. A channel’s entanglement of
formation EF (N ) is then defined as

EF (N ) ≡ sup
ψRA

EF (R; B )ω, (9)

where ωRB ≡ NA→B (ψRA), and it suffices to take the opti-
mization with respect to a pure state input ψRA, with system
R isomorphic to system A, due to purification, the Schmidt
decomposition theorem, and the LOCC monotonicity of en-
tanglement of formation [1]. We can now state the main result
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of [19] described above:

E
(p)
C (N ) = lim

n→∞
1

n
EF (N⊗n). (10)

The regularized formula on the right-hand side may be diffi-
cult to evaluate in general, and thus can only be considered a
formal expression, but if the additivity relation 1

n
EF (N⊗n) =

EF (N ) holds for a given channel N for all n � 1, then it
simplifies significantly as E

(p)
C (N ) = EF (N ).

B. Proposal for a revised notion of entanglement
cost of a channel

Now I propose the revised definition for entanglement cost
of a channel. As motivated in the Introduction, a parallel test
of channel simulation is not the most general kind of test
that can be considered. Thus the revised definition proposes
that the entanglement cost of a channel should incorporate the
most stringent test possible.

To begin with, let us fix n,M ∈ N, ε ∈ [0, 1], and a
quantum channel NA→B . We define an (n,M, ε) (sequential)
LOCC-assisted channel simulation code to consist of a maxi-
mally entangled resource state �A0B0

of Schmidt rank M and
a set {

L(i)
AiAi−1Bi−1→BiAiBi

}n

i=1 (11)

of LOCC channels. Note that the systems AnBn of the fi-
nal LOCC channel L(n)

AnAn−1Bn−1→BnAnBn
can be taken trivial

without loss of generality. As before, Alice has access to all
systems labeled by A, Bob has access to all systems labeled
by B, and they are in distant laboratories. The structure of
this simulation protocol is intended to be compatible with a
discrimination strategy that can test the actual n channels ver-
sus the above simulation in a sequential way, along the lines
discussed in [26,27,33]. I later show how this encompasses
the parallel tests discussed in the previous section.

A sequential discrimination strategy consists of an initial
state ρR1A1 , a set {A(i)

RiBi→Ri+1Ai+1
}n−1
i=1 of adaptive channels,

and a quantum measurement {QRnBn
, IRnBn

− QRnBn
}. Let us

employ the shorthand {ρ,A,Q} to abbreviate such a dis-
crimination strategy. Note that, in performing a discrimination
strategy, the discriminator has a full description of the channel
NA→B and the simulation protocol, which consists of �A0B0

and the set in (11). If this discrimination strategy is performed
on the n uses of the actual channel NA→B , the relevant states
involved are

ρRi+1Ai+1 ≡ A(i)
RiBi→Ri+1Ai+1

(
ρRiBi

)
, (12)

for i ∈ {1, . . . , n − 1}, and

ρRiBi
≡ NAi→Bi

(
ρRiAi

)
, (13)

for i ∈ {1, . . . , n}. If this discrimination strategy is performed
on the simulation protocol discussed above, then the relevant
states involved are

τR1B1A1B1
≡ L(1)

A1A0B0→B1A1B1

(
τR1A1 ⊗ �A0B0

)
,

τRi+1Ai+1AiBi
≡ A(i)

RiBi→Ri+1Ai+1

(
τRiBiAiBi

)
, (14)

for i ∈ {1, . . . , n − 1}, where τR1A1 = ρR1A1 , and

τRiBiAiBi
≡ L(i)

AiAi−1Bi−1→BiAiBi

(
τRiAiAi−1Bi−1

)
, (15)

for i ∈ {2, . . . , n}. The discriminator then performs the mea-
surement {QRnBn

, IRnBn
− QRnBn

} and guesses “actual chan-
nel” if the outcome is QRnBn

and “simulation” if the outcome
is IRnBn

− QRnBn
. Figure 1 depicts the discrimination strategy

in the case that the actual channel is called n = 3 times and in
the case that the simulation is performed.

If the a priori probabilities for the actual channel or
simulation are equal, then the success probability of the
discriminator in distinguishing the channels is given by

1
2

[
Tr
{
QRnBn

ρRnBn

}+ Tr
{(

IRnBn
− QRnBn

)
τRnBn

}]
� 1

2

(
1 + 1

2

∥∥ρRnBn
− τRnBn

∥∥
1

)
, (16)

where the latter inequality is well known from the theory
of quantum state discrimination [22–24]. For this reason,
we say that the n calls to the actual channel NA→B are ε

distinguishable from the simulation if the following condition
holds for the respective final states:

1
2

∥∥ρRnBn
− τRnBn

∥∥
1 � ε. (17)

If this condition holds for all possible discrimination strategies
{ρ,A,Q}, i.e., if

1
2 sup

{ρ,A}

∥∥ρRnBn
− τRnBn

∥∥
1 � ε, (18)

then the simulation protocol constitutes an (n,M, ε) channel
simulation code. It is worthwhile to remark the following: if
we ascribe the shorthand (N )n for the n uses of the channel
and the shorthand (L)n for the simulation, then the condition
in (18) can be understood in terms of the n-round strategy
norm of [26,27,33]

1
2‖(N )n − (L)n‖♦,n � ε. (19)

As before, a rate R is achievable for (sequential) channel
simulation of N if for all ε ∈ (0, 1], δ > 0, and sufficiently
large n, there exists an (n, 2n[R+δ], ε) (sequential) channel
simulation code for N . We define the (sequential) entan-
glement cost EC (N ) of the channel N to be the infimum
of all achievable rates. Due to the fact that this notion is
more general, we sometimes simply refer to EC (N ) as the
entanglement cost of the channel N in what follows.

C. LOCC monotonicity of the entanglement cost

Let us note here that if a channel NA→B can be realized
from another channel MA′→B ′ via a preprocessing LOCC
channel Lpre

A→A′AMBM
and a postprocessing LOCC channel

Lpost
B ′AMBM→B as

NA→B = Lpost
B ′AMBM→B ◦ MA′→B ′ ◦ Lpre

A→A′AMBM
, (20)

then it follows that any (n,M, ε) protocol for sequential
channel simulation of MA′→B ′ realizes an (n,M, ε) proto-
col for sequential channel simulation of NA→B . This is an
immediate consequence of the fact that the best strategy for
discriminating NA→B from its simulation can be understood
as a particular strategy for discriminating MA′→B ′ from a
simulation of MA′→B ′ , due to the structural decomposition in
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FIG. 2. Simulation protocol from the bottom part of Fig. 1 rewrit-
ten to clarify that it can participate in a parallel channel simulation
test.

(20). Following definitions, a simple consequence is the fol-
lowing LOCC monotonicity inequality for the entanglement
cost of these channels:

EC (N ) � EC (M). (21)

Thus it takes more or the same entanglement to simulate
the channel M than it does to simulate N . Furthermore, the
decomposition in (20) and the bound in (21) can be used to
bound the entanglement cost of a channel M from below.
Note that the structure in (20) was discussed recently in the
context of general resource theories in Ref. [6], Sec. III-D-5.

D. Parallel tests as a special case of sequential tests

A parallel test of the form described in Sec. II A is a special
case of the sequential test outlined above. One can see this in
two seemingly different ways. First, we can think of the se-
quential strategy taking a particular form. The state ξRA1A2···An

is prepared, and here we identify systems RA2 · · · An with
system R1 of ρR1A1 in an adaptive protocol and system A1

of ξRA1A2···An
with system A1 of ρR1A1 . Then the channel

NA1→B1 or its simulation is called. After that, the action of
the first adaptive channel is simply to swap in system A2 of
ξRA1A2···An

to the second call of the channel NA2→B2 or its
simulation, while keeping systems RB1A3 · · ·An as part of the
reference R2 of the state ρR2A2 . Then this iterates and the final
measurement is performed on all of the remaining systems.

The other way to see how a parallel test is a special kind of
sequential test is to rearrange the simulation protocol as has
been done in Fig. 2. Here, we see that the simulation protocol
has a memory structure, and it is clear that the simulation
protocol can accept as input a state ξRA1A2···An

and outputs
a state on systems RB1 · · · Bn, which can subsequently be
measured.

As a consequence of this reduction, any (n,M, ε) sequen-
tial channel simulation protocol can serve as an (n,M, ε)
parallel channel simulation protocol. Furthermore, if R is an
achievable rate for sequential channel simulation, then it is
also an achievable rate for parallel channel simulation. Finally,
these reductions imply the following inequality:

EC (N ) � E
(p)
C (N ). (22)

Intuitively, one might sometimes require more entanglement
in order to pass the more stringent test that occurs in sequential
channel simulation. As a consequence of (10) and (22), we
have that

EC (N ) � lim
n→∞

1

n
EF (N⊗n). (23)

It is an interesting question (not addressed here) to determine
if there exists a channel such that the inequality in (22) is
strict.

If desired, it is certainly possible to obtain a nonasymptotic,
weak-converse bound that implies the above bound after
taking limits. Let us state this bound as follows.

Proposition 1. Let NA→B be a quantum channel, and let
n,M ∈ N and ε ∈ [0, 1]. Set d = min {|A|, |B|}, i.e., the
minimum of the input and output dimensions of the channel
NA→B . Then the following bound holds for any (n,M, ε)
sequential channel simulation code:

1

n
log2 M � 1

n
EF (N⊗n) − √

ε log2 d − 1

n
g2(

√
ε), (24)

where 1
n

log2 M is understood as the nonasymptotic entangle-
ment cost of the protocol and the bosonic entropy function
g2(x) is defined for x � 0 as

g2(x) ≡ (x + 1) log2(x + 1) − x log2 x. (25)

Proof. To see this, suppose that there exists an (n,M, ε)
protocol for sequential channel simulation. Then by the above
reasoning (also see Fig. 2), it can be thought of as a parallel
channel simulation protocol, such that the criterion in (2)
holds. Suppose that ψRA1···An

is a test input state, with |R| =
|A|n, leading to ωRB1···Bn

= (NA→B )⊗n(ψRA1···An
) when the

actual channels are applied and σRB1···Bn
when the simulation

is applied. Then we have that

EF (R; B1 · · · Bn)ω

� EF (R; B1 · · · Bn)σ + n
√

ε log2 d + g2(
√

ε)

� EF (RA1 · · · AnA0; B0)ψ⊗� + n
√

ε log2 d + g2(
√

ε)

= EF (A0; B0)� + n
√

ε log2 d + g2(
√

ε)

= log2 M + n
√

ε log2 d + g2(
√

ε). (26)

The first inequality follows from the condition in (18), as
well as from the continuity bound for entanglement of for-
mation from Ref. [37], Corollary 4. The second inequality
follows from the LOCC monotonicity of the entanglement
of formation [1], here thinking of the person who possesses
systems RA1 · · ·An to be in the same laboratory as the one
possessing the systems Ai , while the person who possesses
the Bi systems is in a different laboratory. The first equality
follows from the fact that ψRA1···An

is in tensor product with
�A0B0

, so that, by a local channel, one may remove ψRA1···An

or append it for free. The final equality follows because
the entanglement of formation of the maximally entangled
state is equal to the logarithm of its Schmidt rank. Since the
bound holds uniformly regardless of the input state ψRA1···An

,
after an optimization and a rearrangement we conclude the
stated lower bound on the nonasymptotic entanglement cost
1
n

log2 M of the protocol. �
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Remark 1. Let us note here that the entanglement cost of a
quantum channel is equal to zero if and only if the channel
is entanglement breaking [38,39]. The “if part” follows as
a straightforward consequence of definitions and the fact
that these channels can be implemented as a measurement
followed by a preparation [38,39], given that this measure-
prepare procedure is a particular kind of LOCC and thus
allowed for free (without any cost) in the above model. The
“only-if” part follows from (22) and Ref. [19], Corollary 18,
the latter of which depends on the result from [40].

