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Self-testing of Pauli observables for device-independent entanglement certification
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We present self-testing protocols to certify the presence of tensor products of Pauli measurements on
maximally entangled states of local dimension 2n for n ∈ N. This provides self-tests of sets of informationally
complete measurements in arbitrarily high dimension. We then show that this can be used for the device-
independent certification of the entanglement of all bipartite entangled states by exploiting a connection to
measurement-device-independent entanglement witnesses and quantum networks. This work extends a more
compact parallel work on the same subject [Bowles et al., Phys. Rev. Lett. 121, 180503 (2018)] and provides all
the required technical proofs.
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I. INTRODUCTION

Unjustified or mistaken assumptions about the physics of a
quantum information protocol can result in errors that jeop-
ardize the protocol’s validity [1,2]. The device-independent
approach attempts to overcome this problem by keeping as-
sumptions to a minimum; devices in the protocol are treated
as black boxes, and the only information available is their
input-output statistics. Interestingly, due to the existence of
quantum nonlocality [3,4], protocols can still be made to
function in this scenario and many quantum information tasks
now have device-independent formulations, including proto-
cols for quantum random number certification [5–7], quantum
key distribution [8–10], and the characterisation of quantum
properties [11,12].

A common device-independent task is that of entanglement
certification. Here one aims to certify the presence of entan-
glement in a quantum state from the correlations between
local measurement outcomes, and is typically achieved via
the violation of a Bell inequality. The central limitation here
is that there exist entangled mixed states that admit a so-
called local hidden variable model [13–15] and thus do not
violate any Bell inequality. Device-independent entanglement
certification of such states is therefore impossible via the
standard approach. A partial solution to this problem recently
came in the form of measurement-device-independent entan-
glement witnesses (MDIEWs) [16–18]. Here one can achieve
entanglement certification of all entangled states by replacing
the classical inputs in a Bell test by a set of trusted quantum
input states. This approach, however, is only partially device
independent since it requires perfect knowledge of the input
states.

A closely related task to entanglement certification is that
of self-testing [19]. In a self-testing protocol, one aims to cer-
tify, or self-test, the presence of a target entangled state and/or
target set of measurements via the observation of nonlocal
correlations. Essentially, this requires finding a Bell inequality
whose maximum violation is achieved uniquely by the target

state and measurements of interest. A significant literature on
self-testing exists [20–26], and it is known for example that
all bipartite pure entangled states can be self-tested [27]. The
self-testing of quantum measurements is however much less
explored, although some results are known [28,29].

In this work (see also [30] for a more compact version)
we combine results in the field of self-testing with techniques
from MDIEWs to construct device-independent protocols that
are capable of certifying the entanglement of all bipartite
entangled states. To do this, we move to a scenario involving
a network of quantum states that allows us to overcome the
limitations of the standard approach. Intuitively, our proto-
cols can be understood as a device-independent extension
of MDIEWs, in which the input quantum states are certified
device independently via a self-testing protocol. The technical
preliminaries to this result include new results concerning the
parallel self-testing of Pauli observables and may be of inde-
pendent interest. In particular, we prove self-testing of tensor
products of Pauli observables on maximally entangled states
of local dimension 2n, n ∈ N, treating a well-known problem
that arises when dealing with complex-valued measurements.
We note that an analogous result to this was independently
proven in Ref. [31] in the context of delegated quantum
computation.

The paper is organized as follows. The first two sections
focus on the technical ground work in self-testing that are
needed for our entanglement certification protocols. In Sec. II
we introduce self-testing and revisit the problem that arises
with complex-valued measurements. In Sec. II A we focus
on the simplest case of two qubits and prove self-testing of
the three Pauli observables, before tackling the more involved
case of general dimension in Secs. II B and II C and discussing
noise-robust versions of these results in Sec. II D. We then
move to our protocols for entanglement certification, outlining
our network scenario in Sec. III, presenting our entanglement
certification protocols in Secs. III A–III D, and finally dis-
cussing our results.
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II. SELF-TESTING

Suppose two parties, Charlie and Alice,1 share the quantum
state |ψ〉 and perform local measurements labeled by z and x,
obtaining outcomes c and a. From the Born rule, the observed
probabilities take the form

p(ca|zx) = tr[|ψ〉〈ψ |Mc|z ⊗ Ma|x], (1)

where Mc|z, Ma|x denote the local measurement operators,
and where we have purified states and measurements so
that our state is a pure state and our measurements pro-
jective. In principle, many different combinations of states
and measurements could give rise to the same correlations
p(ca|zx). To self-test a target quantum state |ψ ′〉, one must
find correlations which are produced uniquely by |ψ ′〉 up to a
certain equivalence class, hence certifying the state |ψ ′〉 (up to
equivalence) from knowledge of the correlations alone. In the
first works on self-testing, this equivalence class is captured
by the notion of a local isometry, which takes into account the
possibility of unobservable local unitary operations applied to
the state and measurements, possible embedding in a Hilbert
space of larger dimension and/or the existence of additional
degrees of freedom. Note that via the Schmidt decomposition,
the freedom of local unitary operations implies that one may
assume that the target state |ψ ′〉 can be expressed with real
numbers only without loss of generality. The precise definition
of self-testing of quantum states is then as follows.

Definition II.1. We say that the correlations p∗(ca|zx)
self-test the state |ψ ′〉 ∈ HC′ ⊗ HA′ if for all states and
all measurement operators satisfying (1) for p(ca|zx) =
p∗(ca|zx) there exist Hilbert spaces HC, HA such that |ψ〉 ∈
HC ⊗ HA, a local auxiliary state |00〉 ∈ HC′ ⊗ HA′ and a
local unitary operator U such that

U [|ψ〉 ⊗ |00〉] = |ξ 〉 ⊗ |ψ ′〉, (2)

where |ξ 〉 ∈ HC ⊗ HA (usually called a junk state) is any state
representing possible additional degrees of freedom.

Intuitively, self-testing means proving the existence of
local channels (given by the local unitaries and local auxiliary
states) which extract the target state |ψ ′〉 from the physical
state |ψ〉 into the HC′ ⊗ HA′ space.

One may further be interested in certifying that the mea-
surement operators are equivalent to some target measure-
ments {M′

c|z}, {M′
a|x} acting on |ψ ′〉. To begin with, let us as-

sume that the target measurements can be expressed using real
numbers alone, i.e., (M′

c|z)∗ = M′
c|z for all c, z and (M′

a|x )∗ =
M′

a|x for all a, x. We then have the following definition.

Definition II.2. We say that the correlations p∗(ca|zx)
self-test the state |ψ ′〉 and real-valued measurements {M′

c|z},
{M′

a|x} if p∗(ca|zx) self-tests the state |ψ ′〉 according to
definition II.1 and furthermore

U [Mc|z ⊗ Ma|x |ψ〉 ⊗ |00〉] = |ξ 〉 ⊗ (M′
c|z ⊗ M′

a|x |ψ ′〉)

for each c, a, z, x.

1We avoid the usual convention of Alice and Bob for readability
with later sections of this paper where our choice will become more
natural.

In other words, applying the measurements Mc|z, Ma|x to
the state |ψ〉 is equivalent to applying M′

c|z, M′
a|x to |ψ ′〉 under

the action of the local unitaries.
For measurements that cannot be expressed using real

numbers alone an additional complication arises, as noted in
the early works on self-testing [32] (see also [28,29]). This is
due to the fact that quantum correlations are invariant under
transposition (or equivalently, complex conjugation) of the
state and measurement operators:

tr[|ψ ′〉〈ψ ′|M′
c|z ⊗ M′

a|x] = tr
[|ψ ′〉〈ψ ′|M′T

c|z ⊗ M′T
a|x

]
(3)

(where MT denotes the transposition operation and we assume
the state |ψ ′〉 to be real as above). Note that the transpo-
sition operation maps valid measurement operators to valid
measurement operators, however is not unitary. This means
that the measurements {M′

c|z}, {M′
a|x} cannot be self-tested

using definition II.2. That is, there always exists an alternative
realization using the transposed measurements which cannot
be brought to the target measurements using local isometries
alone. For such measurements, the most we can hope to certify
is that the measurement operators correspond to the target set
up to the additional freedom of local transpositions on both
subsystems. To deal with this possibility and following the
method of [28], we introduce additional local Hilbert spaces
HC′′ and HA′′ which act as a control space for possible trans-
position of the measurement operators. Our precise definition
of self-testing is as follows.

Definition II.3. We say that the correlations p∗(ca|zx)
self-test the state |ψ ′〉 ∈ HC′ ⊗ HA′ and (complex-valued)
measurements {M′

c|z}, {M′
a|x} if for all states and all measure-

ment operators satisfying (1) for p(ca|zx) = p∗(ca|zx) there
exist Hilbert spaces HC, HA such that |ψ〉 ∈ HC ⊗ HA, a
local auxiliary state |00〉 ∈ [HC′′ ⊗ HC′] ⊗ [HA′′ ⊗ HA′] and
a local unitary operator U such that

U [Mc|z ⊗ Ma|x |ψ〉 ⊗ |00〉]
= M̃c|z ⊗ M̃a|c[|ξ0〉 ⊗ |00〉 + |ξ1〉 ⊗ |11〉] ⊗ |ψ ′〉, (4)

where |ξj 〉 ∈ HC ⊗ HA are some unknown subnormalized
junk states such that 〈ξ0|ξ0〉 + 〈ξ1|ξ1〉 = 1 and the M̃ operators
are related to the target measurements by

M̃c|z = 1C ⊗ [M0 ⊗ M′
c|z + M1 ⊗ (M′

c|z)T ], (5)

M̃a|x = 1A ⊗ [M0 ⊗ M′
a|x + M1 ⊗ (M′

a|x )T ], (6)

with M0 + M1 = 1C′′
and 〈0|M0|0〉 = 〈1|M1|1〉 = 1.

The above measurements can be understood as “controlled
transposition” measurements: one first measures the double
primed auxiliary spaces with the measurement {M0, M1};
conditioned on this outcome, one then measures the target
measurement or its transposition on the target state |ψ ′〉.
Due to the form of the measurement operators and state
|ξ0〉 ⊗ |00〉 + |ξ1〉 ⊗ |11〉, one sees that this transposition is
correlated between Charlie and Alice, as implied from (3).
The probability that this transposition is applied depends on
the norm of the vectors |ξj 〉, however it is generally unknown
since the self-testing data does not allow one to infer the form
of these states. Note that one may only wish to self-test a set of
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measurements for one of the parties, say Charlie (as will be the
case for us); here one would simply replace the measurement
operators for Alice by the identity operator in the above.

The central task in self-testing is thus to construct the local
unitary U in order to prove statements following the above
definitions. In order to do this, one typically considers linear
combinations of the probabilities p(ca|zx) (corresponding to
some Bell inequality) of the form

I[p(ca|zx)] =
∑

c,a,z,x

βzx
ca p(ca|zx), (7)

for which the maximal value in quantum theory I = Imax

occurs using the target state and measurements. The ob-
servation I = Imax then implies relations between the state
and measurements performed in the experiment via (7), and
one can prove the existence of the local unitary from the
measurement operators themselves. A large number of self-
testing results are known. For example, if (7) corresponds to
the CHSH Bell inequality, maximum violation implies that
one can self-test the presence of a maximally entangled state
of dimension two |�+〉 = 1√

2
[|00〉 + |11〉], and measurements

of σx, σz for Charlie and [σx ± σz]/
√

2 for Alice [19,23,33].
More generally, one can self-test any pure bipartite entangled
two-qubit state |ψ〉 = cos θ |00〉 + sin θ |11〉 when (7) corre-
sponds to the tilted CHSH Bell inequality [21]. Self-testing of
higher dimensional bipartite pure states is given in Refs. [24–
27]. Furthermore, a large class of multipartite states can be
self-tested by exploiting the methods applied to self-testing of
bipartite states [22].

The majority of self-tests mentioned above are useful for
the certification of measurements. However, most of these re-
sults apply to the self-testing of real-valued measurements due
to the added complication definition II.3. The simplest set of
measurements which cannot be expressed using real numbers
alone is given by the three Pauli observables σz, σx, σy. In
Sec. II A we prove self-testing statements for these measure-
ments, inspired by the approach of [28] where similar results
were obtained. We then extend this to a parallel self-test in
Secs. II B and II C in order to prove self-testing statements for
n-fold tensor products of the Pauli measurements, which form
an informationally complete set in dimension 2n.

A. Self-testing of Pauli measurements

We begin by proving a self-testing statement for the max-
imally entangled state of two qubits |�+〉 = 1√

2
[|00〉 + |11〉]

and the three Pauli observables for Charlie. Since there does
not exist a two-qubit basis in which these observables can
be written using real numbers only, our self-testing statement
will be of the form of definition II.3. We note that this is
not the first proof of such a result; similar results have been
obtained in previous works by generalizing the Mayers-Yao
self-test [28], by studying the properties of the “elegant”
Bell inequality [34,35] and combinations of the CHSH Bell
inequality [34] and in a more general approach to the problem
[29] focused on commutation relations.

Before proceeding we first clarify some notation. Super-
script of an operator denotes the Hilbert space on or in which
the operator acts or lives, e.g., XC denotes a linear operator

on the space HC and |ψ〉CA ∈ HC ⊗ HA. Unless explicitly
written, we omit tensor products acting on the remaining
Hilbert space, e.g., XC|ψ〉CA should be understood as XC ⊗
1A|ψ〉CA. This convention then follows for the product of
operators, e.g., XCEA|ψ〉CA should be understood as XC ⊗
EA|ψ〉CA.

The scenario we consider for the self-testing is as fol-
lows. Charlie and Alice share a bipartite quantum state |ψ〉 ∈
HC ⊗ HA. Charlie has a choice of three measurements z =
1, 2, 3, with outcomes c = ±1 denoted by the observables
XC, YC, and ZC. Alice has a choice of six ±1 valued mea-
surements x = 1, . . . , 6, a = ±1, denoted by the observables
DA

z,x, EA
z,x, DA

x,y, EA
x,y, DA

z,y, EA
z,y. Note that each of these ob-

servables is Hermitian and unitary. We then consider the
following Bell operator (introduced in Ref. [34]), which we
call the triple CHSH Bell operator

B = ZC
(
DA

z,x + EA
z,x

) + XC
(
DA

z,x − EA
z,x

)
+ ZC

(
DA

z,y + EA
z,y

) − YC
(
DA

z,y − EA
z,y

)
+ XC

(
DA

x,y + EA
x,y

) − YC
(
DA

x,y − EA
x,y

)
. (8)

This Bell operator consists of a sum of three CHSH Bell
operators; each line itself is a CHSH Bell operator and each
X, Y, and Z observable appears in two of the lines. The
correlations that we use for self-testing correspond to those
which maximize 〈ψ |B|ψ〉, which has maximum value 6

√
2

(since each CHSH operator is upper bounded by 2
√

2). This
can be achieved by taking the following states and observables

|ψ〉 = |�+〉 = 1√
2

[|00〉 + |11〉],

ZC = σz, XC = σx, YC = σy, (9)

DA
i,j = σi + σj√

2
, EA

i,j = σi − σj√
2

,

for (i, j ) = (z,x), (z,y), (x,y). The basic intuition of the self-
testing is that since maximal violation of a single CHSH in-
equality requires anticommuting qubit observables on a max-
imally entangled state [36], the maximum value of (8) should
imply three mutually anticommuting observables on the maxi-
mally entangled state, given by the three Pauli observables (or
their transpositions). Indeed, we will see that this is the case.

One way to achieve this is to build a sum-of-squares (SOS)
decomposition of the shifted Bell operator 6

√
21 − B of the

form
6
√

21 − B =
∑

λ

P
†
λPλ. (10)

Such a decomposition is given by

2(6
√

21 − B)

=
[
ZC − 1√

2

(
DA

z,x + EA
z,x

)]2

+
[
XC − 1√

2

(
DA

z,x − EA
z,x

)]2

+
[
ZC − 1√

2

(
DA

z,y + EA
z,y

)]2

+
[
YC + 1√

2

(
DA

z,y − EA
z,y

)]2

+
[
XC − 1√

2

(
DA

x,y+EA
x,y

)]2

+
[
YC + 1√

2

(
DA

x,y−EA
x,y

)]2

.

(11)
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|+ C

|+ C

|+ A

|+ A

|ψ CA
ZC

ẐA

H

H

XC

X̂A

iYCXC

iŶAX̂A

H

H

|ξ |Φ+

FIG. 1. Self-testing circuit used for the proof of Lemma 1. The
unitaries ẐA, X̂A, ŶA can be found in Appendix A.

Here the Pλ’s are Hermitian and so P
†
λPλ = P 2

λ . At maximal
value one has 〈ψ |B|ψ〉 = 6

√
2 and so∑

λ

〈ψ |P †
λPλ|ψ〉 = 0. (12)

Since each term in the above is greater or equal to zero
we have Pλ|ψ〉 = 0 for all λ. Applying this to the SOS
decomposition (11) gives

ZC|ψ〉 = 1√
2

[
DA

z,x + EA
z,x

]|ψ〉 = 1√
2

[
DA

z,y + EA
z,y

]|ψ〉, (13)

XC|ψ〉 = 1√
2

[
DA

z,x − EA
z,x

]|ψ〉 = 1√
2

[
DA

x,y + EA
x,y

]|ψ〉, (14)

YC|ψ〉 = 1√
2

[
EA

z,y − DA
z,y

]|ψ〉 = 1√
2

[
EA

x,y − DA
x,y

]|ψ〉. (15)

Since for any two unitary observables G1 and G2, the com-
posite observables G1+G2√

2
and G1−G2√

2
anticommute by con-

struction, from the above three equations it follows that on
the support of state |ψ〉 observables ZC, XC, and YC mutually
anticommute:

{ZC, XC}|ψ〉 = {ZC, YC}|ψ〉 = {XC, YC}|ψ〉 = 0. (16)

The conditions (13)–(15) and (16) allow us to construct a
local unitary which will give us our desired self-testing. This
unitary can be understood via the circuit of Fig. 1, and is based
on the swap gate introduced in Ref. [23] and is the same as
the circuit found in Ref. [28]. The unitaries ẐA, X̂A, ŶA are
regularized versions of the operators

ZA = DA
z,x + EA

z,x√
2

, XA = DA
z,x − EA

z,x√
2

, YA = EA
z,y − DA

z,y√
2

.

For example, ẐA is obtained by setting all zero eigenvalues of
ZA to one and then defining ẐA = ZA|ZA|−1. Using standard
techniques (see Appendix A), these can be shown to act in
the same way as the nonregularized versions. With this we are
ready to present the first of our self-testing lemmas.

Lemma 1. Let the state |ψ〉 ∈ HC ⊗ HA and ±1 outcome
observables XC, YC, ZC, DA

z,x, EA
z,x, DA

x,y, EA
x,y, DA

z,y, EA
z,y satisfy

〈ψ |B|ψ〉 = 6
√

2. (17)

Then there exist local auxiliary states |00〉 ∈ [HC′′ ⊗ HC′] ⊗
[HA′′ ⊗ HA′ ] and a local unitary U such that

U [|ψ〉 ⊗ |00〉] = |ξ 〉 ⊗ |�+〉C′A′
, (18)

U [XC|ψ〉 ⊗ |00〉] = |ξ 〉 ⊗ σ C′
x |�+〉C′A′

, (19)

U [ZC|ψ〉 ⊗ |00〉] = |ξ 〉 ⊗ σ C′
z |�+〉C′A′

, (20)

U [YC|ψ〉 ⊗ |00〉] = σ C′′
z |ξ 〉 ⊗ σ C′

y |�+〉C′A′
, (21)

where |ξ 〉 takes the form

|ξ 〉 = |ξ0〉CA ⊗ |00〉C′′A′′ + |ξ1〉CA ⊗ |11〉C′′A′′
. (22)

Note that the complex observable σy has an additional
σz measurement on the C′′ space, as expected from defini-
tion II.3. Hence, the measurement Y can be understood as first
measuring σz on the state |ξ 〉, whose outcome decides whether
±σy is performed on the state |�+〉. The probability that the
observables {σx, σy, σz} are used rather than the transposed
measurements {σx,−σy, σz} is given by the probability to
obtain +1 for the σ C′′

z measurement. As mentioned in Sec. II,
this probability remains unknown since one does not know the
precise form of |ξ 〉 from the self-testing correlations alone.
The proof of Lemma 1 can be found in Appendix A.