III. BOUNDS FOR THE ENTANGLEMENT COST
OF TELEPORTATION-SIMULABLE CHANNELS

A. Upper bound on the entanglement cost
of teleportation-simulable channels

The most trivial method for simulating a channel is to
employ the teleportation protocol [14] directly. In this method,
Alice and Bob could use the teleportation protocol so that
Alice could transmit the input of the channel to Bob, who
could then apply the channel. Repeating this n times, this
trivial method would implement an (n, |A|n, 0) simulation
protocol in either the parallel or sequential model. Alterna-
tively, Alice could apply the channel first and then teleport the
output to Bob, and repeating this n times would implement
an (n, |B|n, 0) simulation protocol in either the parallel or
sequential model. Thus they could always achieve a rate of
log2(min {|A|, |B|}) using this approach, and this reasoning
establishes a simple dimension upper bound on the entangle-
ment cost of a channel:

EC (NA→B ) � log2(min {|A|, |B|}). (27)

In this context, also see Ref. [36], Proposition 9.
A less trivial approach is to exploit the fact that some

channels of interest could be teleportation simulable with
associated resource state ωA′B ′ , in which the resource state
need not be a maximally entangled state [see Ref. [1], Sec. V,
and Ref. [41], Eq. (11)]. Recall from these references that
a channel NA→B is teleportation simulable with associated
resource state ωA′B ′ if there exists an LOCC channel LAA′B ′→B

such that the following equality holds for all input states ρA:

NA→B (ρA) = LAA′B ′→B (ρA ⊗ ωA′B ′ ). (28)

If a channel possesses this structure, then we arrive at the
following upper bound on the entanglement cost.

Proposition 2. Let NA→B be a quantum channel that is
teleportation simulable with associated resource state ωA′B ′ ,
as defined in (28). Let n,M ∈ N and ε ∈ (0, 1). Then there
exists an (n,M,

√
ε) sequential channel simulation code sat-

isfying the following bound:

1

n
log2 M � 1

n
E

ε/2
F,0(A′n; B ′n)ω⊗n , (29)

where 1
n

log2 M is understood as the nonasymptotic entan-

glement cost of the protocol and E
ε/2
F,0(A′n; B ′n)ω⊗n is the

ε/2-smooth entanglement of formation (EOF) [42] recalled
in Definition 1 below.

Definition 1 (Smooth EOF [42]). Let δ ∈ (0, 1) and τCD

be a bipartite state. Let E = {pX(x), φx
CD} denote a pure-

state ensemble decomposition of τCD , meaning that τCD =∑
x pX(x)φx

CD , where φx
CD is a pure state and pX is a proba-

bility distribution. Define the conditional entropy of order zero
H0(K|L)ω of a bipartite state ωKL as

H0(K|L)ω ≡ max
σL

log2 Tr
{
�ω

KL(IK ⊗ σL)
}
, (30)

where �ω
KL denotes the projection onto the support of ωKL

and σL is a density operator. Then the δ-smooth entanglement
of formation of τCD is given by

Eδ
F,0(C; D)τ ≡ min

E ,̃τXC∈Bδ
cq (τXC )

H0(C|X)τ̃ , (31)

where the minimization is with respect to all pure-state ensem-
ble decompositions E of τCD , τXCD = ∑

x pX(x)|x〉〈x|X ⊗
φx

CD is a labeled pure-state extension of τCD , and the δ-ball
Bδ

cq (τXC ) of cq states for a cq state τXC is defined as

Bδ
cq (τXC ) ≡

{
ωXC : ωXC � 0, ωXC =

∑
x

|x〉〈x| ⊗ ωx
C,

‖ωXC − τXC‖1 � δ

}
. (32)

The δ-smooth entanglement of formation has the property
that, for a tensor-power state τ⊗n

CD , the following limit holds
(Ref. [42], Theorem 2):

lim
δ→0

lim
n→∞

1

n
Eδ

F,0(Cn; Dn)τ⊗n = lim
n→∞

1

n
EF (C; D)τ , (33)

= EC (τCD ), (34)

where the latter quantity denotes the entanglement cost of the
state τCD [7].

Proof of Proposition 2. The approach for an (n,M, ε) se-
quential channel simulation consists of the following steps.

First, employ the one-shot entanglement cost protocol from
Ref. [42], Theorem 1, which consumes a maximally entangled
state �A0B0

of Schmidt rank M along with an LOCC channel
PA0B0→A′nB ′n to generate n approximate copies of the resource
state ωA′B ′ . In particular, using the maximally entangled state
�A0B0

with

log2 M = E
ε/2
F,0(A′n; B ′n)ω⊗n , (35)

one can achieve the following approximation (Ref. [42],
Theorem 1):

1
2

∥∥ω⊗n
A′B ′ − ω̃A′nB ′n

∥∥
1 �

√
ε, (36)

where

ω̃A′nB ′n ≡ PA0B0→A′nB ′n
(
�A0B0

)
. (37)

Next, at the first instance in which the channel should be
simulated, Alice and Bob apply the LOCC channel LAA′B ′→B

from (28) to the A′
1 and B ′

1 systems of ω̃A′nB ′n . For the second
instance, they apply the LOCC channel LAA′B ′→B from (28)
to the A′

2 and B ′
2 systems of ω̃A′nB ′n . This continues for the

next n − 2 rounds of the sequential channel simulation.
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By the data processing inequality for trace distance, it is
guaranteed that the following bound holds on the performance
of this protocol for sequential channel simulation:

1
2‖(N )n − (L)n‖♦,n � 1

2

∥∥ω⊗n
A′B ′ − ω̃A′nB ′n

∥∥
1 �

√
ε. (38)

This follows because the distinguishability of the simulation
from the actual channel uses is limited by the distinguishabil-
ity of the states ω⊗n

A′B ′ and ω̃A′nB ′n , due to the assumed structure
of the channel in (28), as well as the structure of the sequential
channel simulation. �

By applying definitions, the bound in Proposition 2, taking
the limits n → ∞ and then ε → 0 (with M = 2n[R+δ] for
a fixed rate R and arbitrary δ > 0), and applying (33), we
conclude the following statement.

Corollary 1. Let NA→B be a quantum channel that is tele-
portation simulable with associated resource state ωA′B ′ , as
defined in (28). Then the entanglement cost of the channel N
is never larger than the entanglement cost of the resource state
ωA′B ′ :

EC (N ) � EC (ωA′B ′ ). (39)

The above corollary captures the intuitive idea that if a
single instance of the channel N can be simulated via LOCC
starting from a resource state ωA′B ′ , then the entanglement
cost of the channel should not exceed the entanglement cost
of the resource state. The idea of the above proof is simply
to prepare a large number n of copies of ωA′B ′ approximately
and then use these to simulate n uses of the channel N , such
that the simulation could not be distinguished from n uses of
the channel N in any sequential test.

B. Entanglement cost of resource-seizable,
teleportation-simulable channels

In this section, I define teleportation-simulable channels
that are resource seizable, meaning that one can seize the
channel’s underlying resource state by the following proce-
dure: (1) prepare a free, separable state, (2) input one of its
systems to the channel, and then (3) postprocess with a free,
LOCC channel.

This procedure is indeed related to the channel processing
described earlier in (20). After that, I prove that the entan-
glement cost of a resource-seizable channel is equal to the
entanglement cost of its underlying resource state.

Definition 2 (Resource-seizable channel). Let NA→B be a
teleportation-simulable channel with associated resource state
ωA′B ′ , as defined in (28). Suppose that there exists a separable
input state ρAMABM

to the channel and a postprocessing LOCC
channel DAMBBM→A′B ′ such that the resource state ωA′B ′ can
be seized from the channel NA→B as follows:

DAMBBM→A′B ′
[
NA→B

(
ρAMABM

)] = ωA′B ′ . (40)

Then we say that the channel is a resource-seizable,
teleportation-simulable channel.

In Appendix A, I discuss how resource-seizable channels
are related to those that are “implementable from their image,”
as defined in Ref. [43], Appendix A. In Sec. VI, I also discuss
how to generalize the notion of a resource-seizable channel to
an arbitrary resource theory.

The main result of this section is the following simplifying
form for the entanglement cost of a resource-seizable channel
(as defined above), establishing that its entanglement cost in
the asymptotic regime is the same as the entanglement cost of
the underlying resource state. Furthermore, for these channels,
the entanglement cost is not increased by the need to pass
a more stringest test for channel simulation as required in a
sequential test.

Theorem 1. Let NA→B be a resource-seizable,
teleportation-simulable channel with associated resource
state ωA′B ′ , as given in Definition 2. Then the entanglement
cost of the channel NA→B is equal to its parallel entanglement
cost, which in turn is equal to the entanglement cost of the
resource state ωA′B ′ :

EC (N ) = E
(p)
C (N ) = EC (ωA′B ′ ). (41)

Proof. Consider from (22) that

EC (N ) � E
(p)
C (N ) = lim

n→∞
1

n
EF (N⊗n). (42)

Let ψRAn ≡ ψRA1···An
be an arbitrary pure input state to con-

sider at the input of the tensor-power channel (NA→B )⊗n,
leading to the state

σRBn ≡ (NA→B )⊗n(ψRA1···An
). (43)

From the assumption that the channel is teleportation-
simulable with associated resource state ωA′B ′ , we have from
(28) that

σRBn = (LAA′B ′→B )⊗n
(
ψRAn ⊗ ω⊗n

A′B ′
)
. (44)

Then

EF (R; Bn)σ � EF (RAnA′n; B ′n)ψ⊗ω⊗n (45)

= EF (A′n; B ′n)ω⊗n , (46)

where the inequality follows from LOCC monotonicity of
the entanglement of formation. Since the bound holds for an
arbitrary input state, we conclude that the following inequality
holds for all n ∈ N:

1

n
EF (N⊗n) � 1

n
EF (A′n; B ′n)ω⊗n . (47)

Now taking the limit n → ∞, we conclude that

E
(p)
C (N ) � EC (ωA′B ′ ). (48)

To see the other inequality, let a decomposition of the
separable input state ρAMABM

be given by

ρAMABM
=
∑

x

pX(x)ψx
AMA ⊗ φx

BM
. (49)

Considering that [ψx
AMA]⊗n is a particular input to the tensor-

power channel (NA→B )⊗n, we conclude that

EF (N⊗n) � EF

(
An

M ; Bn
)

[N (ψx )]⊗n . (50)

Since this holds for all x, we have that

EF (N⊗n) �
∑

x

pX(x)EF

(
An

M ; Bn
)

[N (ψx )]⊗n

=
∑

x

pX(x)EF

(
An

M ; BnBn
M

)
[N (ψx )⊗φx ]⊗n
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� EF

(
An

M ; BnBn
M

)
[N (ρ)]⊗n

� EF (A′n; B ′n)ω⊗n , (51)

where the equality follows because introducing a product state
locally does not change the entanglement, the second inequal-
ity follows from convexity of entanglement of formation [1],
and the last inequality follows from the assumption in (40) and
the LOCC monotonicity of the entanglement of formation.
Since the inequality holds for all n ∈ N, we can divide by n

and take the limit n → ∞ to conclude that

E
(p)
C (N ) � EC (ωA′B ′ ), (52)

and in turn, from (48), that

E
(p)
C (N ) = EC (ωA′B ′ ). (53)

Combining this equality with the inequalities in (39) and (42)
leads to the statement of the theorem. �

IV. EXAMPLES

The equality in Theorem 1 provides a formal expression for
the entanglement cost of any resource-seizable, teleportation-
simulable channel, given in terms of the entanglement cost
of the underlying resource state ωA′B ′ . Due to the fact that
the entanglement cost of a state is generally not equal to its
entanglement of formation [44], it could still be a significant
challenge to compute the entanglement cost of these spe-
cial channels. However, for some special states, the equality
EC (ωA′B ′ ) = EF (A′; B ′)ω does hold, and I discuss several of
these examples and related channels here.