B. Parallel self-testing of Pauli observables

The protocol described above can be extended to a parallel
self-test. Here our aim is to self-test the n-fold tensor product
of the maximally entangled state |�+〉⊗n (which itself is a
maximally entangled state of dimension 2n) and all com-
binations of n-fold tensor products of Pauli measurements
for Charlie, i.e., σi1 ⊗ σi2 ⊗ · · · ⊗ σin for ij = x, y, z. This is
achieved by an n-fold maximal parallel violation of the Bell
inequality used in Lemma 1. As a basis we use the techniques
of [37], where parallel self-testing of σx and σz observables
on the maximally entangled state was proven. Besides [37],
parallel self-testing of n-fold tensor products of maximally
entangled pairs of qubits has been presented in [24,38] and
in Ref. [25] for n = 2. This section can thus be seen as
an extension of these results to all three Pauli observables.
Although we use the term “self-testing” here, we will see
that simply performing the protocol of Lemma 1 in parallel
does not lead to a self-test according to definition II.3. In the
following subsection we correct this by adding additional Bell
state measurements between local subsystems.

The scenario we consider is as follows. Charlie and Alice
share the state |ψ〉 ∈ HC ⊗ HA. Charlie has a choice of 3n

measurements collected into the vector z = (z1, z2, . . . , zn)
with zi = 1, 2, 3, and each measurement has 2n possible out-
comes given by c = (c1, c2, . . . , cn) with ci = ±1. Similarly,
Alice has a choice of 6n measurements given by the vector
x = (x1, x2, . . . , xn) with xi = 1, 2, 3, 4, 5, 6, each with 2n

possible outputs given by a = (a1, a2, . . . , an) with ai = ±1.
Fixing a value of i we thus have three possible settings for
Charlie and six for Alice, corresponding to the self-test of the
previous section that we now perform in parallel. In order to
achieve this we will define an analogous Bell operator to (8)
for each value of i.
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To this end, we denote Charlie’s and Alice’s measurement
projectors by �C

c|z and �A
a|x, respectively. We then define the

following unitary observables for Charlie:

Oi|z =
∑

c|ci=+1

�C
c|z −

∑
c|ci=−1

�C
c|z. (23)

These operators can be understood as ±1 valued observables
that depend on the output ci only for a particular choice of
input z, and are thus analogous to one of the three Pauli mea-
surements (given by the value zi) acting on the ith subspace of
the maximally entangled state. Next we define the operators

ZC
i = 1

3n−1

∑
z|zi=1

Oi|z, (24)

XC
i = 1

3n−1

∑
z|zi=2

Oi|z, (25)

YC
i = 1

3n−1

∑
z|zi=3

Oi|z, (26)

that is, the average observables compatible with a particular
choice of zi .

Similarly for Alice we define the unitary observables

Pi|x =
∑

a|ai=+1

�A
a|x −

∑
a|ai=−1

�A
a|x (27)

and the six operators

DA
zx,i = 1

6n−1

∑
x|xi=1

Pi|x, EA
zx,i = 1

6n−1

∑
x|xi=2

Pi|x,

DA
zy,i = 1

6n−1

∑
x|xi=3

Pi|x, EA
zy,i = 1

6n−1

∑
x|xi=4

Pi|x, (28)

DA
xy,i = 1

6n−1

∑
x|xi=5

Pi|x, EA
xy,i = 1

6n−1

∑
x|xi=6

Pi|x.

We now consider Bell operators of the form

Bi = ZC
i

(
DA

zx,i + EA
zx,i

) + XC
i

(
DA

zx,i − EA
zx,i

)
+ ZC

i

(
DA

zy,i + EA
zy,i

) − YC
i

(
DA

zy,i − EA
zy,i

)
+ XC

i

(
DA

xy,i + EA
xy,i

) − YC
i

(
DA

xy,i − EA
xy,i

)
. (29)

This is simply the Bell inequality (8), for the inputs zi and
xi averaged over all compatible z and x. One can thus ob-
tain 〈ψ |Bi |ψ〉 = 6

√
2 for each i by taking n copies of the

maximally entangled state of dimension two and adopting the
previous measurement strategy (9) independently on each of
the copies. From the observation of maximal violation for
all i, a self-testing circuit (a parallel version of the circuit of
Lemma 1) can be constructed, see Fig. 4 in Appendix C. We
then have the following lemma.

Lemma 2. Let the state |ψ〉 ∈ HC ⊗ HA and operators ZC
i ,

XC
i , YC

i , DA
zx,i , EA

zx,i , DA
zy,i , EA

zy,i , DA
xy,i , EA

xy,i defined above
satisfy

〈ψ |Bi |ψ〉 = 6
√

2, (30)

for every i ∈ {1, . . . n}. Then there exists a local unitary U ,
local registers |00〉 ∈ ⊗n

i=1[HC′′
i
⊗ HC′

i
] ⊗ [HA′′

i
⊗ HA′

i
], and

a normalized state |ξ 〉 such that

U [|ψ〉 ⊗ |00〉] = |ξ 〉 ⊗ [⊗n
i=1|�+〉C′

iA
′
i
]
,

U
[
ZC

j |ψ〉 ⊗ |00〉] = |ξ 〉 ⊗ [
σ

C′
j

z ⊗n
i=1 |�+〉C′

iA
′
i
]
,

U
[
XC

j |ψ〉 ⊗ |00〉] = |ξ 〉 ⊗ [
σ

C′
j

x ⊗n
i=1 |�+〉C′

iA
′
i
]
,

U
[
YC

j |ψ〉 ⊗ |00〉] = σ
C′′

j

z |ξ 〉 ⊗ [
σ

C′
j

y ⊗n
i=1 |�+〉C′

iA
′
i
]
,

for every j ∈ {1, 2, . . . n}, where |ξ 〉 takes the form

|ξ 〉 =
∑

q̄

|ξq̄〉CA ⊗ |q̄q̄〉C′′A′′
(31)

and the sum is over all bit strings q̄ = (0, 1)n.

The proof of the above Lemma can be found in Ap-
pendix C. Note that since the self-tested measurements are
extremal then the above statement must hold not only for
the operators Zj , Xj , Yj but for each of the observables Oi|z
appearing in their definition, which implies that the input zi

indeed corresponds to the desired Pauli measurement on the

correct subspace. The measurement σ
C′′

j

z on the state |ξ 〉 again

plays the role of deciding whether the measurement σ
C′

j

y or

−σ
C′

j

y is performed on the maximally entangled state. How-
ever, note that due to the form of |ξ 〉, this is not guaranteed to
be correlated with the other measurements of σy on different
local subspaces. As a result, one cannot equate this freedom to
a local transposition on all of Charlie’s subsystems, as needed
from definition II.3. In the following section we show how
to overcome this problem by introducing additional measure-
ment for Alice.

C. Aligning reference frames

As mentioned, Lemma 2 suffers from one drawback,
namely that the y direction for each of Charlie’s local sub-
systems need not be aligned. For example, if we take the case
n = 2, Lemma 2 gives four possibilities for Charlie’s effective
measurements on the maximally entangled state given by
{σx,±σy, σz} ⊗ {σx,±σy, σz}. The probability that each of
these strategies is used is unknown and could, for example,
be 1

4 for each. In this case, when the first subsystem measures
σy, the second subsystem has equal probability to measure
either σy or −σy. This lack of alignment is an artifact from
performing the protocol of Lemma 1 in parallel without trying
to introduce any dependencies between the n individual self-
tests. In the following we show that one can further restrict the
the state |ξ 〉 to be of the form

|ξ 〉 = |ξ0〉 ⊗ |00 · · · 0〉C′′A′′ + |ξ1〉 ⊗ |11 · · · 1〉C′′A′′
(32)

by introducing additional Bell state measurements between
subsystems of Alice. Since |ξ 〉 now has only two terms,
the flipping of the σy measurements is always correlated;
either none of the measurements are flipped (each subsystem
measures σy) or all the measurements are flipped (each sub-
system measures −σy). We note that an analogous result was
independently obtained in Ref. [31] (see Lemma 8 therein)
using a similar approach.

To illustrate the basic idea let us again consider the case
n = 2, and assume we adopt the ideal measurement strategy
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FIG. 2. Graphical representation of the additional measurements
performed by Alice for x = ♦ and x = �. Boxes between subspaces
represent Bell state measurements.

[i.e., the strategy (9) in parallel]. We now add an additional
Bell state measurement for Alice which she performs on her
two halves of the maximally entangled states. If Alice receives
the outcome corresponding to the projector |�+〉〈�+|, via
entanglement swapping Charlie will hold the state |�+〉 in his
local subsystem (for the other outcomes he will hold a differ-
ent Bell state). This state has correlations 〈�+|σx ⊗ σx|�+〉 =
+1, 〈�+|σy ⊗ σy|�+〉 = −1, 〈�+|σz ⊗ σz|�+〉 = +1. Hence,
in order to reproduce these correlations, the direction of
Charlie’s two measurements of σy need to be correlated as
otherwise we would not have perfect anticorrelation for the
measurement σy ⊗ σy. In the following we formalize this
intuition to strengthen Lemma 2 so that |ξ 〉 is of the form (32).

The precise scenario we consider is the following. In
addition to the 6n measurements of Lemma 2 given by the
vector x, Alice has two extra measurements denoted by
x = ♦ and x = �. These measurements have respectively 4m

and 4m′
outcomes, where m = 	 n

2 
 and m′ = 	 n−1
2 
, which

are grouped into the vectors a = (a1, a2, . . . , am) and a =
(a1, a2, . . . , am′ ) with ai = 0, 1, 2, 3. We denote by �a,♦ and
�a,� the projectors corresponding to the outcomes of these
measurements and define the projectors for l = 1, . . . , n,

Sl,a∗ =
∑

a:al=a∗
�a|♦, Tl,a∗ =

∑
a:al=a∗

�a|�, (33)

that is, the projectors onto the the subspace corresponding to
al = a∗ for the two measurements.

To generate our self-testing correlations we use the same
strategy as Lemma 2 for the inputs x and z. The two new
measurements for Alice x = ♦,� correspond to Bell state
measurements between successive pairs of qubits of her sys-
tem, where the Bell state measurements for the input � are
shifted with respect to those for ♦ (see Fig. 2). Specifically,

�a,♦ =
	 n

2 
⊗
l=1

∣∣�ai

〉〈
�ai

∣∣A2l−1A2l
, (34)

�a,� =
	 n−1

2 
⊗
l=1

∣∣�ai

〉〈
�ai

∣∣A2lA2l+1
, (35)

where {|�0〉, |�1〉, |�2〉, |�3〉} = {|�+〉, |�−〉, |�+〉, |�−〉}.
With this choice, the correlations are given by Table I, which
follow from the correlations of the four Bell states. We are
now ready for our final self-testing lemma (see Appendix D).

TABLE I. Elements of the table give correlation 〈ψ |C ⊗ R|ψ〉
where C is the operator labeling the column and R the operator
labeling the row.

1 Z2l−1Z2l X2l−1X2l Y2l−1Y2l

Sl,0
1
4

1
4

1
4 − 1

4

Sl,1
1
4

1
4 − 1

4
1
4

Sl,2
1
4 − 1

4
1
4

1
4

Sl,3
1
4 − 1

4 − 1
4 − 1

4

1 Z2lZ2l+1 X2lX2l+1 Y2lY2l+1

Tl,0
1
4

1
4

1
4 − 1

4

Tl,1
1
4

1
4 − 1

4
1
4

Tl,2
1
4 − 1

4
1
4

1
4

Tl,3
1
4 − 1

4 − 1
4 − 1

4

Lemma 3. Let the state |ψ〉 ∈ HC ⊗ HA and ±1 outcome
observables XC, YC, ZC, DA

zx, EA
zx, DA

xy, EA
xy, DA

zy, EA
zy satisfy

the conditions of Lemma 2 so that |ξ 〉 has the form (31). Fur-
thermore, let projectors Sl,a∗ and Tl,a∗ satisfy the correlations
given in Table I for all l. Then |ξ 〉 has the form

|ξ 〉 = |ξ0〉 ⊗ |0 · · · 0〉 + |ξ1〉 ⊗ |1 · · · 1〉. (36)

Note that |ξ 〉 now has the form of definition II.3 as desired.

D. Noise robustness

It is important to study the noise robustness of Lemmas 1–3
as it is impossible to achieve perfect self-testing correlations
in practice. In the same way as related works [25,26,37,38],
Lemma 1 and Lemma 2 can be made noise robust. In Ap-
pendix B we show how precise robustness bounds can be es-
timated for Lemma 1. For instance, if we have a nonmaximal
value 〈ψ |B|ψ〉 = 6

√
2 − ε, Eq. (18) from Lemma 1 becomes

‖U (|ψ〉CA ⊗ |00〉) − |ξ 〉CC′′AA′′ ⊗ |�+〉C′A′ ‖ � c
√

ε,

where c = 55 + 36
√

2. Similar statements can be derived for
Eqs. (19)–(21). For robust statements of Lemma 2, we point
the reader to [37] where the same techniques can be applied
to our results to obtain polynomial robustness bounds; we do
not elaborate further here since such calculations are based on
well established methods and are not particularly enlighten-
ing. Concerning Lemma 3, we show that given a noise robust
Lemma 2, one can extend this to a robust version of Lemma 3
(see Appendix E). These robustness statements will become
relevant later in order to make the entanglement certification
protocols of Sec. III tolerant to experimental noise.

III. DEVICE-INDEPENDENT ENTANGLEMENT
CERTIFICATION

In this section we show how to make use of the preceding
self-testing results to construct device-independent entangle-
ment certification protocols for all bipartite entangled quan-
tum states. The precise scenario that we consider is a quantum
network featuring three bipartite states: 	AB shared between
Alice and Bob, and two auxiliary states 	CA0 and 	B0D shared
between Charlie and Alice, and Bob and Daisy, respectively.
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...... ... ...

FIG. 3. Device-independent scenario for our entanglement certification protocol. The correlations p(c, a, b, d|z, x, y, w) are checked for
(i) maximal violation of a Bell inequality in each of the marginal distributions p(c, a|z, x ), p(b, d|y,w) which via self-testing certifies that
the states 	CA0 , 	B0D are maximally entangled and that the measurements of Charlie and Daisy are Pauli measurements, and (ii) violation of
an additional inequality I[p(c, a, b, d|z, x = 
, y = 
, w)] where Alice and Bob perform the measurements x = 
, y = 
, which certifies the
entanglement of 	AB given (i) is satisfied.

Denoting the set of linear operators on Hilbert space H by
B(H) we have 	AB ∈ B(HA ⊗ HB), 	CA0 ∈ B(HC ⊗ HA0 ),
and 	B0D ∈ B(HB0 ⊗ HD). We are interested in certifying the
entanglement of the state 	AB when placed in a line network
(see Fig. 3) featuring the auxiliary states 	CA0 and 	B0D. In
such a network, the correlations {p(c, a, b, d|z, x, y,w)} are
given by

p(c, a, b, d|z, x, y,w)

= tr
[
MC

c|z ⊗ MA0A
a|x ⊗ MBB0

b|y ⊗ MD
d|w 	CA0 ⊗ 	AB ⊗ 	B0D

]
,

(37)

where the Mi|j are the local measurement operators for each
party. In the device-independent scenario, one only has access
to the observed correlations p(c, a, b, d|z, x, y,w). Hence, a
device-independent certification of the entanglement of 	AB

is possible only if the observed correlations cannot be repro-
duced by (37) for any separable 	AB. That is, one must show

p(c, a, b, d|z, x, y,w)

�= tr
[
M′C

c|z ⊗ M′A0A
a|x ⊗ M′BB0

b|y ⊗ M′D
d|w 	′CA0 ⊗ 	AB

SEP ⊗ 	′B0D
]

(38)

for any choice of separable 	AB
SEP, and any local measurement

operators M′
i|j and auxiliary states 	′CA0 and 	′B0D. Note that

the auxiliary states may be entangled and that since we impose
no constraints on the dimension of the auxiliary systems in
Eq. (38), we may purify them and take all measurements to be
projective without loss of generality.

As we work in the device-independent scenario, all devices
are treated as black boxes that process classical information.
The precise assumptions we then make about the experiment
are as follows.

(1) States and measurements are described by quantum
mechanics.

(2) The rounds of the experiment are independent and
identically distributed (i.i.d.).

(3) The network of Fig. 3 correctly describes the experi-
mental setup.

The first two of these assumptions are standard in device-
independent studies (ideally one would like to drop the second
assumption, see [11,39] for some recent progress). The last
assumption is required so that we may write our probabilities
in the form (37). Physically this assumption means that one
is able to prepare the three states independently and that they
are trusted to interact in the way described by the network of
Fig. 3 (for example the state 	CA0 should only interact with
Charlie and Alice and not Bob or Daisy).

A. Certification protocols

We now present our entanglement certification protocols.
These can be seen as a device-independent extension of
the measurement-device-independent entanglement witnesses
(MDIEWs) presented in previous works [16–18]. There, mea-
surement devices are treated as black boxes, however inputs
are given as a set of known informationally complete quantum
states (in contrast to using classical variables as inputs). Then,
an entanglement certification protocol can be built for every
entangled state starting from an entanglement witness for the
state. However, since this scheme requires a set of trusted
input quantum states it is only partially device independent. To
see how these protocols can be made fully device independent
(i.e., how to remove the trust on the input states) consider
that in the network of Fig. 3 the auxiliary states are given
by maximally entangled states and that the complete set
of projectors for Charlie’s (Daisy’s) measurements form an
informationally complete set. This can in fact be certified
device independently using the self-testing protocols of the
first part of the paper (see Lemmas 1 and 3). With this, the
states that Alice (Bob) receives in the Hilbert space HA0 (HB0 )
conditioned on the different inputs and outputs of Charlie
(Daisy) also form an informationally complete set. By inter-
preting these states as the inputs in a MDIEW protocol, one is
essentially in the MDIEW scenario and the same techniques
can be applied. Here one has to be a bit careful due to the
issue of transposition encountered in the self-testing sections,
which we deal with in Appendix F.

We now formalize this intuition and move to the main
result of this section.

Main result. The entanglement of all bipartite entangled
states can be certified device independently in the network of
Fig. 3.

In order to show this, we give an explicit family of en-
tanglement certification protocols. The protocols we consider
have the same structure for all states and are summarized as
follows:

Entanglement certification protocol

(i) Generation of correlations. The parties perform local
measurements on their subsystems to obtain the correlations
p(c, a, b, d|z, x, y,w).

(ii) The following is then verified:
Self-testing. The marginal distributions p(c, a|z, x) and

p(b, d|y,w) maximally violate a Bell inequality that certifies
that the auxiliary states each contain a maximally entangled
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state and that Charlie and Daisy each perform Pauli measure-
ments on their subsystems.

Entanglement certification. The correlations violate an ad-
ditional inequality I (p(c, a, b, d|z, x, y,w) � 0 that certifies
	AB is entangled.

For now, we have the unrealistic requirement that we have
a maximum violation of a Bell inequality in step (ii). This can
be weakened to allow for some noise on the statistics, which
we discuss in Sec. III D. We now describe in detail the above
protocol, starting with the case of two-qubit states.

B. Entanglement certification of all two-qubit entangled states

We start by defining the scenario in which we work. Charlie
and Daisy both have a choice of three measurements z,w =
1, 2, 3 and Alice and Bob both have a choice of seven inputs
x, y = 1, 2, 3, 4, 5, 6, 
. All outputs are ±1 valued.

(i) Generation of correlations. To generate the correla-
tions in step (i) of the protocol, the parties chose 	CA0 =
	B0D = |�+〉〈�+|. Measurements for inputs z = 1, 2, 3 and
x = 1, . . . , 6 for Charlie and Alice should be chosen so that
the conditions of Lemma 1 are satisfied, i.e., given by the qubit
observables

σz, σx, σy z = 1, 2, 3, (39)

σz ± σx√
2

,
σz ± σy√

2
,

σx ± σy√
2

x = 1, . . . , 6, (40)

acting on the HC and HA0 spaces, respectively. Measurements
for Daisy and Bob are defined analogously. Lastly, the mea-
surement operators for inputs x = 
, y = 
 are projections
onto the maximally entangled state:

MAA0
+|
 = MB0B

+|
 = |�+〉〈�+|. (41)

(ii) Self-testing—Our next step is to define the Bell inequal-
ity used in step (ii) of the protocol. Here we focus on Charlie
and Alice; the Bell inequality used by Daisy and Bob is the
same. The inequality we consider is constructed by combining
three CHSH Bell inequalities [36]. Define the expectation
value for inputs z, x as

Ez,x =
∑

c,a=±1

ca p(c, a|z, x). (42)

We then define the triple CHSH Bell inequality

J = E1,1 + E1,2 + E2,1 − E2,2

+ E1,3 + E1,4 − E3,3 + E3,4

+ E2,5 + E2,6 − E3,5 + E3,6. (43)

Note that each line in the above is a CHSH inequality, and
each of Charlie’s inputs appears in two of the lines, and
that at this stage the inputs x, y = 
 remain unused. Using
the states and measurements above one finds J = 6

√
2. Via

Lemma 1, this provides a self-test of the auxiliary states and
measurements of Charlie and Daisy defined in step (i), up to
local transposition.