Let us begin by recalling the notion of a covariant channel
NA→B [45]. For a group G with unitary channel represen-
tations {Ug

A}g and {Vg

B}g acting on the input system A and
output system B of the channel NA→B , the channel NA→B is
covariant with respect to the group G if the following equality
holds:

NA→B ◦ Ug

A = Vg

B ◦ NA→B. (54)

If the averaging channel is such that 1
|G|
∑

g U
g

A(X) =
Tr[X]I/|A| (implementing a unitary one-design), then we
simply say that the channel NA→B is covariant.

Then from Sec. 7 of Ref. [46] (see also Ref. [47],
Appendix A), we conclude that any covariant channel is
teleportation simulable with associated resource state given
by the Choi state of the channel, i.e., ωA′B ′ = NA→B (�A′A).
As such, covariant channels are resource seizable, so that the
equality in Theorem 1 applies to all covariant channels. Thus
the entanglement cost of a covariant channel is equal to the
entanglement cost of its Choi state. In spite of this reduction,
it could still be a great challenge to compute formulas for
the entanglement cost of these channels, due to the fact that
the entanglement of formation is not necessarily equal to the
entanglement cost for the Choi states of these channels. For
example, the entanglement cost of an isotropic state [48,49],
which is the Choi state of a depolarizing channel, is not
known. In the next few subsections, I detail some example
channels for which it is possible to characterize their entan-
glement cost.

A. Erasure channels

A simple example of a channel that is covariant is the
quantum erasure channel, defined as [50]

Eq (ρ) ≡ (1 − q )ρ + q|e〉〈e|, (55)

where ρ is a d-dimensional input state, q ∈ [0, 1] is the
erasure probability, and |e〉〈e| is a pure erasure state orthog-
onal to any input state, so that the output state has d + 1
dimensions. By the remark above, we conclude that EC (Eq ) =
EC (Eq

A→B (�RA)), and so determining the entanglement cost
boils down to determining the entanglement cost of the Choi
state

Eq

A→B (�RA) = (1 − q )�RA + IR

d
⊗ |e〉〈e|. (56)

An obvious pure-state decomposition for Eq

A→B (�RA) [see
Ref. [19], Eqs. (93)–(95)] leads to

EC (Eq

A→B (�RA)) � EF

(
Eq

A→B (�RA)
)

(57)

� (1 − q ) log2 d. (58)

As it turns out, these inequalities are tight, due to an opera-
tional argument. In particular, the distillable entanglement of
Eq

A→B (�RA) is exactly equal to (1 − q ) log2 d [51], and due
to the operational fact that the distillable entanglement of a
state cannot exceed its entanglement cost [1], we conclude
that EC (Eq

A→B (�RA)) = (1 − q ) log2 d, and in turn that

EC (Eq ) = E
(p)
C (Eq ) = (1 − q ) log2 d. (59)

This result generalizes the finding from [19], which is that
E

(p)
C (Eq ) = (1 − q ) log2 d, and so we conclude that, for era-

sure channels, the entanglement cost of these channels is not
increased by the need to pass a more stringent test for channel
simulation, as posed by a sequential test. Note also that the
distillable entanglement of the erasure channel is given by
ED (Eq ) = (1 − q ) log2 d, due to [51].

The fact that the distillable entanglement of an erasure
channel is equal to its entanglement cost implies that, if
we restrict the resource theory of entanglement for quantum
channels to consist solely of erasure channels, then it is
reversible. By this, we mean that, in the limit of many channel
uses, if one begins with an erasure channel of parameter q

and distills ebits from it at a rate (1 − q ) log2 d, then one can
subsequently use these distilled ebits to simulate the same
erasure channel again. As we see below, this reversibility
breaks down when considering other channels.

B. Dephasing channels

A d-dimensional dephasing channel has the following ac-
tion:

Dq(ρ) =
d−1∑
i=0

qiZ
iρZi†, (60)

where q is a vector containing the probabilities qi and Z

has the following action on the computational basis Z|x〉 =
e2πix/d |x〉. This channel is covariant with respect to the
Heisenberg-Weyl group of unitaries, which are well known to
be a unitary one design. Furthermore, as remarked previously
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(e.g., in [52]), the Choi state Dq
A→B (�RA) of this channel is a

maximally correlated state [10,11], which has the form∑
i,j

αi,j |i〉〈j |R ⊗ |i〉〈j |B. (61)

As such, Theorem 1 applies to these channels, implying that

EC (Dq) = E
(p)
C (Dq) = EC

(
Dq

A→B (�RA)
)

(62)

= EF

(
Dq

A→B (�RA)
)
, (63)

with the final equality resulting from the fact that the entan-
glement cost is equal to the entanglement of formation for
maximally correlated states [53,54]. In Ref. [54], Sec. VI-A,
an optimization procedure is given for calculating the entan-
glement of formation of maximally correlated states, which is
simpler than that needed from the definition of entanglement
of formation.

A qubit dephasing channel with a single dephasing param-
eter q ∈ [0, 1] is defined as

Dq (ρ) = (1 − q )ρ + qZρZ. (64)

For the Choi state of this channel, there is an explicit formula
for its entanglement of formation [55], from which we can
conclude that

EC (Dq ) = E
(p)
C (Dq ) = h2[1/2 +

√
q(1 − q )], (65)

where

h2(x) ≡ −x log2 x − (1 − x) log2(1 − x) (66)

is the binary entropy. The equality in (65) solves an open ques-
tion from [19], where it had only been shown that E

(p)
C (Dq ) �

h2[1/2 + √
q(1 − q )].

The results of Ref. [1], Eq. (57) and Ref. [3], Eq. (8.114)
gave a simple formula for the distillable entanglement of the
qubit dephasing channel:

ED (Dq ) = 1 − h2(q ). (67)

Thus this formula and the formula in (65) demonstrate that
the resource theory of entanglement for these channels is
irreversible. That is, if one started from a qubit dephasing
channel with parameter q ∈ (0, 1) and distilled ebits from it at
the ideal rate of 1 − h2(q ), and then subsequently wanted to
use these ebits to simulate a qubit dephasing channel with the
same parameter, this is not possible, because the rate at which
ebits are distilled is not sufficient to simulate the channel
again. Figure 3 compares the formulas for entanglement cost
and distillable entanglement of the qubit dephasing channel,
demonstrating that there is a noticeable gap between them.
At q = 1/2, the qubit dephasing channel is a completely de-
phasing, classical channel, so that EC (D1/2) = ED (D1/2) =
0. Thus a reasonable approximation to the difference is given
by a Taylor expansion about q = 1/2:

EC (Dq ) − ED (Dq )

= 1

ln 2

[
2 ln

(
1∣∣q − 1

2

∣∣
)

−1

](
q−1

2

)2

+O

((
q−1

2

)4)
.

(68)

FIG. 3. Entanglement cost EC (Dq ) = h2[1/2 + √
q(1 − q )] and

distillable entanglement ED (Dq ) = 1 − h2(q ) of the qubit dephasing
channel Dq as a function of the dephasing parameter q ∈ [0, 1],
with the shaded area demonstrating the gap between them. The units
for rate on the vertical axis are ebits per channel use and q on the
horizontal axis is dimensionless.

C. Werner-Holevo channels

A particular kind of Werner-Holevo channel performs the
following transformation on a d-dimensional input state ρ

[56]:

W (d )(ρ) ≡ 1

d − 1
[Tr{ρ}I − T (ρ)], (69)

where T denotes the transpose map T (·) =∑
i,j |i〉〈j |(·)|i〉〈j |. As observed in Ref. [56], Section II

and Ref. [57], Section VII, this channel is covariant, and so
an immediate consequence of Ref. [46], Section 7 is that
these channels are teleportation simulable with associated
resource state given by their Choi state. The latter fact was
explicitly observed in Ref. [57], Sections VI and VII, as well
as Ref. [43], Appendix A. Furthermore, its Choi state is given
by

W (d )
A→B (�RA) = αd ≡ 1

d(d − 1)
(IRB − FRB ), (70)

where αd is the antisymmetric state, i.e., the maximally mixed
state on the antisymmetric subspace of a d × d quantum
system and FRB ≡ ∑

i,j |i〉〈j |R ⊗ |j 〉〈i|B denotes the unitary
swap operator. Theorem 1 thus applies to these channels, and
we find that

EC (W (d ) ) = E
(p)
C (W (d ) ) (71)

= EC (αd ) (72)

� log2(4/3) ≈ 0.415, (73)

with the inequality following from Ref. [58], Theorem 2. We
also have that

EC (W (d ) ) = E
(p)
C (W (d ) ) = EC (αd ) � EF (αd ) = 1, (74)

with the last equality following from the result stated in
Ref. [59], Section IV-C. For d = 3, the entanglement cost
EC (α3) is known to be equal to exactly one ebit [60]:

EC (W (3) ) = E
(p)
C (W (3) ) = 1. (75)
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It was observed in Ref. [43], Appendix A (as well as [61])
that the distillable entanglement of the Werner-Holevo chan-
nel W (d ) is equal to the distillable entanglement of its Choi
state:

ED (W (d ) ) = ED (αd ). (76)

Thus, an immediate consequence of Ref. [58], Theorem 1 and
Eq. (5), is that

ED (W (d ) ) �
{

log2
d+2
d

if d is even
1
2 log2

d+3
d−1 if d is odd

}
(77)

= 2

d ln 2

(
1 − 1

d

)
+ O

(
1

d3

)
. (78)

We can now observe that the resource theory of entangle-
ment is generally not reversible when restricted to Werner-
Holevo channels. The case d = 2 is somewhat trivial: in this
case, one can verify that the channel W (2) is a unitary channel,
equivalent to acting on the input state with the Pauli Y unitary.
Thus, for d = 2, the channel is a noiseless qubit channel, and
we trivially have that

ED (W (2) ) = EC (W (2) ) = 1, (79)

so that the resource theory of entanglement is clearly re-
versible in this case. For d = 3, the upper bound on distillable
entanglement in (77) evaluates to 1

2 log2(3) ≈ 0.793, while
the entanglement cost is equal to one, as stated in (75), so
that

ED (W (3) ) � 0.793 < 1 = EC (W (3) ). (80)

Thus the resource theory of entanglement is not reversible
for W (3). For d ∈ {4, 5, 6}, the upper bound in (77) and
the lower bound in (73) are not strong enough to make a
definitive statement [interestingly, the bounds in (77) and (73)
are actually equal for d = 6]. Then, for d � 7, the upper
bound in (77) and the lower bound in (73) are strong enough
to conclude that

ED (W (d ) ) < EC (W (d ) ), (81)

so that the resource theory is not reversible for W (d ). Figure 4
summarizes these observations.

D. Epolarizing channels (complements of depolarizing channels)

The d-dimensional depolarizing channel is a common
model of noise in quantum information, transmitting the input
state with probability 1 − q ∈ [0, 1] and replacing it with the
maximally mixed state π ≡ I

d
with probability q:

�q (ρ) = (1 − q )ρ + qπ. (82)

According to Stinespring’s theorem [62], every quantum
channel NA→B can be realized by the action of some isometric
channel UA→BE followed by a partial trace:

NA→B (ρA) = TrE{UA→BE (ρA)}. (83)

Due to the partial trace and its invariance with respect to
isometric channels acting exclusively on the E system, the
extending channel UA→BE is not unique in general, but it is
unique up to this freedom. Then given an isometric channel

FIG. 4. Lower bound on the entanglement cost EC (W (d ) ) from
(73) and upper bound on distillable entanglement ED (W (d ) ) from
(77) for the Werner-Holevo channel W (d ) as a function of the
parameter d � 4, with the lines connecting the dots demonstrating
the gap between them. For d = 2, the points are exact due to (79),
and reversibility holds. For d = 3, the entanglement cost EC (W (3) )
is exactly equal to one, as recalled in (75), while (77) applies to
ED (W (3) ), and the resource theory is irreversible. For d ∈ {4, 5, 6},
the bounds are not strong enough to reach a conclusion about
reversibility. For d � 7, the resource theory is irreversible, and the
gap EC (W (d ) ) − ED (W (d ) ) grows at least as large as the difference
of (73) and (78). The units for rate on the vertical axis are ebits per
channel use and d on the horizontal axis is dimensionless.