Entanglement certification. Our next task is to construct the
inequality used in the final step of the protocol. The inequal-
ity is constructed from an entanglement witness W for the
state 	AB. We thus have tr[Wσ ] � 0 for all separable states
σ and tr[W	AB] < 0. Consider the projectors πc|z = 1

2 [1 +

c σz] with c = ±1 and z = 1, 2, 3, that is, projectors onto the
plus and minus eigenspaces of the Pauli operators. Since these
form an (overcomplete) basis of the set of Hermitian matrices,
any entanglement witness may be decomposed as

W =
∑
cdzw

ωzw
cd πc|z ⊗ πd|w. (44)

To define our inequality, we make use of the additional inputs
for both Alice and Bob x = 
 and y = 
. The inequality is
then given by

I =
∑
cdzw

ωzw
cd p(c,+,+, d|z, x = 
, y = 
,w) � 0 (45)

and is satisfied for all separable states but violated using 	AB.
We first show that one can achieve I < 0 for entangled

	AB. Using the states and measurements defined above one
has

p(c,+,+, d|z, x = 
, y = 
,w)

= tr[πc|z ⊗ |�+〉〈�+| ⊗ |�+〉〈�+|
⊗πd|w |�+〉〈�+| ⊗ 	AB ⊗ |�+〉〈�+|] (46)

= 1

4
tr

[|�+〉〈�+| ⊗ |�+〉〈�+| πT
c|z ⊗ 	AB ⊗ πT

d|w
]

(47)

= 1

16
tr[πc|z ⊗ πd|w 	AB], (48)

where we have used trA[|�+〉〈�+| πA
i|j ⊗ 1] = 1

2πT
i|j in the

third and fourth line. One thus has

I = 1

16

∑
czdw

ωzw
cd tr[πc|z ⊗ πd|w 	AB], (49)

I = 1

16
tr[W	AB] < 0, (50)

which follows from the fact that W is an entanglement witness
for the state.

We now consider the case in which 	AB is separable. In
general, if the self-testing part of the protocol is satisfied then
one can show that

I = tr[W �(	AB)], (51)

where � is a local, positive map on separable quantum states
(see Appendix F 1 for details). Hence �(	AB) is a separable
state and I � 0. A crucial observation in the proof of the
above is that although the measurements for Charlie and Daisy
are only certified via self-testing up to a possible transposition,
this uncertainty can be mapped to possible local transpositions
on the state 	AB. Since local transpositions map separable
states to separable states, this ensures that a false-positive
certification of entanglement does not occur.

C. Entanglement certification of high dimensional states

The previous protocol for two-qubit states can be applied
in parallel to construct entanglement certification protocols
for bipartite states of any dimension. In the following we
construct protocols for states of local dimension 2n where n =
2, 3, . . . . Since a state of local dimension d can be seen as a
particular case of a state of dimension 2n for some n � log2 d

this implies a protocol for any dimension.
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The scenario we consider is as follows. Charlie and Daisy
each have 3n inputs, given by the vectors z = (z1, . . . , zn)
and w = (w1, . . . , wn) with zi, wi = 1, 2, 3, each with 2n

outcomes given by c = (c1, . . . , cn) and d = (d1, dn) with
ci, di = ±1. Alice and Bob each have 6n inputs given by
the vectors x = (x1, . . . , xn), y = (y1, . . . , yn) with xi, yi =
1, . . . , 6, with outcomes a = (a1, . . . , an), b = (b1, . . . , bn)
with ai, bi = ±1. Furthermore, Alice and Bob each have two
additional inputs x = ♦,� and y = ♦,� with 4	 n

2 
 and 4	 n−1
2 


outputs, respectively (as in Lemma 3), and inputs x = 
 and
y = 
 with outputs a = ±1, b = ±1 [to be used in step (iii)
of the protocol].

(i) Generation of correlations. Since we will perform
the previous protocol in parallel, the Hilbert spaces of the
auxiliary systems are written as the tensor product of n

qubit spaces: HC = ⊗iHCi
, HA0 = ⊗iHA0i

(and similarly for
Daisy, Bob). The auxiliary states are then n-fold tensors of
maximally entangled states on each two-qubit subspace:

	CA0 = ⊗n
i=1|�+〉〈�+|CiA0i , 	B0D = ⊗n

i=1|�+〉〈�+|B0iDi .

Measurements are a parallel version of the measurements (39)
and (40), i.e., they are given by n-fold tensor products of
the measurements (39) and (40), acting on each maximally
entangled state. For example zi = 1, 2, 3 corresponds to a
measurement of σz, σx, σy on the ith subsystem of Charlie
with outcome ci . As before, the measurements M+|
 are
projections onto the maximally entangled state:

MAA0
+|
 = MB0B

+|
 = |�+〉〈�+|, (52)

where here |�+〉 = 1√
2n

∑
i |ii〉 ∈ HC ⊗ HA0 . Finally, the

measurements for the inputs x, y = ♦,� are chosen to be ten-
sor products of Bell state measurements between successive
pairs of qubits of the local subsystems of Alice and Bob, and
where the Bell state measurements for the input ♦ are shifted
with respect to those for � (see Fig. 2 and Sec. II C for more
details).

(ii) Self-testing. The Bell inequality is now a parallel ver-
sion of (43) (again we just describe the inequality for Charlie
and Alice). Define the average expectation value for the bits
ci , ai given zi = z, xi = x as

Ei
z,x = 1

3n−16n−1

∑
z|zi=z

x|xi=x

∑
c,a

ciai p(c, a|z, x). (53)

For each i, we now have the triple CHSH Bell inequality:

Ji = Ei
1,1 + Ei

1,2 + Ei
2,1 − Ei

2,2

+ Ei
1,3 + Ei

1,4 − Ei
3,3 + Ei

3,4

+ Ei
2,5 + Ei

2,6 − Ei
3,5 + Ei

3,6. (54)

For the entanglement certification protocol we require maxi-
mum violation of each of these inequalities, i.e.,

n∑
i=1

Ji = n6
√

2. (55)

We further require that the measurements x, y = ♦,� cor-
rectly reproduce the Bell state measurement correlations given
in Table I, which is achieved by our chosen measurement

strategy and detailed in Sec. II C. With these conditions met,
we may apply Lemma 3 and move on to the entanglement
certification of 	AB.

(iii) Entanglement certification. Similarly to (44), we may
decompose an entanglement witness for 	AB ∈ ⊗i[HAi

⊗
HBi

] using tensor products of Pauli projectors as an (over-
complete) basis:

W =
∑

c,d,z,w

ωzw
cd ⊗i

[
π

Ai

ci |zi
⊗ π

Bi

di |wi

]
. (56)

The inequality that is used to certify entanglement is then

I =
∑

c,d,z,w

ωzw
cd p(c,+,+, d|z, x = 
, y = 
, w) � 0, (57)

which for separable states gives

I = tr[W �(	AB)] � 0, (58)

where � is again a local positive map on separable states (see
Appendix F 2 for a full proof). Note here that simply using
two-qubit strategy in parallel (i.e., using Lemma 2) without
the additional Bell state measurements for inputs x, y = ♦,�
would lead to problems. This is because the measurements
for Charlie and Daisy would be certified only up to possible
flipping of any number of their n σy measurements. When
mapping this uncertainty to the state 	AB, this corresponds
to possible local transposition on part of a local subsystem
of 	AB, which may map separable states to unphysical (non-
positive) states. Hence, the additional Bell state measurements
ensure that either none or all σy measurements are flipped,
corresponding to a transposition of the entire local subsystem
of 	AB so that the map � is positive on separable states.

Finally, we show that I is violated by 	AB. Using the mea-
surement strategy above and that trA[|�+〉〈�+| πA

i|j ⊗ 1] =
1
d
πT

i|j for the maximally entangled state of dimension d, it is
straightforward to show using the same technique as (46)–(48)
that

I = 1

d4

∑
c,d,z,w

ωzw
cd tr

[⊗i

(
π

Ai

ci |ui
⊗ π

Bi

di |wi

)
	AB

]
(59)

= 1

d4
tr[W	AB] < 0, (60)

thus certifying the entanglement of 	AB.

D. Noise robust entanglement certification

A natural question to ask is whether the above certification
protocols can be extended to tolerate small amounts of ex-
perimental noise. Indeed, this can be achieved using robust
versions of Lemmas 1 and 3. The intuitive argument goes
as follows. Imagine each of our probabilities differ from the
ideal self-testing statistics by some small amount ε. Then, the
states that Alice and Bob receive from the auxiliary systems
conditioned on Charlie’s and Daisy’s measurement outcomes
should be close to eigenstates of products of Pauli operators.
This implies that the analogous operator to W appearing in
Eq. (60) is close to the desired witness, which can be used to
bound the maximum value of I for separable states to be

I � −c(ε) (61)
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for some positive function c(ε) such that c(0) = 0. Unsurpris-
ingly, this means that some weakly entangled states close to
the separable set are no longer certified by the method. The
amount of noise that can be tolerated by a typical state before
it can no longer be certified depends on the optimality of the
robustness bounds of the self-testing lemmas; given current
techniques the noise tolerance is expected to be small. For a
detailed proof and discussion of (61) see Appendix G. For a
specific analysis for the class of two-qubit Werner states, see
Appendix H.