UA→BE extending NA→B as in (83), the complementary chan-
nel N c

A→E is defined by a partial trace over the system B and
is interpreted physically as the channel from the input to the
environment:

N c
A→E (ρA) = TrB{UA→BE (ρA)}. (84)

Due to the fact that properties of the original channel are
related to properties of its complementary channel [63,64],
there has been significant interest in understanding comple-
mentary channels. In this spirit, and due to the prominent
role of the depolarizing channel, researchers have studied its
complementary channels [65,66]. In Ref. [65], Eq. (3.6), the
following form was given for a complementary channel of �q :

ρ → S
q

AF (ρA ⊗ IF )Sq†
AF , (85)

where IF is a d-dimensional identity operator and

S
q

AF ≡
√

q

d
IAF +

√
d

(
−

√
q

d
+
√

1 − q

(
d2 − 1

d2

))
�AF .

(86)

A channel complementary to �q has been called an “epolar-
izing channel” in [66].

An alternative complementary channel, related to the above
one by an isometry acting on the output systems AF , but
perhaps more intuitive, is realized in the following way
[66, Eq. (28)]. Consider the isometry UA→SG1G2A defined as

UA→SG1G2A|ψ〉A ≡ C-SWAPSG1A

(|φq〉S ⊗ |�〉G1G2 ⊗ |ψ〉A
)
,

(87)
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where the control qubit |φq〉S ≡ √
1 − q|0〉S + √

q|1〉S ,
|�〉G1G2 is a maximally entangled state of Schmidt rank d,
and the controlled-SWAP unitary is given by

C-SWAPSG1A ≡ |0〉〈0|S ⊗ IG1A + |1〉〈1|S ⊗ SWAPG1A,

(88)

with SWAPG1A denoting a unitary swap operation. By tracing
over the systems SG1G2, we recover the original depolarizing
channel

�q (ρA) = TrSG1G2{UρAU †}. (89)

Thus, by definition, a channel complementary to �q is real-
ized by

�
q

A→SG1G2
(ρA) ≡ TrA{UρAU †}, (90)

and, in what follows, let us refer to �
q

A→SG1G2
as the epolar-

izing channel.
The isometry UA→SG1G2A in (87) is unitarily covariant, in

the sense that for an arbitrary unitary VA acting on the input,
we have that

UA→SG1G2AVA = (
VG1 ⊗ V G2 ⊗ VA

)
UA→SG1G2A, (91)

where V denotes the complex conjugate of V . The identity in
(91) follows because

UA→SG1G2AVA|ψ〉A
= C-SWAPSG1A

(|φq〉S |�〉G1G2VA|ψ〉A
)

= C-SWAPSG1A

[|φq〉S
(
VG1V G2

)|�〉G1G2VA|ψ〉A
]

= (
VG1 ⊗ V G2 ⊗ VA

)
C-SWAPSG1A

(|φq〉S |�〉G1G2 |ψ〉A
)

= (
VG1 ⊗ V G2 ⊗ VA

)
UA→SG1G2A|ψ〉A. (92)

The above analysis omits some tensor-product symbols
for brevity. The third equality uses the well known fact
that |�〉G1G2 = (VG1 ⊗ V G2 )|�〉G1G2 . In the fourth equality,
we have exploited the facts that V G2 commutes with C-
SWAPSG1A and that

SWAPG1A

(
VG1 ⊗ VA

) = (
VG1 ⊗ VA

)
SWAPG1A. (93)

The covariance in (91) then implies that the epolarizing chan-
nel is covariant in the following sense:(

�
q

A→SG1G2
◦ VA

)
(ρA) = [(

VG1 ⊗ VG2

) ◦ �
q

A→SG1G2

]
(ρA),

(94)

where V denotes the unitary channel realized by the unitary
operator V .

As such, by the discussion after (54), the epolarizing
channel is a resource-seizable, teleportation-simulable chan-
nel with associated resource state given by �

q

A→SG1G2
(�RA).

Thus Theorem 1 applies to these channels, implying that the
first two of the following equalities hold:

EC (�q ) = E
(p)
C (�q ) = EC (�q (�RA)) (95)

= EF (�q (�RA)) (96)

= −
(

1 − q + q

d

)
log2

(
1 − q + q

d

)
−(d − 1)

q

d
log2

(q

d

)
. (97)

Let us now justify the final two equalities, which give a simple
formula for the entanglement cost of epolarizing channels.
First, consider that the Choi state �

q

A′→SG1G2
(�A′A) of the

epolarizing channel is equal to the state resulting from send-
ing in the maximally mixed state to the isometric channel
UA→SG1G2A, defined from (87):

�
q

A′→SG1G2
(�A′A) = UA→SG1G2A(πA), (98)

where system A′ is isomorphic to A. This equality is shown
in Appendix B. As such, then Ref. [67], Theorem 3 applies,
as discussed in Example 6 therein, and as a consequence we
can conclude the second and third equalities in the following,
with the bipartite cut of systems taken as SG1G2|A:

EC

(
�

q

A′→SG1G2
(�A′A)

) = EC (UA→SG1G2A(πA)) (99)

= EF

(
UA→SG1G2A(πA)

)
(100)

= Hmin(�q ). (101)

The last line features the minimum output entropy of the
depolarizing channel, which was identified in [68] and shown
to be equal to (97).

As discussed in previous examples, it is worthwhile to
consider the reversibility of the resource theory of entangle-
ment for epolarizing channels. In this spirit, by invoking the
covariance of �q , the discussion after (54), Ref. [1], Eq. (55),
and Ref. [11], Theorem 4.13, we find the following bound on
the distillable entanglement of the epolarizing channel �q :

ED (�q ) � R(A; SG1G2)�q (�), (102)

where R(A; SG1G2)�q (�) denotes the Rains relative entropy
of the state �

q

A′→SG1G2
(�A′A). Recall that the Rains relative

entropy for an arbitrary state ρAB is defined as [11]

R(A; B )ρ ≡ min
τAB∈PPT′(A;B )

D(ρAB‖τAB ), (103)

where the quantum relative entropy is defined as [69]

D(ρ‖τ ) ≡ Tr{ρ[log2 ρ − log2 τ ]} (104)

and the Rains set PPT′(A; B ) [70] is given by

PPT′(A; B ) ≡ {τAB : τAB � 0 ∧ ‖TB (τAB )‖1 � 1}, (105)

with TB denoting the partial transpose. Appendix C details
a Matlab program taking advantage of recent advances in
[71,72], in order to compute the Rains relative entropy of any
bipartite state.

Figure 5 plots the entanglement cost of the epolarizing
channel for d = 2 (qubit input), and it also plots the Rains
bound on distillable entanglement in (102). There is a gap
for every value of q ∈ (0, 1), demonstrating that the resource
theory of entanglement is irreversible for epolarizing chan-
nels. The figure also plots the coherent information of the
state �

q

A′→SG1G2
(�s

A′A), optimized with respect to |�s〉A′A ≡√
s|00〉A′A + √

1 − s|11〉A′A for s ∈ [0, 1], which is known to
be a lower bound on the distillable entanglement of �q [9].
Note that the coherent information plot is not in contradiction
with the recent result of [66], which states that the coherent
information is strictly greater than zero for all q ∈ (0, 1]. It is
simply that the coherent information is so small for q � 0.18,
that it is difficult to witness its strict positivity numerically.

042338-11



MARK M. WILDE PHYSICAL REVIEW A 98, 042338 (2018)

0 0.2 0.4 0.6 0.8 1

q

0

0.2

0.4

0.6

0.8

1
R

at
e

Entanglement Cost
Rains relative entropy
Coherent Information

FIG. 5. Figure depicts the entanglement cost, the Rains bound,
and the coherent information of the epolarizing channel �q , for d =
2 and q ∈ [0, 1]. The gap between the entanglement cost and the
Rains bound for all q ∈ (0, 1) demonstrates that the resource theory
of entanglement is irreversible for epolarizing channels. The units
for rate on the vertical axis are ebits per channel use and q on the
horizontal axis is dimensionless.

Matlab files to generate Fig. 5 are available with the arXiv
posting of this paper.

V. BOSONIC GAUSSIAN CHANNELS

In this section, I extend the main ideas of the paper in
order to characterize the entanglement cost of all single-mode
bosonic Gaussian channels [73]. From a practical perspective,
we should be most interested in the single-mode thermal, am-
plifier, and additive-noise channels, as these are of the greatest
interest in applications, as stressed in Ref. [2], Sec. 12.6.3, and
Ref. [74], Sec. 3.5. However, it also turns out that these are
the only nontrivial cases to consider among all single-mode
bosonic Gaussian channels, as discussed below.

A. On the definition of entanglement cost for
infinite-dimensional channels

Before beginning, let us note that there are some subtleties
involved when dealing with quantum information theory in
infinite-dimensional Hilbert spaces [2]. For example, as ad-
vised in [75], the direct use of the diamond norm in infinite-
dimensional Hilbert spaces could be too strong for applica-
tions, and this observation has motivated some recent work
[76,77] on modifications of the diamond norm that take into
account physical constraints such as energy limitations. On
the other hand, the recent findings in [78] suggest that the di-
rect use of the diamond norm is reasonable when considering
single-mode thermal, amplifier, and additive-noise channels,
as well as some multimode bosonic Gaussian channels. As it
turns out, we can indeed directly employ the diamond norm
when analyzing the entanglement cost of these channels. In
fact, one of the main contributions of [78] was to consider
uniform convergence issues in the teleportation simulation
of bosonic Gaussian channels, and, due to the fact that the
operational framework of entanglement cost is directly related
to the approximate teleportation simulation of a channel, one
should expect that the findings of [78] would be related to the

issues involved in the entanglement cost of bosonic Gaussian
channels.

With this in mind, let us define the entanglement cost for
an infinite-dimensional channel almost exactly as it has been
defined in Sec. II B, with the exception that we allow for
LOCC channels that have a continuous classical index (e.g.,
as considered in Ref. [79], Section 4), thus going beyond the
LOCC channels considered in (4). Specifically, let us define
an (n,M, ε) sequential channel simulation code as it has
been defined in Sec. II B, noting that the ε-error criterion is
given by (18), representing the direct generalization of the
strategy norm of [26,27,33] to infinite-dimensional systems.
Achievable rates and the entanglement cost are then defined
in the same way.

B. Preliminary observations about the entanglement
cost of single-mode bosonic Gaussian channels

The starting point for our analysis of single-mode bosonic
Gaussian channels is the Holevo classification from [80], in
which canonical forms for all single-mode bosonic Gaussian
channels have been given, classifying them up to local Gaus-
sian unitaries acting on the input and output of the channel.
It then suffices for us to focus our attention on the canonical
forms, as it is self-evident from definitions that local unitaries
do not alter the entanglement cost of a quantum channel. The
thermal and amplifier channels form the class C discussed
in [80], and the additive-noise channels form the class B2

discussed in the same work. The classes that remain are
labeled A, B1, and D in [80]. The channels in A and D are
entanglement breaking [39], and as a consequence of the “if
part” of Remark 1, they have zero entanglement cost. Chan-
nels in the class B1 are perhaps not interesting for practical
applications, and as it turns out, they have infinite quantum
capacity [80]. Thus their entanglement cost is also infinite,
because a channel’s quantum capacity is a lower bound on
its distillable entanglement, which is in turn a lower bound
on its entanglement cost—these relationships are a direct
consequence of the definitions of the underlying quantities.
For the same reason, the entanglement cost of the bosonic
identity channel is also infinite.