IV. DISCUSSION AND CONCLUSION

We have shown that all bipartite entangled quantum states
are capable of producing correlations that cannot be obtained
using separable states by placing them in a larger network
of auxiliary states and using tools from self-testing and
measurement-device-independent entanglement witnesses. It
is desirable to strengthen the self-testing part of our protocol;
in particular, improved robustness bounds for self-testing
would immediately translate into better noise tolerance of
our protocols. One would most likely be able to achieve this
using the protocols presented in Ref. [31] where self-testing
statements for Pauli observables are presented with a robust-
ness scaling that is independent of n. Furthermore, the choice
of measurements used for self-testing could be made much
more efficient. In general, one needs d2 linearly independent
projectors to form an informationally complete set, however
for local dimension 2n we make use of an overcomplete basis
of 6n projectors (coming from the tensor product of Pauli
projectors), a difference that is exponential in n. Hence, a
more efficient self-test of informationally complete sets of
measurements would improve the efficiency of the protocol.
Furthermore, given a particular state, one typically does not
need the full set of projectors in order to write an entanglement
witness for the state. It would therefore be interesting to study
self-testing protocols that certify only those projectors that ap-
pear in a particular decomposition of an entanglement witness.

Although we have focused on the task of entanglement
certification, our technique can in principle be applied to
other convex sets of quantum states other than the sepa-
rable set where linear witnesses can also be used. Due to
the ambiguity of local unitaries and local transpositions in
the self-testing part of our protocol, such sets would need
to be closed under local unitary operations and local transpo-
sitions (as is the case for the separable set). For example, one
could apply the same technique to certify entangled states with
negative partial transpose. Finally, it would also be interesting
to investigate the possibility of using our general technique
for other device-independent tasks, for example using similar
ideas to [40–42] to construct device-independent quantum key
distribution protocols, or to generalize our protocol for the
certification of genuine multipartite entanglement.
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APPENDIX A: PROOF OF LEMMA 1

In this Appendix we prove Lemma 1 from the main text.
Define the following operators:

ZA
z,x = DA

z,x + EA
z,x√

2
, XA

z,x = DA
z,x − EA

z,x√
2

,

ZA
z,y = DA

z,y + EA
z,y√

2
, YA

z,y = DA
z,y − EA

z,y√
2

, (A1)

XA
x,y = DA

x,y + EA
x,y√

2
, YA

x,y = DA
x,y − EA

x,y√
2

.

From (13)–(15) we have

ZA
z,x|ψ〉 = ZA

z,y|ψ〉,
XA

z,x|ψ〉 = XA
x,y|ψ〉, (A2)

YA
z,y|ψ〉 = YA

x,y|ψ〉.
Hence, defining

ZA ≡ ZA
z,x, XA ≡ XA

z,x, YA ≡ YA
z,y (A3)

we have from (13)–(16) the conditions

ZC|ψ〉 = ZA|ψ〉, XC|ψ〉 = XA|ψ〉, YC|ψ〉 = −YA|ψ〉,
(A4)

{ZC, XC}|ψ〉 = 0, {ZC, YC}|ψ〉 = 0, {YC, XC}|ψ〉 = 0,

(A5)

{ZA, XA}|ψ〉 = 0, {ZA, YA}|ψ〉 = 0, {YA, XA}|ψ〉 = 0.

(A6)

Note that the operators ZA, XA, YA are not necessarily unitary.
We may define the regularized versions of these operators
ẐA, X̂A, ŶA which are obtained from the original operators
by renormalizing all eigenvalues to ±1 and setting any zero
eigenvalues to 1 (without changing the eigenvectors). Using
standard techniques (for example see [21,43]) one can show
that the regularized operators respect the same conditions, that
is,

ZC|ψ〉 = ẐA|ψ〉, XC|ψ〉 = X̂A|ψ〉, YC|ψ〉 = −ŶA|ψ〉,
(A7)

{ZC, XC}|ψ〉 = 0, {ZC, YC}|ψ〉 = 0, {YC, XC}|ψ〉 = 0,

(A8)

{ẐA, X̂A}|ψ〉 = 0, {ẐA, ŶA}|ψ〉 = 0, {ŶA, X̂A}|ψ〉 = 0.

(A9)
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Let us prove the first equality from (A7), the other two being
analogous. The following chain of equalities is satisfied

‖(ẐA − ZA)|ψ〉‖ = ‖(1 − (Ẑ†)AZA)|ψ〉‖
= ‖(1 − |ZA|)|ψ〉‖ (A10)

= ‖(1 − |ZCZA|)|ψ〉‖
� ‖(1 − ZCZA)|ψ〉‖ = 0, (A11)

where the first equality comes from the fact that (Ẑ†)A is
unitary, the second equality just uses the definition of ẐA.
The third equality is equivalent to |ZCZA| = |ZA|, which is
correct because ZC is unitary. The inequality is a consequence
of A � |A|, and finally the last equality is the consequence of
(A4).

We may now verify equations (18) to (22) of Lemma 1
using the above conditions. The precise isometry that we use
is shown in Fig. 1. We first verify that the circuit acts correctly
on the state |ψ〉CA. Up to and including the second set of
controlled gates the circuit is the well known SWAP circuit,
and it is well known (see, e.g., [28]) that this extracts the
maximally entangled state in to the primed auxiliary systems.
At this point our state is thus

|++〉C′′A′′ 1 + ZC

√
2

|ψ〉CA ⊗ |�+〉C′A′
. (A12)

Let us denote |φ〉CA = 1√
2
[1 + ZC]|ψ〉CA. The third pair of

controlled gates evolves the system to

1
2 [|00〉C′′A′′ |φ〉CA + |01〉C′′A′′

iŶAX̂A|φ〉CA + |10〉C′′A′′
iYCXC|φ〉CA−|11〉C′′A′′

YCXCŶAX̂A|φ〉CA]|�+〉C′A′
.

From (A7)–(A9) it follows that ŶAX̂A|φ〉CA = YCXC|φ〉CA and so

1
2 [|00〉C′′A′′ |φ〉CA + |01〉C′′A′′

iYCXC|φ〉CA + |10〉C′′A′′
iYCXC|φ〉CA + |11〉C′′A′′ |φ〉CA]|�+〉C′A′

. (A13)

Finally the last two Hadamards lead to

1

2
√

2
[|00〉C′′A′′

(1 + iYCXC)(1 + ZC)|ψ〉CA + |11〉C′′A′′
(1 − iYCXC)(1 + ZC)|ψ〉CA]|�+〉C′A′ = |ξ 〉CC′′AA′′ ⊗ |�+〉C′A′

(A14)

as claimed. Following the same method and using (A7)–(A9), one easily verifies

U (XC|ψ〉CA ⊗ |00〉) = |ξ 〉CC′′AA′′ ⊗ σ C′
x |�+〉C′A′

,

U (ZC|ψ〉CA ⊗ |00〉) = |ξ 〉CC′′AA′′ ⊗ σ C′
z |�+〉C′A′

. (A15)

The case YC|ψ〉CA ⊗ |00〉 is a bit more involved. After the second pair of controlled gates the state is transformed to

|++〉C′′A′′ 1√
2
iYCXC(1 + ZC)|ψ〉CAσ C′

y |�+〉C′A′
.

The third pair of controlled gates then transforms the state to

1

4
√

2
[|00〉C′′A′′

iYCXC|φ〉CA + |01〉C′′A′′ |φ〉CA + |10〉C′′A′′ |φ〉CA + |11〉C′′A′′
iYCXC|φ〉CA]σ C′

y |�+〉C′A′
,

which is simplified by two last Hadamards to

1

2
√

2
[|00〉C′′A′′

(1 + iYCXC)(1 + ZC)|ψ〉CA − |11〉C′′A′′
(1 − iYCXC)(1 + ZC)|ψ〉CA]σ C′

y |�+〉C′A′ = σ C′′
z |ξ 〉CC′′AA′′ ⊗ σC ′

y |�+〉C′A′

(A16)

This thus concludes the proof of Lemma 1.

APPENDIX B: ROBUST VERSION OF LEMMA 1

Following the approach from [20,23] we study how
Lemma 1 is affected when the achieved Bell inequality (30)
violation is 6

√
2 − ε. Looking at SOS decomposition (11) one

can see that each of the terms must be smaller or equal to
√

ε,
leading to

‖(ZC − ZA)|ψ〉‖ �
√

ε,

‖(XC − XA)|ψ〉‖ �
√

ε, (B1)

‖(YC + YA)|ψ〉‖ �
√

ε,

‖(ZC − ẐA)|ψ〉‖ � 2
√

ε,

‖(XC − X̂A)|ψ〉‖ � 2
√

ε, (B2)

‖(YC + ŶA)|ψ〉‖ � 2
√

ε,

‖{ZC, XC}|ψ〉‖ � (4 + 4
√

2)
√

ε,

‖{ZC, YC}|ψ〉‖ � (6 + 6
√

2)
√

ε, (B3)

‖{YC, XC}|ψ〉‖ � (8 + 8
√

2)
√

ε.
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Let us first note that the error coming from the regularizing operators on Alice’s side is

‖(ẐA − ZA)|ψ〉‖ = ‖(1 − (Ẑ†)AZA)|ψ〉‖ = ‖(1 − |ZA|)|ψ〉‖ = ‖(1 − |ZCZA|)|ψ〉‖ � ‖(1 − ZCZA)|ψ〉‖ = √
ε,

and similarly for X̂A and ŶA. Taking this into account inequalities in the second line follow from the corresponding inequalities
in the first line and the triangle inequality ‖a + b‖ � ‖a‖ + ‖b‖. The first inequality in the third line is obtained through the
following chain of inequalities:

‖(ZCXC + XCZC)|ψ〉‖
� ‖ZC(XC − XA)|ψ〉‖ + ‖(ZCXA + XCZA)|ψ〉‖ + ‖XC(ZA − ZC)|ψ〉‖
�

√
ε + ‖XA(ZC − ZA)|ψ〉‖ + ‖(ZAXA + XAZA)|ψ〉‖ + ‖ZA(XC − XA)|ψ〉‖ + √

ε

� 2
√

ε + 1√
2

∥∥(
DA

z,x − EA
z,x

)
(ZC − ZA)|ψ〉∥∥ + ‖(ZAXA + XAZA)|ψ〉‖ + 1√

2

∥∥(
DA

z,x + EA
z,x

)
(XC − XA)|ψ〉∥∥

� (2 + 2
√

2)
√

ε + ‖ZA(XA − X̂A)|ψ〉‖ + ‖X̂A(ZA − ẐA)|ψ〉‖ + ‖(ẐAX̂A + X̂AẐA)|ψ〉‖
+ ‖XA(ZA − ẐA)|ψ〉‖ + ‖ẐA(XA − X̂A)|ψ〉‖

� (4 + 4
√

2)
√

ε.

Note that if the violation of Bell inequality is 6
√

2 − ε not
all terms from the first line of (B1) can simultaneously be
equal to

√
ε, but for our purposes a tight multiplicative factor

is not of primary interest. The second and the third inequality
from the third line of (B1) are derived in an analogous manner
as the first one, with the additional factors coming from the
convention used in Eq. (A3) which leads to

∥∥(
ZA − ZA

z,y

)|ψ〉∥∥ �
√

ε,∥∥(
XA − XA

x,y

)|ψ〉∥∥ �
√

ε,∥∥(
YA − YA

x,y

)|ψ〉∥∥ �
√

ε.

To check the error accumulated when obtaining the final
statement from Lemma 1 we will repeatedly use the triangle
inequality and bounds from (B1). To get (A12) the first
inequality from the second line of (B1) has to be used four
times, the second one is used twice, and the anticommuting
bound from the third line of (B1) has to be used once. To
obtain (A13) the second and the third inequality from the
second line and all three inequalities from the third line of
(B1) are each used twice. All together these bounds imply

‖U (|ψ〉CA ⊗ |00〉) − |ξ 〉CC′′AA′′ ⊗ |�+〉C′A′ ‖
� (55 + 36

√
2)

√
ε.

A similar asymptotic bounds can be obtained for the robust
versions of Eqs. (19), (21), and (20), the only difference being
in the number of times each of the inequalities from (B1) have
to be used.

APPENDIX C: PROOF OF LEMMA 2

The proof of Lemma 2 is split into two parts. The first part
proves the necessary self-testing relations between the state
and measurements needed to construct the self-testing circuit.
The second part verifies that the circuit acts as claimed.

1. Self-testing relations

Here we follow closely the proof of [37], adapting it the
allow for additional σy measurements. We first define the
following sets of operators:{

Z(k)
i

}
k

= {Oi|z|zi = 1},{
X(k)

i

}
k

= {Oi|z|zi = 2}, (C1){
Y(k)

i

}
k

= {Oi|z|zi = 3},
for k = 1, . . . , 3n−1 and ordered according to some relation
z < z′. Similarly we define

{
D(l)

zx,i

}
l
= {Pi|x|xi = 1},{

E(l)
zx,i

}
l
= {Pi|x|xi = 2}, (C2){

D(l)
zy,i

}
l
= {Pi|x|xi = 3},{

E(l)
zy,i

}
l
= {Pi|x|xi = 4},{

D(l)
xy,i

}
l
= {Pi|x|xi = 5}, (C3){

E(l)
xy,i

}
l
= {Pi|x|xi = 6}.

for l = 1, . . . , 6n−1 ordered according to some relation x <

x′. Averaging over these sets we thus obtain the operators in
Eqs. (24)–(28). We may now write

〈ψ |Bi |ψ〉 = 1

3n−16n−1

∑
k,l

〈ψ |[Z(k)
i

(
D(l)

zx,i + E(l)
zx,i

)

+ X(k)
i

(
D(l)

zx,i − E(l)
zx,i

) + Z(k)
i

(
D(l)

zy,i + E(l)
zy,i

)
− Y(k)

i

(
D(l)

zy,i − E(l)
zy,i

) + X(k)
i

(
D(l)

xy,i + E(l)
xy,i

)
− Y(k)

i

(
D(l)

xy,i − E(l)
xy,i

)]|ψ〉 = 6
√

2 (C4)

for all i = 1, . . . , n. Note that since the maximum value of the
triple CHSH inequality is 6

√
2 and that the above is a convex

mixture of triple CHSH inequalities for different k, l, for each
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k, l we have

〈ψ |[Z(k)
i

(
D(l)

zx,i + E(l)
zx,i

) + X(k)
i

(
D(l)

zx,i − E(l)
zx,i

)
+ Z(k)

i

(
D(l)

zy,i + E(l)
zy,i

)
− Y(k)

i

(
D(l)

zy,i − E(l)
zy,i

) + X(k)
i

(
D(l)

xy,i + E(l)
xy,i

)
− Y(k)

i

(
D(l)

xy,i − E(l)
xy,i

)]|ψ〉 = 6
√

2. (C5)

Now, we may again use the SOS decomposition (11) for each
i, k, l leading to

Z(k)
i |ψ〉 = D(l)

zx,i + E(l)
zx,i√

2
|ψ〉 = D(l)

zy,i + E(l)
zy,i√

2
|ψ〉, (C6)

X(k)
i |ψ〉 = D(l)

zx,i − E(l)
zx,i√

2
|ψ〉 = D(l)

xy,i + E(l)
xy,i√

2
|ψ〉, (C7)

Y(k)
i |ψ〉 = D(l)

zy,i − E(l)
zy,i√

2
|ψ〉 = D(l)

xy,i − E(l)
xy,i√

2
|ψ〉, (C8)

which we may write as

Z(k)
i |ψ〉 = Z(l)

i+n|ψ〉,
X(k)

i |ψ〉 = X(l)
i+n|ψ〉, (C9)

Y(k)
i |ψ〉 = Y(l)

i+n|ψ〉,
where

Z(l)
i+n = D(l)

zx,i + E(l)
zx,i√

2
,

X(l)
i+n = D(l)

zx,i − E(l)
zx,i√

2
, (C10)

Y(k)
i |ψ〉 = D(l)

zy,i − E(l)
zy,i√

2
.

As before, Eqs. (C6)–(C8) imply mutual anticommuntation of
Alice’s operators:{
Z(k)

i , X(k)
i

} = 0,
{
Z(k)

i , Y(k)
i

} = 0,
{
X(k)

i , Y(k)
i

} = 0 ∀i, k.

(C11)

Defining

Zi+n = 1

6n−1

∑
l

Z(l)
i+n,

Xi+n = 1

6n−1

∑
l

X(l)
i+n, (C12)

Yi+n = − 1

6n−1

∑
l

Y(l)
i+n,

we have from (C9)

Z(k)
i |ψ〉 = Zi+n|ψ〉,

X(k)
i |ψ〉 = Xi+n|ψ〉, (C13)

Y(k)
i |ψ〉 = −Yi+n|ψ〉

for all k. Note that the operators Zi+n, Xi+n, Yi+n are not nec-
essarily unitary. We therefore define the regularized versions

|+ Ci

|+ Ci

|+ Ai

|+ Ai

|ψ CA

Z
(k)
i

Ẑi+n

H

H

X
(k)
i

X̂i+n

iY
(k)
i X

(k)
i

iŶi+nX̂i+n

H

H

FIG. 4. Circuit diagram representing the local unitary of Lemma
2. The total unitary consists of applying this circuit for each i =
1, . . . , n, and k can be chosen to be any number k = 1, . . . , 3n−1 (for
example k = 1).

of these operators, denoted by Ẑi+n, X̂i+n, and Ŷi+n, which
using standard techniques (see for example [21,43]) can be
shown to have the same properties:

Z(k)
i |ψ〉 = Ẑi+n|ψ〉,

X(k)
i |ψ〉 = X̂i+n|ψ〉, (C14)

Y(k)
i |ψ〉 = −Ŷi+n|ψ〉.

At this point we are nearly ready to construct our self-testing
unitary. However, we still need to prove that P

(k)
i and P

(k)
j

for P ∈ {X, Y, Z} commute for i �= j . Here we again use
the method of [37] to achieve this, which we restate here.
Note that for every i �= j , if we fix zi = 1 and zj = 1, there
are 3n−2 choices for Charlie’s measurement vector z. There
are thus 3n−2 pairs of indices (k, k′) such that operators Z(k)

i

and Z(k′ )
i are built from the same set of orthogonal projectors

that commute by construction. We thus have 3n−2 equations
of the form

Z(k)
i Z(k′ )

j |ψ〉 = Z(k′ )
j Z(k)

i |ψ〉. (C15)

Choosing a pair (k, k′) and using (C13) and the fact that
operators on Charlie and Alice’s subsystems commute we
then obtain

Z(k)
i Zn+j |ψ〉 = Z(k′ )

j Zn+i |ψ〉, (C16)

Zn+j Z(k)
i |ψ〉 = Zn+iZ

(k′ )
j |ψ〉, (C17)

Zn+j Zn+i |ψ〉 = Zn+iZn+j |ψ〉. (C18)

In fact, by working backwards using different values of k, k′
and (C13) again, one sees

Z(k)
i Z(k′ )

j |ψ〉 = Z(k′ )
j Z(k)

i |ψ〉 ∀ k, k′, i �= j. (C19)

In the same fashion, one proves

X(k)
i X(k′ )

j |ψ〉 = X(k′ )
j X(k)

i |ψ〉 ∀ k, k′, i �= j, (C20)

Y(k)
i Y(k′ )

j |ψ〉 = Y(k′ )
j Y(k)

i |ψ〉 ∀ k, k′, i �= j, (C21)
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X(k)
i Y(k′ )

j |ψ〉 = Y(k′ )
j X(k)

i |ψ〉 ∀ k, k′, i �= j, (C22)

X(k)
i Z(k′ )

j |ψ〉 = Z(k′ )
j X(k)

i |ψ〉 ∀ k, k′, i �= j, (C23)

Y(k)
i Z(k′ )

j |ψ〉 = Z(k′ )
j Y(k)

i |ψ〉 ∀ k, k′, i �= j. (C24)

We have now finished the necessary groundwork to construct the self-testing circuit of Lemma 2.