C. Thermal, amplifier, and additive-noise channels

In light of the previous discussion, for the remainder of the
paper, let us focus our attention on the thermal, amplifier, and
additive-noise channels. Each of these are defined respectively
by the following Heisenberg input-output relations:

b̂ = √
ηâ +

√
1 − ηê, (106)

b̂ =
√

Gâ + √
G − 1ê†, (107)

b̂ = â + (x + ip)/
√

2, (108)

where â, b̂, and ê are the field-mode annihilation operators for
the sender’s input, the receiver’s output, and the environment’s
input of these channels, respectively.

The channel in (106) is a thermalizing channel, in which
the environmental mode is prepared in a thermal state θ (NB )
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of mean photon number NB � 0, defined as

θ (NB ) ≡ 1

NB + 1

∞∑
n=0

(
NB

NB + 1

)n

|n〉〈n|, (109)

where {|n〉}∞n=0 is the orthonormal, photonic number-state
basis. When NB = 0, θ (NB ) reduces to the vacuum state, in
which case the resulting channel in (106) is called the pure-
loss channel—it is said to be quantum-limited in this case
because the environment is injecting the minimum amount
of noise allowed by quantum mechanics. The parameter η ∈
(0, 1) is the transmissivity of the channel, representing the
average fraction of photons making it from the input to the
output of the channel. Let Lη,NB

denote this channel, and
we make the further abbreviation Lη ≡ Lη,NB=0 when it is
the pure-loss channel. The channel in (106) is entanglement-
breaking when (1 − η)NB � η [39] and, by Remark 1, the
entanglement cost is equal to zero for these values.

The channel in (107) is an amplifier channel and the pa-
rameter G > 1 is its gain. For this channel, the environment is
prepared in the thermal state θ (NB ). If NB = 0, the amplifier
channel is called the pure-amplifier channel—it is said to be
quantum limited for a similar reason as stated above. Let
AG,NB

denote this channel, and we make the further abbrevia-
tion AG ≡ AG,NB=0 when it is the quantum-limited amplifier
channel. The channel in (107) is entanglement-breaking when
(G − 1)NB � 1 [39] and, by Remark 1, the entanglement cost
is equal to zero for these values.

Finally, the channel in (108) is an additive-noise channel,
representing a quantum generalization of the classical additive
white Gaussian noise channel. In (108), x and p are zero-
mean, independent Gaussian random variables each having
variance ξ � 0. Let Tξ denote this channel. The channel in
(108) is entanglement breaking when ξ � 1 [39] and, by
Remark 1, the entanglement cost is equal to zero for these
values.

Kraus representations for the channels in (106)–(108) are
available in [81], which can be helpful for further understand-
ing their action on input quantum states.

Due to the entanglement-breaking regions discussed above,
we are left with a limited range of single-mode bosonic
Gaussian channels to consider, which is delineated by the
white strip in Fig. 1 of [82].

D. Upper bound on the entanglement
cost of teleportation-simulable channels
with bosonic Gaussian resource states

In this section, I determine an upper bound on the en-
tanglement cost of any channel NA→B that is teleportation
simulable with associated resource state given by a bosonic
Gaussian state. Related bosonic teleportation channels have
been considered previously [83–88], in the case that the
LOCC channel associated to NA→B is a Gaussian LOCC
channel. Proposition 3 below states that the entanglement cost
of these channels is bounded from above by the Gaussian
entanglement of formation [89] of the underlying bosonic
Gaussian resource state and, as such, this proposition repre-
sents a counterpart to Proposition 2. Before stating it, let us
note that the Gaussian entanglement of formation E

g

F (A; B )ρ

of a bipartite state ρAB [89] is given by the same formula
as in (7), with the exception that the pure states ψx

AB in
the ensemble decomposition are required to be Gaussian.
Note that continuous probability measures are allowed for
the decomposition (for an explicit definition, see Ref. [89],
Sec. III). Let us note here that the first part of the proof
outlines a procedure for the formation of n approximate copies
of a bipartite state and, even though this kind of protocol
has been implicit in prior literature, I have included explicit
steps for clarity. After proving Proposition 2, I discuss its
application to thermal, amplifier, and additive-noise bosonic
Gaussian channels.

Proposition 3. Let NA→B be a channel that is teleportation
simulable as defined in (28), where the resource state ωA′B ′ is
a bosonic Gaussian state composed of k modes for system
A′ and � modes for system B ′, with k, � � 1. Then the
entanglement cost of NA→B is never larger than the Gaussian
entanglement of formation of the bosonic Gaussian resource
state ωA′B ′ :

EC (N ) � E
g

F (A′; B ′)ω. (110)

Proof. The main idea of the proof is to first form n approx-
imate copies of the bosonic Gaussian resource state ωA′B ′ , by
using entanglement and LOCC as related to the approach from
[90] and then, after that, simulate n uses of the channel NA→B

by employing the structure of the channel NA→B from (28).
Indispensable to the proof is the analysis in Ref. [89], Secs. II
and III, where it is shown that every bosonic Gaussian state
can be decomposed as a Gaussian mixture of local displace-
ments acting on a fixed Gaussian pure state and that such a
decomposition is optimal for the Gaussian entanglement of
formation (Ref. [89], Proposition 1). The Gaussian mixture of
local displacements can be understood as an LOCC channel
GA′B ′ , and let ψω

A′B ′ denote the aforementioned fixed Gaussian
pure state such that GA′B ′ (ψω

A′B ′ ) = ωA′B ′ .
Since ψω

A′B ′ is Gaussian, the marginal state ψω
B ′ is Gaussian,

and thus it has finite entropy H (B ′)ψω , as well as finite entropy
variance, i.e.,

V (B ′)ψω ≡ Tr{ψω
B ′[− log2 ψω

B ′ − H (B ′)ψω ]2} < ∞, (111)

the latter statement following from the Williamson decompo-
sition [91] for Gaussian states as well as the formula for the
entropy variance of a bosonic thermal state [92]. For δ > 0,
recall that the entropy-typical projector �δ

B ′n [93,94] of the
state ψω

B ′ is defined as the projection onto

span{|ξzn〉 :
∣∣−n−1 log2(pZn (zn)) − H (B ′)ψω

∣∣ � δ}, (112)

where a countable spectral decomposition of ψω
B ′ is given by

ψω
B ′ =

∑
z

pZ (z)|ξz〉〈ξz| (113)

and

|ξzn〉 ≡ ∣∣ξz1

〉⊗ · · · ⊗ ∣∣ξzn

〉
, (114)

pZn (zn) ≡ pZ (z1) · · · pZ (zn). (115)

The entropy-typical projector �δ
B ′n projects onto a finite-

dimensional subspace of [ψω
B ′]⊗n, and satisfies the conditions
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[�δ
B ′n , [ψω

B ′ ]⊗n] = 0 and

2−n[H (B ′ )ψω +δ]�δ
B ′n � �δ

B ′n [ψω
B ′]⊗n�δ

B ′n

� 2−n[H (B ′ )ψω −δ]�δ
B ′n . (116)

It then follows that Tr{�δ
B ′n} � 2n[H (B ′ )ψω +δ]. Furthermore,

consider that the entropy-typical projector �δ
B ′n for the state

[ψω
B ′]⊗n satisfies

Tr
{(

IA′n ⊗ �δ
B ′n
)[

ψω
A′B ′
]⊗n}

= Tr
{
�δ

B ′n
[
ψω

B ′
]⊗n} � 1 − V (B ′)ψω

δ2n
, (117)

with the inequality following from the definition of the
entropy-typical projector and an application of the Chebshev
inequality. By the gentle measurement lemma [95,96] (see
Ref. [4], Lemma 9.4.1 for the version employed here), we
conclude that

1

2

∥∥[ψω
A′B ′
]⊗n − ψ̃ω

A′nB ′n
∥∥

1 �
√

V (B ′)ψω

δ2n
, (118)

where

ψ̃ω
A′nB ′n ≡

(
IA′n ⊗ �δ

B ′n
)[

ψω
A′B ′
]⊗n(

IA′n ⊗ �δ
B ′n
)

Tr
{(

IA′n ⊗ �δ
B ′n
)[

ψω
A′B ′
]⊗n} . (119)

Observe that the system B ′n of ψ̃ω
A′nB ′n is supported on a finite-

dimensional subspace of B ′n.
Now, the idea of forming n approximate copies ψω

A′B ′
is then the same as it is in [90]: Alice prepares the state
ψ̃ω

A′nB ′n locally, Alice and Bob require beforehand a maximally
entangled state of Schmidt rank no larger than 2n[H (B ′ )ψω +δ],
and then they perform quantum teleportation [14] to teleport
the B ′n system to Bob. At this point, they share exactly the
state ψ̃ω

A′nB ′n , which becomes less and less distinguishable
from [ψω

A′B ′]⊗n as n grows large, due to (118). Now applying
the Gaussian LOCC channel (GA′B ′ )⊗n, the data processing
inequality to (118), and the fact that GA′B ′ (ψω

A′B ′ ) = ωA′B ′ , we
conclude that

1

2

∥∥ω⊗n
A′B ′ − (GA′B ′ )⊗n(ψ̃ω

A′nB ′n )
∥∥

1 �
√

V (B ′)ψω

δ2n
. (120)

Thus, to see that H (B ′)ψω is an achievable rate for forming
ω⊗n

A′B ′ , fix ε ∈ (0, 1] and δ > 0. Then choose n large enough so

that
√

V (B ′ )ψω

δ2n
� ε. Apply the above procedure, using LOCC

and a maximally entangled state of Schmidt rank no larger
than 2n[H (B ′ )ψω +δ]. Then the rate of entanglement consumption
to produce n approximate copies of ωA′B ′ satisfying (120) is
H (B ′)ψω + δ. Since this is possible for ε ∈ (0, 1], δ > 0, and
sufficiently large n, we conclude that H (B ′)ψω is an achiev-
able rate for the formation of ωA′B ′ . Now, since achieving this
rate is possible for any pure state ψω

A′B ′ such that ωA′B ′ =
GA′B ′ (ψω

A′B ′ ), we conclude that the infimum of H (B ′)ψω with
respect to all such pure states is an achievable rate. But
this latter quantity is exactly the Gaussian entanglement of
formation according to Ref. [89], Proposition 1.

The idea for simulating n uses of the channel NA→B is
then the same as the idea used in the proof of Proposition 2.
First form n approximate copies of ωA′B ′ according to the
procedure described above. Then, when the ith call to the

channel NA→B is made, use the LOCC channel LAA′B ′→B

from the definition in (28) along with the ith A′ and B ′
systems of the state approximating ω⊗n

A′B ′ to simulate it. By
the same reasoning that led to (38), the distinguishability
of the final states of any sequential test is limited by the
distinguishability of the state ω⊗n

A′B ′ from its approximation,
which I argued in (120) can be made arbitrarily small with
increasing n. Thus the Gaussian entanglement of formation
ωA′B ′ is an achievable rate for sequential channel simulation
of NA→B . �

1. Upper bound for the entanglement cost of thermal, amplifier,
and additive-noise bosonic Gaussian channels

I now discuss how to apply Proposition 2 to single-mode
thermal, amplifier, and additive-noise channels. Some recent
papers [97–99] have shown how to simulate each of these
channels by using a bosonic Gaussian resource state along
with variations of the continuous-variable quantum telepor-
tation protocol [83]. Of these works, the one most relevant
for us is the latest one [99], because these authors proved
that the entanglement of formation of the underlying resource
state is equal to the entanglement of formation that results
from transmitting through the channel one share of a two-
mode squeezed vacuum state with arbitrarily large squeezing
strength. That is, let NA→B denote a single-mode thermal,
amplifier, or additive-noise channel. Then one of the main
results of [99] is that, associated to this channel, there is a
bosonic Gaussian resource state ωA′B ′ and a Gaussian LOCC
channel GAA′B ′→B such that

EF (A′; B ′)ω = sup
NS�0

EF (R; B )σ (NS ) (121)

= lim
NS→∞

EF (R; B )σ (NS ), (122)

where

σ (NS ) ≡ NA→B

(
φ

NS

RA

)
, (123)

φ
NS

RA ≡ |φNS 〉〈φNS |RA, (124)

|φNS 〉RA ≡ 1√
NS + 1

∞∑
n=0

√(
NS

NS + 1

)n

|n〉R|n〉A, (125)

and for all input states ρA,

NA→B (ρA) = GAA′B ′→B (ρA ⊗ ωA′B ′ ). (126)

In the above, φ
NS

RA is the two-mode squeezed vacuum state
[73]. Note that the equality in (122) holds because one can

always produce φ
NS

RA from φ
N ′

S

RA such that N ′
S � NS , by us-

ing Gaussian LOCC and the local displacements involved
in the Gaussian LOCC commute with the channel NA→B

[100] (whether it be thermal, amplifier, or additive noise).
Furthermore, the entanglement of formation does not increase
under the action of an LOCC channel.

Thus, applying the above observations and Proposition 3,
it follows that there exist bosonic Gaussian resource states
ω

η,NB

A′B ′ , ω
G,NB

A′B ′ , and ω
ξ

A′B ′ associated to the respective thermal,
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amplifier, and additive-noise channels in (106)–(108), such
that the following inequalities hold:

EC (Lη,NB
) � EF (A′; B ′)ωη,NB , (127)

EC (AG,NB
) � EF (A′; B ′)ωG,NB , (128)

EC (Tξ ) � EF (A′; B ′)ωξ . (129)

Analytical formulas for the upper bounds on the right can be
found in Ref. [99], Eqs. (4)–(6).

E. Lower bound on the entanglement cost
of bosonic Gaussian channels

In this section, I establish a lower bound on the nonasymp-
totic entanglement cost of thermal, amplifier, or additive-noise
bosonic Gaussian channels. After that, I show how this bound
implies a lower bound on the entanglement cost. Finally, by
proving that the state resulting from sending one share of
a two-mode squeezed vacuum through a pure-loss or pure-
amplifier channel has entanglement cost equal to entangle-
ment of formation, I establish the exact entanglement cost
of these channels by combining with the results from the
previous section.

Proposition 4. Let NA→B be a thermal, amplifier, or
additive-noise channel, as defined in (106)–(108). Let n,M ∈
N, ε ∈ [0, 1/2), ε′ ∈ (

√
2ε, 1], δ = [ε′ − √

2ε]/[1 + ε′], and
NS ∈ [0,∞). Then the following bound holds for any
(n,M, ε) sequential or parallel channel simulation code for
NA→B :

1

n
log2 M � 1

n
EF (Rn; Bn)ω⊗n − (ε′ + 2δ)H

(
φ

NS/δ

R

)
− 1

n
[2(1 + ε′)g2(ε′) + 2h2(δ)], (130)

where ωRB ≡ NA→B (φNS

RA) and 1
n

log2 M is understood as the
nonasymptotic entanglement cost of the protocol.

Proof. The reasoning here is very similar to that given
in the proof of Proposition 1, but we can instead make use
of the continuity bound for the entanglement of formation
of energy-constrained states (Ref. [101], Proposition 5). To
begin, suppose that there exists an (n,M, ε) protocol for
sequential channel simulation. Then by previous reasoning
(also see Fig. 2), it can be thought of as a parallel channel
simulation protocol, such that the criterion in (2) holds. Let
us take (φNS

RA)⊗n to be a test input state, leading to ω⊗n
RB =

[NA→B (φNS

RA)]⊗n when the actual channels are applied and
σR1···RnB1···Bn

when the simulation is applied. Set

f (n, ε, ε′, NS ) ≡ n(ε′ + 2δ)H
(
φ

NS/δ

R

)
+ 2(1 + ε′)g2(ε′) + 2h2(δ). (131)

Then we have that

EF (Rn; Bn)ω⊗n

� EF (Rn; Bn)σ + f (n, ε, ε′, NS )

� EF (RnAnA0; B0)ψ⊗� + f (n, ε, ε′, NS )

= EF (A0; B0)� + f (n, ε, ε′, NS )

= log2 M + f (n, ε, ε′, NS ). (132)

The first inequality follows from the condition in (18), as
well as from the continuity bound for entanglement of for-
mation from Ref. [101], Proposition 5, noting that the total
photon number of the reduced (thermal) state on systems
Rn is equal to nNS . The second inequality follows from the
LOCC monotonicity of the entanglement of formation, here
thinking of the person who possesses systems RAn to be
in the same laboratory as the one possessing the systems
Ai , while the person who possesses the Bi systems is in a
different laboratory. The first equality follows from the fact
that (φNS

RA)⊗n is in tensor product with �A0B0
, so that by a local

channel, one may remove (φNS

RA)⊗n or append it for free. The
final equality follows because the entanglement of formation
of the maximally entangled state is equal to the logarithm of
its Schmidt rank. �

A direct consequence of Proposition 4 is the following
lower bound on the entanglement cost of the thermal, ampli-
fier, and additive-noise channels.

Proposition 5. Let NA→B be a thermal, amplifier, or
additive-noise channel, as defined in (106)–(108). Then the
entanglement costs EC (N ) and E

(p)
C (N ) are bounded from

below by the entanglement cost of the state NA→B (φNS

RA),
where the two-mode squeezed vacuum state φ

NS

RA has arbitrar-
ily large squeezing strength:

EC (N ) � E
(p)
C (N ) (133)

� sup
NS�0

EC

(
NA→B

(
φ

NS

RA

))
(134)

= lim
NS→∞

EC

(
NA→B

(
φ

NS

RA

))
. (135)

Proof. The first inequality follows from definitions, as
argued previously in (22). To arrive at the second inequal-
ity, in Proposition 4, set ε′ = 4

√
2ε, and take the limit

as n → ∞ and then as ε → 0. Employing the fact that
limξ→0 ξH (H (φNS/ξ

R )) = 0 (Ref. [102], Proposition 1) and
applying definitions, we find for all NS � 0 that

EC (N ) � E
(p)
C (N ) (136)

� lim
n→∞

1

n
EF

([
NA→B

(
φ

NS

RA

)]⊗n)
(137)

= EC

(
NA→B

(
φ

NS

RA

))
. (138)

Since the above bound holds for all NS � 0, we conclude the
bound in the statement of the proposition. The equality in
(135) follows for the same reason as given for the equality
in (122), and due to the fact that entanglement cost is nonin-
creasing with respect to an LOCC channel by definition. �

F. Additivity of entanglement of formation for pure-loss
and pure-amplifier channels

The bound in Proposition 5 is really only a formal state-
ment, as it is not clear how to evaluate the lower bound
explicitly. If it would however be possible to prove that

1

n
EF

([
NA→B

(
φ

NS

RA

)]⊗n) ?= EF

(
NA→B

(
φ

NS

RA

))
(139)
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for all integer n � 1 and all NS � 0, then we could conclude
the following:

EC (N )
?
� lim

NS→∞
EF

(
NA→B

(
φ

NS

RA

))
, (140)

implying that this lower bound coincides with the upper bound
from (127)–(129), due to the recent result of [99] recalled in
(121)–(122).

In Proposition 6 below, I prove that the additivity relation
in (139) indeed holds whenever the channel NA→B is a pure-
loss channel Lη or pure-amplifier channel AG. The linchpin of
the proof is the multimode bosonic minimum output entropy
theorem from Ref. [103] and Ref. [104], Theorem 1.

Proposition 6. For NA→B a pure-loss channel Lη with
transmissivity η ∈ (0, 1) or a pure-amplifier channel AG with
gain G > 1, the following additivity relation holds for all
integer n � 1 and NS ∈ [0,∞):

1

n
EF

([
NA→B

(
φ

NS

RA

)]⊗n) = EF

(
NA→B

(
φ

NS

RA

))
(141)

= E
g

F

(
NA→B

(
φ

NS

RA

))
, (142)

where φ
NS

RA is the two-mode squeezed vacuum state from (125)
and E

g

F denotes the Gaussian entanglement of formation.
Thus the entanglement cost of NA→B (φNS

RA) is equal to its
entanglement of formation:

EC

(
NA→B

(
φ

NS

RA

)) = EF

(
NA→B

(
φ

NS

RA

))
. (143)

Proof. The proof of this proposition relies on three key
prior results.

(1) The main result of [105] is that the entanglement of
formation EF (A; B )ψ is equal to the classically conditioned
entropy H (A|E)ψ for a tripartite pure state ψABE :

EF (A; B )ψ = H (A|E)ψ, (144)

where

H (A|E)ψ = inf
{�x

E}x

∑
x

pX(x)H (A)σx , (145)

with the optimization taken with respect to a positive operator-
valued measure {�x

E}x and

pX(x) ≡ Tr
{
�x

EψE

}
, (146)

σx
A ≡ 1

pX(x)
TrE

{(
IA ⊗ �x

E

)
ψAE

}
. (147)

The sum in (145) can be replaced with an integral for
continuous-outcome measurements. The equality in (144) can
be understood as being a consequence of the quantum steering
effect [106].

(2) The determination of and method of proof for the
classically conditioned entropy H (A|E)ρ of an arbitrary two-
mode Gaussian state ρAE with covariance matrix in certain
standard forms [107]. [As remarked below, there is in fact a
significant strengthening of the main result of [107], which
relies on item (3) below.]

(3) The multimode bosonic minimum output entropy the-
orem from Ref. [103] and Ref. [104], Theorem 1 (see the

related work in [82,108] also), which implies that the follow-
ing identity holds for a phase-insensitive, single-mode bosonic
Gaussian channel G and for all integer n � 1:

inf
ρ (n)

H (G⊗n(ρ (n) )) = H (G⊗n([|0〉〈0|]⊗n))

= nH (G(|0〉〈0|)), (148)

where the optimization is with respect to an arbitrary n-mode
input state ρ (n) and |0〉〈0| denotes the bosonic vacuum state.

Indeed, these three key ingredients, with the third being the
linchpin, lead to the statement of the proposition after making
a few observations. Consider that a purification of the state
ρAB = (idR→A ⊗Lη )(φNS

RA) is given by

ψABE = (idR→A ⊗Bη

AE→BE )(φNS

RA ⊗ |0〉〈0|E ), (149)

where Bη

AE→BE represents the unitary for a beam-splitter
interaction [73] and |0〉〈0|E again denotes the vacuum
state. Tracing over the system B gives the state ψAE =
(idR→A ⊗L1−η )(φNS

RA), where L1−η is a pure-loss channel of
transmissivity 1 − η. The state ψAE is well known to have
its covariance matrix in standard form [73] [see discussion
surrounding Ref. [107], Eq. (5)] as⎡⎢⎢⎢⎣

a 0 c 0

0 a 0 −c

c 0 b 0

0 −c 0 b

⎤⎥⎥⎥⎦ (150)

and is also known as a two-mode squeezed thermal state [73].
As such, the main result of [107] applies, and we can con-
clude that heterodyne detection is the optimal measurement in
(145), which in turn implies from (144) that the entanglement
of formation of ρAB is equal to the Gaussian entanglement of
formation.

However, what we require is that the same results hold for
the multicopy state ψ⊗n

AE . Inspecting Eqs. (9)–(14) of [107],
it is clear that the same steps hold, except that we replace
Eq. (12) therein with (148). Thus it follows that n individual
heterodyne detections on each E mode of ψ⊗n

AE is the optimal
measurement, so that

1

n
H (An|En)ψ⊗n = H (A|E)ψ. (151)

By applying (144) (as applied to the states ρ⊗n
AB and ψ⊗n

AE), we
conclude that

1

n
EF (An; Bn)ρ⊗n = EF (A; B )ρ. (152)

Furthermore, since the optimal measurement is given by het-
erodyne detection, performing it on mode E of ψABE induces
a Gaussian ensemble of pure states {pX(x), ψx

AB}, which is the
optimal decomposition of ψAB = ρAB , and thus we conclude
that EF (A; B )ρ = E

g

F (A; B )ρ .
A similar analysis applies for the quantum-limited ampli-

fier channel. I give the argument for completeness. Consider
that a purification of the state σAB = (idR→A ⊗AG)(φNS

RA) is
given by

ϕABE = (
idR→A ⊗SG

AE→BE

)(
φ

NS

RA ⊗ |0〉〈0|E
)
, (153)
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where SG
AE→BE represents the unitary for a two-mode

squeezer [73] and |0〉〈0|E again denotes the vacuum
state. Tracing over the system B gives the state ϕAE =
(idR→A ⊗ÃG)(φNS

RA), where ÃG denotes the channel conju-
gate to the quantum-limited amplifier. The state ϕAE has
its covariance matrix in the form (see Mathematica files
included with the arXiv posting or alternatively Ref. [73],
Appendix D.4) ⎡⎢⎢⎢⎣

a 0 c 0

0 a 0 c

c 0 b 0

0 c 0 b

⎤⎥⎥⎥⎦, (154)

and so the same proof approach to get (151) can be used to
conclude that

1

n
H (An|En)ϕ⊗n = H (A|E)ϕ. (155)

Indeed, this additionally follows from the discussion after
Eqs. (17)–(19) in [107]. As such, we conclude in the same
way that

1

n
EF (An; Bn)σ⊗n = EF (A; B )σ = E

g

F (A; B )σ . (156)

The final statement about entanglement cost in (143) fol-
lows from the fact that it is equal to the regularized entangle-
ment of formation. �

Remark 2. As can be seen from the proof above, the mul-
timode minimum output entropy theorem recalled in (148)
provides a significant strengthening of the results from [107].
Indeed, for ρAE any two-mode Gaussian state considered in
[107], the following equality holds:

1

n
H (An|En)ρ⊗n = H (A|E)ρ, (157)

implying that the measurement {�x
E}x optimal for the right-

hand side leads to a measurement {�x1
E1

⊗ · · · ⊗ �
xn

En
}x1,...,xn

that is optimal for the left-hand side. Furthermore, by the
relation in (144), for any purification ψABE of the state ρAE

mentioned above, we conclude that

1

n
EF (An; Bn)ψ⊗n = EF (A; B )ψ, (158)

for all integer n � 1, thus giving a whole host of two-mode
Gaussian states for which their entanglement cost is equal
to their entanglement of formation: EF (A; B )ρ = EC (ρAB ) =
E

g

F (A; B )ρ . For these examples of two-mode Gaussian states,
the additivity relation in (158) has been explicitly shown.

Remark 3. One might wonder whether the same method of
proof as given in Proposition 6 could be used to establish the
equalities in (141) and (142) for general thermal, amplifier,
and additive-noise channels. At the moment, it is not clear
how to do so. The issue is that the state (idR ⊗Lη,NB

)(φNS

RA)
for NB > 0 is a faithful state, meaning that it is positive
definite and thus has two symplectic eigenvalues >1. This
means that any purification of it requires at least four modes
(Ref. [109], Sec. III-D). Then tracing over the B system
leaves a three-mode state, of which we should be measuring
two of them, and so it is not clear how to apply the meth-
ods of [107] to such a state. The same issues apply to the

states (idR ⊗AG,NB
)(φNS

RA) for NB > 0 and (idR ⊗Tξ )(φNS

RA)
for ξ > 0, which are the states resulting from the amplifier
and additive-noise channels, respectively.

G. Entanglement cost of pure-loss and pure-amplifier channels

Based on the results in the previous sections, we con-
clude the following theorem, which gives simple formulas for
the entanglement cost of two fundamental bosonic Gaussian
channels.

Theorem 2. For a pure-loss channel Lη with transmissivity
η ∈ (0, 1) or a pure-amplifier channel AG with gain G > 1,
the following formulas characterize the entanglement costs of
these channels:

EC (Lη ) = E
(p)
C (Lη ) = h2(1 − η)

1 − η
, (159)

EC (AG) = E
(p)
C (AG) = g2(G − 1)

G − 1
, (160)

where h2(·) is the binary entropy defined in (66) and g2(·) is
the bosonic entropy function defined in (25).

Proof. Recalling the discussion in Sec. V D 1, for a pure-
loss and pure-amplifier channel, there exist respective re-
source states ω

η

A′B ′ and ωG
A′B ′ such that

EC (Lη ) � EF (A′; B ′)ωη (161)

= lim
NS→∞

EF (R; B )ση (NS ), (162)

EC (AG) � EF (A′; B ′)ωG (163)

= lim
NS→∞

EF (R; B )σG(NS ), (164)

where

ση(NS )RB ≡ (idR ⊗Lη )
(
φ

NS

RA

)
, (165)

σG(NS )RB ≡ (idR ⊗AG)
(
φ

NS

RA

)
, (166)

with the equalities in (162) and (164) being one of the main re-
sults of [99]. Furthermore, explicit formulas for EF (A′; B ′)ωη

and EF (A′; B ′)ωG have been given in Ref. [99], Eqs. (4)–(6),
and evaluating these formulas leads to the expressions in
(159)–(160) (supplemental Mathematica files that automate
these calculations are available with the arXiv posting of this
paper).

On the other hand, Propositions 5 and 6 imply that

EC (Lη ) � E
(p)
C (Lη ) (167)

� lim
NS→∞

EC (ση(NS )RB ) (168)

= lim
NS→∞

EF (R; B )ση (NS ), (169)

EC (AG) � E
(p)
C (AG) (170)

� lim
NS→∞

EC (σG(NS )RB ) (171)

= lim
NS→∞

EF (R; B )σG(NS ). (172)

Combining the inequalities above, we conclude the statement
of the theorem. �
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It is interesting to consider various limits of the formulas
in (159) and (160):

lim
η→1

h2(1 − η)

1 − η
= lim

G→1

g2(G − 1)

G − 1
= ∞, (173)

lim
η→0

h2(1 − η)

1 − η
= lim

G→∞
g2(G − 1)

G − 1
= 0. (174)

We expect these to hold because the channels approach the
ideal channel in the limits η,G → 1, which we previously
argued has infinite entanglement cost, while they both ap-
proach the completely depolarizing (useless) channel in the
no-transmission limit η → 0 and infinite-amplification limit
G → ∞. Furthermore, these formulas obey the symmetry

h2(1 − η)

1 − η
= g2(1/η − 1)

1/η − 1
, (175)

which is consistent with the idea that the transformation η →
1/η takes a channel of transmissivity η ∈ [0, 1] and produces
a channel of gain 1/η. Finally, we have the Taylor expansions:

h2(1 − η)

1 − η
= η

ln 2
[1 − ln(η)] + O(η2), (176)

g2(G − 1)

G − 1
= 1 + ln(G)

G ln 2
+ O(1/G2), (177)

which are relevant in the low-transmissivity and high-gain
regimes.

In [110], simple formulas for the distillable entanglement
of these channels were determined and given by

ED (Lη ) = − log2(1 − η), (178)

ED (AG) = − log2(1 − 1/G). (179)

Thus the prior results and the formulas in Theorem 2 demon-
strate that the resource theory of entanglement for these
channels is irreversible. That is, if one started from a pure-
loss channel of transmissivity η and distilled ebits from it
at the ideal rate of − log2(1 − η), and then subsequently
wanted to use these ebits to simulate a pure-loss channel
with the same transmissivity, this is not possible, because the
rate at which ebits are distilled is not sufficient to simulate
the channel again. The same statement applies to the pure-
amplifier channel. Figures 6 and 7 compare the formulas
for entanglement cost and distillable entanglement of these
channels, demonstrating that there is a noticeable gap between
them. I note here that the differences are given by

EC (Lη ) − ED (Lη ) = −η log2 η

1 − η
, (180)

EC (AG) − ED (AG) = log2 G

G − 1
, (181)

implying that these differences are strictly greater than zero
for all the relevant channel parameter values η ∈ (0, 1) and
G > 1.

VI. EXTENSION TO OTHER RESOURCE THEORIES

Let us now consider how to extend many of the concepts
in this paper to other resource theories (see [6] for a review of

FIG. 6. Plot of the entanglement cost EC (Lη ) = h2(1−η)
1−η

and the
distillable entanglement ED (Lη ) = − log2(1 − η) of the pure-loss
channel Lη as a function of the transmissivity η ∈ [0, 1], with the
shaded area demonstrating the gap between them. The units for rate
on the vertical axis are ebits per channel use and η on the horizontal
axis is dimensionless.

quantum resource theories). In fact, this can be accomplished
on a simple conceptual level by replacing “LOCC channel”
with “free channel,” “separable state” with “free state,” and
(roughly) “maximally entangled state” with resource state
throughout the paper. To be precise, let F denote the set of free
states for a given resource theory, and let F be a free channel,
which takes a free state to a free state. In Ref. [36], Sec. 7,
a general notion of distillation of a resource from n uses of
a channel was given (see Fig. 4 therein). In particular, one
interleaves n uses of a given channel by free channels, and the
goal is to distill resource from the n channels. As a general-
ization of a teleportation-simulable channel with an associated
resource state, the notion of a ν-freely simulable channel was
introduced as a channel N that can be simulated as

NA→B (ρA) = F sim
AE→B (ρA ⊗ νE ), (182)

where F sim is a free channel and ν is some resource state. The
implications of this for distillation protocols was discussed
in Ref. [36], Sec. 7, which is merely that the rate at which

FIG. 7. Plot of the entanglement cost EC (AG) = g2 (G−1)
G−1 and the

distillable entanglement ED (AG) = − log2(1 − 1/G) of the pure-
amplifier channel AG as a function of the gain G � 1, with the
shaded area demonstrating the gap between them. The units for rate
on the vertical axis are ebits per channel use and G on the horizontal
axis is dimensionless.
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resource can be distilled is limited by the resourcefulness of
the underlying resource state ν.

Going forward, we can also consider a resource-seizable
channel in a general resource theory to be a ν-freely simulable
channel for which, by pre- and postprocessing, one can seize
the underlying resource state ν as

Fpost
RB→E

(
NA→B

(
κ

pre
RA

)) = νE, (183)

where κ
pre
RA is a free state and Fpost

RB→E is a free channel,
extending Definition 2.

The general notion of channel simulation, as presented
in Sec. II B, can be considered in any resource theory also.
Again, the main idea is really to replace “LOCC channel”
with “free channel” and “maximally entangled state” with
“resourceful state” in the protocol depicted in Fig. 1, and the
goal is to determine the minimum rate at which resourceful-
ness is needed in order to simulate n uses of a given channel.
If the channels are resource seizable as discussed above,
then the theory should significantly simplify, as has occurred
in this paper for the entanglement theory of channels (see
Theorem 1). Furthermore, along the lines of the discussion
in Sec. II C (and related to Ref. [6], Sec. III-D-5), suppose
that a channel NA→B can be realized from another channel
MA′→B ′ via a preprocessing free channel Fpre

A→A′M and a
postprocessing free channel Fpost

B ′M→B as

NA→B = Fpost
B ′M→B ◦ MA′→B ′ ◦ Fpre

A→A′M. (184)

Then for the same reasons given there, the simulation cost of
N should never exceed the simulation cost of M.

Finally, let us note that some discussions about channel
simulation for the resource theory of coherence have appeared
in the last paragraph of [111], as well as the last paragraphs
of [112]. It is clear from the findings of the present paper
that identifying interesting resource-seizable channels could
be a useful first step for understanding interconversion costs
of simulating one channel from another in the resource theory
of coherence. It could also be helpful in further understanding
channel simulation in the resource theory of thermodynamics
[113].

VII. CONCLUSION

In summary, this paper has provided a definition for the
entanglement cost of a channel, in terms of the most general
strategy that a discriminator could use to distinguish n uses
of the channel from its simulation. I established an upper
bound on the entanglement cost of a teleportation-simulable
channel in terms of the entanglement cost of the underlying
resource state, and I proved that the bound is saturated in
the case that the channel is resource seizable (Definition 2).
I then established single-letter formulas for the entanglement
cost of erasure, dephasing, three-dimensional Werner-Holevo
channels, and epolarizing channels (complements of depolar-
izing channels), by leveraging existing results about the entan-
glement cost of their Choi states. I finally considered single-
mode bosonic Gaussian channels, establishing bounds on the
entanglement cost of the thermal, amplifier, and additive-noise
channels, while giving simple formulas for the entanglement
cost of pure-loss and pure-amplifier channels. By relating to

prior work on the distillable entanglement of these channels,
it became clear that the resource theory of entanglement for
quantum channels is irreversible.

Going forward from here, there are many directions to
pursue. The discrimination protocols considered in Sec. II B
do not impose any realistic energy constraint on the states that
can be used in discriminating the actual n uses of the channel
from the simulation. We could certainly do so by imposing
that the average energy of all the states input to the actual
channel or its simulation should be less than a threshold,
and the result is to demand only that the energy-constrained
strategy norm (defined naturally as an extension of both the
strategy norm [26,27,33] and the energy-constrained diamond
norm [76,77]) is less than ε ∈ (0, 1). To be specific, let HA

be a (positive semidefinite) Hamiltonian acting on the input
of the channel NA→B and let E ∈ [0,∞) be an energy con-
straint. Then, demanding that the supremum in (18) is taken
over all strategies such that

1

n

n∑
i=1

Tr
{
HAρAi

}
,

1

n

n∑
i=1

Tr
{
HAτAi

}
� E, (185)

the resulting quantity is an energy-constrained strategy norm.
With an energy constraint in place, one would expect that less
entanglement is required to simulate the channel than if there
is no constraint at all, and the resulting entanglement cost
would depend on the given energy constraint. For example,
Proposition 4 leads to a lower bound on entanglement cost
for an energy-constrained sequential simulation, but it remains
open to determine if there is a matching upper bound.

Similar to how measures like squashed entanglement [12]
and relative entropy of entanglement [114] allow for obtaining
converse bounds or fundamental limitations on the distillation
rates of quantum states or channels, simply by making a clever
choice of a squashing channel or separable state, it would be
useful to have a measure like this for bounding entanglement
cost from below. That is, it would be desirable for the measure
to involve a supremum over a given set of test states or
channels rather than an infimum as is the case for squashed
entanglement and relative entropy of entanglement. For exam-
ple, it would be useful to be able to bound the entanglement
cost of thermal, amplifier, and additive-noise channels from
below, in order to determine how tight are the upper bounds
in (127)–(129). Progress on this front is available in [8], but
more results in this area would be beneficial.

One of the main tools used in the analysis of the (parallel)
entanglement cost of channels from [19] is a de Finetti–style
approach, consisting of the postselection technique [115].
In particular, the problem of asymptotic (parallel) channel
simulation was reduced to simulating the channel on a single
state, called the universal de Finetti state. For the asymptotic
theory of (sequential) entanglement cost of channels, could
there be a single universal adaptive channel discrimination
protocol to consider, such that simulating the channel well for
such a protocol would imply that it has been simulated well
for all protocols?

For the task of entanglement cost, one could modify the set
of free channels to be either those that completely preserve
the positivity of partial transpose [10,11] or are k extendible
in the sense of [116]. Could we find simpler lower bounds on
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entanglement cost of channels in this way? The semidefinite
programming quantity from [8] could be helpful here also.
Most recently, the exact entanglement cost has been solved in
[117] for the case of exact channel simulation, with the set of
free channels taken to be those that completely preserve the
positivity of partial transpose.

Another way to think about quantum channel simulation
is to allow the entanglement to be free but count the cost
of classical communication. This was the approach taken
for the reverse Shannon theorem [118,119], and these works
also considered only parallel channel simulation. How are
the results there affected if the goal is sequential channel
simulation instead? Is the previous answer from [118,119], the
mutual information of the channel, robust under this change?
How do prior results on simulation of quantum measurements
[120–122] hold up under this change? A comprehensive sum-
mary of results on parallel simulation of quantum channels,
including the quantum reverse Shannon theorem, measure-
ment simulation, and entanglement cost, is available in [123].

Finally, is there an example of a channel for which its
sequential entanglement cost is strictly greater than its parallel
entanglement cost? The examples discussed here are those for
which either there are equalities or no conclusion could be
drawn. Evidence from quantum channel discrimination [29]
and related evidence from [124] suggests the possibility. One
concrete example to examine in this context is the channel
presented in Ref. [43], Appendix A, given that it is not
implementable from its image, as discussed there.
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APPENDIX A: RELATION BETWEEN
RESOURCE-SEIZABLE CHANNELS AND THOSE

THAT ARE IMPLEMENTABLE FROM THEIR IMAGE

Definition 2 introduced the notion of a resource-seizable
channel and Sec. VI discussed how this notion can play a
role in an arbitrary resource theory. In Ref. [43], Appendix A,
a channel NA→B was defined to be implementable from its
image if there exists a state σA′A and an LOCC channel
LAA′B ′→B such that the following equality holds for all input
states ρA:

NA→B (ρA) = LAA′B ′→B (ρA ⊗ NA′′→B ′ (σA′A′′ )), (A1)

where system A′′ is isomorphic to system A and system B ′
is isomorphic to system B. An example of a channel that is
not implementable from its image was discussed at length in
Ref. [43], Appendix A.

Here, I prove that a channel is resource seizable in the
resource theory of entanglement if and only if it is im-
plementable from its image. To see this, suppose that a
channel is implementable from its image. Then, given the

above structure in (A1), it is clear that NA→B is teleportation
simulable with associated resource state given by ωA′B ′ =
NA′′→B ′ (σA′A′′ ). Thus one can trivially seize the resource state
ωA′B ′ by sending in the input state σA′A′′ , which is clearly
separable between Alice and Bob, given that Bob’s “system”
here is trivial.

Now suppose that a teleportation-simulable channel is
resource seizable, as in Definition 2. This means that

NA→B (ρA) = MAA′B ′→B (ρA ⊗ ωA′B ′ ), (A2)

where ωA′B ′ is the resource state and MAA′B ′→B is an LOCC
channel. Furthermore, since it is resource seizable, this means
that there exists a separable state ρAMABM

and a postprocessing
LOCC channel DAMBBM→A′B ′ such that

DAMBBM→A′B ′ (NA→B (ρAMABM
)) = ωA′B ′ . (A3)

To see that the channel is implementable from its image,
consider that ρAMABM

has a decomposition as follows, given
that it is separable:∑

x

pX(x)ψx
AMA ⊗ φx

BM
, (A4)

for pX a probability distribution and {ψx
AMA}x and {φx

BM
}x sets

of pure states. Now define the input state σAMAXA
as

σAMAXA
≡
∑

x

pX(x)ψx
AMA ⊗ |x〉〈x|XA

, (A5)

and note that this is the state we can use for implementing the
channel’s image. Define the LOCC measure-prepare channel
PXA→BM

as

PXA→BM
(·) ≡

∑
x

〈x|XA
(·)|x〉XA

φx
BM

, (A6)

which is understood to be implemented via LOCC by measur-
ing Alice’s system XA and communicating the outcome x to
Bob, who then prepares the state φx

BM
based on the outcome.

We find that(
DAMBBM→A′B ′ ◦ PXA→BM

◦ NA→B

)(
σAMAXA

) = ωA′B ′ .

(A7)

We finally conclude that

NA→B (ρA) = MAA′B ′→B (ρA ⊗ ωA′B ′ ) (A8)

= LAAMXAB̄→B

(
ρA ⊗ NĀ→B̄

(
σAMĀXA

))
, (A9)

where

LAAMXAB̄→B ≡ MAA′B ′→B ◦ DAMB̄BM→A′B ′ ◦ PXA→BM
,

(A10)

so that the channel is implementable from its image by in-
putting the state σAMAXA

and postprocessing with the LOCC
channel MAA′B ′→B ◦ DAMBBM→A′B ′ ◦ PXA→BM

.
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APPENDIX B: RELATION BETWEEN CHOI STATE OF
A COMPLEMENTARY CHANNEL AND MAXIMALLY

MIXED STATE SENT THROUGH ISOMETRIC EXTENSION

The purpose of this appendix is to prove the equality in
(98). Consider a d-dimensional depolarizing channel

ρ → (1 − p)ρ + p
I

d
. (B1)

As noted in Ref. [65], Eq. (3.2), a Kraus representation for this
channel is as follows:

{
√

1 − pI, {
√

p/d|i〉〈j |}i,j }. (B2)

This is because

[
√

1 − pI ]ρ[
√

1 − pI ] +
∑
i,j

[
√

p/d|i〉〈j |]ρ[
√

p/d|j 〉〈i|]

= (1 − p)ρ + p

d

∑
i

|i〉〈i|
∑

j

〈j |ρ|j 〉 (B3)

= (1 − p)ρ + p Tr{ρ} I

d
. (B4)

Now consider a generic channel NA→B with Kraus opera-
tors {Ni}i so that an isometric extension is given by

∑
i N

i ⊗
|i〉E . Send the maximally mixed state π = I/d through the
isometric extension

∑
i N

i ⊗ |i〉E . This leads to the state

1

d

∑
i,j

NiNj† ⊗ |i〉〈j |E. (B5)

Furthermore, a complementary channel of the original chan-
nel, resulting from the isometric extension

∑
i N

i ⊗ |i〉E , is
then

ρ → N c
A→E (ρ) =

∑
i,j

Tr{NiρNj†}|i〉〈j |E. (B6)

The Choi state for this complementary channel is given by

N c
A→E (�RA) = 1

d

∑
k,l,i,j

|k〉〈l|R ⊗ Tr{Ni |k〉〈l|ANj†}|i〉〈j |E

= 1

d

∑
k,l,i,j

|k〉〈l|R ⊗ 〈l|ANj†Ni |k〉|i〉〈j |E

= 1

d

∑
k,l,i,j

|k〉〈l|ANj†Ni |k〉〈l|R ⊗ |i〉〈j |E

= 1

d

∑
i,j

T (Nj†Ni ) ⊗ |i〉〈j |E, (B7)

where T (Nj†Ni ) denotes the transpose of Nj†Ni . If it holds
that NiNj† = T (Nj†Ni ), then we conclude that the state
resulting from sending in the maximally mixed state to the
isometric extension of the channel is the same as the Choi
state of the complementary channel. This is the case for the
depolarizing channel with the Kraus operators in (B2). Since
all complementary channels and isometric extensions of a
channel are related by an isometry acting on the environment
system, we arrive at the same conclusion for any isometric
extension and the corresponding complementary channel to
which it leads.

APPENDIX C: MATLAB CODE FOR COMPUTING
RAINS RELATIVE ENTROPY

This Appendix provides a brief listing of Matlab code that
can be used to compute the Rains relative entropy of a bipartite
state ρAB [11,70]. The code requires the QuantInf package
in order to generate a random state [125], the CVX package
for semidefinite programming optimization [126], and the
CVXQuad package [127] for relative entropy optimization
[71,72].

Listing 1. Matlab code for calculating the Rains relative entropy
of a random bipartite state ρAB .

na = 2; nb = 2;
rho = randRho (na*nb); % Generate a random bipartite state rho

cvx_begin sdp
variable tau (na*nb,na*nb) hermitian;
minimize (quantum_rel_entr (rho, tau)/ log(2));
tau >= 0;
norm_nuc (Tx(tau, 2, [ na nb ])) <= 1;

cvx_end

rains_rel_ent = cvx_optval;
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