2. Verification of circuit

The circuit we use (see Fig. 4) is a parallel version of the circuit used in the two qubit case. To prove that it functions correctly,
we make repeated use of the properties (C11), (C14), and (C19)–(C24). Before the action of the first controlled gate the system
is in state

|ψ〉CA 1

22n

∑
p,q,r,s∈(0,1)n

|p〉C′ |q〉C′′ |r〉A′ |s〉A′′
, (C25)

and after the first controlled gate the state evolves to

1

22n

∑
p,q,r,s∈(0,1)n

[⊗n
i=1

(
Z(k)

i

)pi (Ẑi+n)ri |ψ〉CA
]|p〉C′ |q〉C′′ |r〉A′ |s〉A′′

, (C26)

where pi (ri ) is the ith element of string p(r ). Hadamard gates evolve the state to

1

23n

∑
p,q,r,s∈(0,1)n

[⊗n
i=1

(
1 + (−1)pi Z(k)

i

)
(1 + (−1)ri Ẑi+n)|ψ〉CA

]|p〉C′ |q〉C′′ |r〉A′ |s〉A′′
, (C27)

and the second controlled gates lead to

1

23n

∑
p,q,r,s∈(0,1)n

[⊗n
i=1

(
X(k)

i

)pi
(
1 + (−1)pi Z(k)

i

)
(X̂n+i )

ri (1 + (−1)ri Ẑi+n)|ψ〉CA
]|p〉C′ |q〉C′′ |r〉A′ |s〉A′′

. (C28)

Relations (C14) and (C23) allow us to simplify this to

1

23n

∑
p,q,r,s∈(0,1)n

[⊗n
i=1

(
X(k)

i

)pi
(
1 + (−1)pi Z(k)

i

)
(X̂n+i )

ri
(
1 + (−1)ri Z(k)

i

)|ψ〉CA
]|p〉C′ |q〉C′′ |r〉A′ |s〉A′′

. (C29)

Unitarity and hermiticity of Z(k)
i implies (1 + Z(k)

i )(1 − Z(k)
i )|ψ〉 = 0 and 1

4 (1 + Z(k)
i )(1 + Z(k)

i )|ψ〉 = 1
2 (1 + Z(k)

i )|ψ〉 so that for
every i the state of the system can be further simplified to obtain

1

22n

∑
p,q,s∈(0,1)n

[⊗n
i=1

(
X(k)

i

)pi
(
1 + (−1)pi Z(k)

i

)
(X̂n+i )

pi |ψ〉CA
]|p〉C′ |q〉C′′ |p〉A′ |s〉A′′

. (C30)

This can be further simplified by using (C11) and (C20):

1

22n

∑
p,q,s∈(0,1)n

[⊗n
i=1

(
1 + Z(k)

i

)|ψ〉CA
]|p〉C′ |q〉C′′ |p〉A′ |s〉A′′ = 1

2
3n
2

∑
q,s∈(0,1)n

[⊗n
i=1

(
1 + Z(k)

i

)|ψ〉CA
][⊗n

i=1|�+〉C ′
iA

′
i
]|q〉C′′ |s〉A′′

.

(C31)

Already here the state of the primed auxiliaries (extraction auxiliaries in the following text) is n-fold tensor product of maximally
entangled pairs of qubits. Since the rest of the circuit does not affect extraction auxiliaries for the sake of simplicity it will be
omitted from the following expressions. Following the action of the third pair of controlled gates the system evolves to

1

2
3n
2

∑
q,s∈(0,1)n

[⊗n
i=1

(
iY(k)

i X(k)
i

)qi
(
1 + Z(k)

i

)
(iŶn+iX̂n+i )

si |ψ〉CA]|q〉C′′ |s〉A′′
. (C32)

By virtue of (C14), (C11), (C24), (C22), and (C23) this simplifies to

1

2
3n
2

∑
q,s∈(0,1)n

[⊗n
i=1

(
iY(k)

i X(k)
i

)qi+si
(
1 + Z(k)

i

)|ψ〉CA]|q〉C′′ |s〉A′′
. (C33)

Finally, at the end of the circuit, after the action of the second pair of Hadamards we have

1

2
5n
2

∑
q,s,q̄,s̄∈(0,1)n

[⊗n
i=1(−1)q̄i qi+s̄i si

(
iY(k)

i X(k)
i

)qi+si
(
1 + Z(k)

i

)|ψ〉CA]|q̄〉C′′ |s̄〉A′′
. (C34)
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Note that each term from the sum is characterized by a pair of strings (q̄, s̄ ) and a set of pairs of strings �, such that q ′′
j + s ′′

j =
q ′

j + s ′
j for every q ′′, s ′′, q ′, s ′ ∈ � and every j . We show that the multiplicative factor in front of every term is equal to zero

whenever q̄ ′ �= s̄ ′. Let us assume q̄ ′ = s̄ ′. The multiplicative factor for a term corresponding to a pair of strings q ′, s ′ is equal to

(−1)
∑

q′,s′∈�,j q̄ ′
j q

′
j +s̄ ′

j s
′
j = (−1)

∑
q′,s′∈�,j q̄ ′

j (q ′
j +s ′

j ) = ±1,

i.e., all the terms come with the same sign, since sum is over q ′, s ′ which have fixed q ′
j + s ′

j for every j . Contrarily, in case
q̄ ′ �= s̄ ′ the multiplicative factor for a term corresponding to a pair of strings q ′, s ′ is equal to

(−1)
∑

q′,s′∈�,j q̄ ′
j q

′
j +s̄ ′

j s
′
j = (−1)

∑
q′,s′∈�,j q̄ ′

j (q ′
j +s ′

j )+(s̄ ′
j −q̄ ′

j )s ′
j =

{±1 when
∑

j s ′
j = 0,

∓1 when
∑

j s ′
j = 1,

= 0 .

In this case value of s ′
j determines the sign of the terms, and for half of the terms it is equal 0 (one sign) and for the half it is

equal to 1 (opposite sign). This means that only terms of the sum which survive are those corresponding to q̄ = s̄:

1

2
5n
2

∑
q,s,q̄∈(0,1)n

[⊗n
i=1(−1)q̄i (qi+si )

(
iY(k)

i X(k)
i

)qi+si
(
1 + Z(k)

i

)|ψ〉CA
]|q̄q̄〉C′′A′′

. (C35)

The sum has 23n different contributions (one for each triple q, s, q̄), but there are 22n different terms, meaning that each term has
contributions from 2n different pairs of strings (q, s). This reduces the multiplicative factor in front of the sum to 2− 3n

2 . After
summing over q, s and making some rearrangements the expression reduces to

|ξ 〉 = 1

2
3n
2

∑
q̄∈(0,1)n

[⊗n
i=1

(
1 + (−1)q̄i iY(k)

i X(k)
i

)(
1 + Z(k)

i

)|ψ〉CA
]|q̄q̄〉C′′A′′

. (C36)

Finally, by returning the state of extraction auxiliary systems one obtains the statement from Lemma 2:

U [|ψ〉CA ⊗ |00〉] = |ξ 〉 ⊗n
i=1 |�+〉C′

iA
′
i . (C37)

Before calculating the output of the circuit when the input is Z(k)
i |ψ〉 let us acknowledge that Z(k)

i |ψ〉 = Z(l)
i |ψ〉 for any two l and

k, which can be seen from (C14) which is satisfied for any k. The same holds for X(k)
i |ψ〉 and Y(k)

i |ψ〉. By repeating the same
procedure as in the derivation above one can confirm two more statements from Lemma 2 for any k and j :

U
[
Z(k)

j |ψ〉CA ⊗ |00〉] = |ξ 〉[σ C′
j

z ⊗n
i=1 |�+〉C′

iA
′
i
]
, U

[
X(k)

j |ψ〉CA ⊗ |00〉] = |ξ 〉[σ C′
j

x ⊗n
i=1 |�+〉C′

iA
′
i
]
. (C38)

The situation when the input state is Y(k)
j |ψ〉 is a bit more complicated so more details of the derivation will be presented. After

the second pair of controlled gates the state of the system is

1

23n

∑
p,q,r,s∈(0,1)n

[⊗n
i=1

(
X(k)

i

)pi
(
1 + (−1)pi Z(k)

i

)
Y(k)

j (X̂n+i )
ri (1 + (−1)ri Ẑi+n)|ψ〉CA

]|p〉C′ |q〉C′′ |r〉A′ |s〉A′′
, (C39)

which due to Eqs. (C11) and (C24) simplifies to

1

23n

∑
p,q,r,s∈(0,1)n

[⊗n
i=1

(
X(k)

i

)pi Y(k)
j

(
1 + (−1)pi⊕δij Z(k)

i

)
(X̂n+i )

ri (1 + (−1)ri Ẑi+n)|ψ〉CA
]|p〉C′ |q〉C′′ |r〉A′ |s〉A′′

, (C40)

By using (C19) and (C11) and the fact that 1+Z(k)
i

2 and 1−Z(k)
i

2 are projectors onto different eigenspaces of Z(k)
i the above reduces

to

1

22n

∑
q,r,s∈(0,1)n

[⊗n
i=1(−1)ri⊕δij Y(k)

j X(k)
j

(
1 + Z(k)

i

)|ψ〉CA
]|r ⊕ 1j 〉C′ |q〉C′′ |r〉A′ |s〉A′′

, (C41)

where 1j is an n-element string whose j th element is one with all the other elements being zeros. The last expression can be
rewritten in the following way:

1

2
3n
2

∑
q,s∈(0,1)n

[⊗n
i=1iY

(k)
j X(k)

j

(
1 + Z(k)

i

)|ψ〉CA
]
σ

C ′
j

y

[⊗n
i=1|�+〉C ′

iA
′
i
]|q〉C′′ |s〉A′′

. (C42)

Since the rest of the circuit does not affect the state of extraction auxiliaries we will drop it from the following few equations.
After applying the third pair of controlled gates on this state one obtains

1

2
3n
2

∑
q,s∈(0,1)n

[⊗n
i=1

(
iY(k)

i X(k)
i

)qi+δij
(
1 + Z(k)

i

)
(iŶi+nX̂i+n)si |ψ〉CA]|q〉C′′ |s〉A′′

, (C43)
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which due to (C14) and anticommuting relations (C11) reduces to

1

2
3n
2

∑
q,s∈(0,1)n

[⊗n
i=1

(
iY(k)

i X(k)
i

)si+qi+δij
(
1 + Z(k)

i

)|ψ〉CA]|q〉C′′ |s〉A′′
, (C44)

and at the end of the circuit following the action of the two last Hadamards this state transforms to

1

2
5n
2

∑
q̄,s̄,q,s∈(0,1)n

(−1)q̄i qi+s̄i si
[⊗n

i=1

(
iY(k)

i X(k)
i

)qi+si+δij
(
1 + Z(k)

i

)|ψ〉CA
]|q̄〉C′′ |s〉A′′

. (C45)

Here the same reasoning like the one preceding Eq. (C36) can be applied, the only difference being factor (iY(k)
i X(k)

i )δij . This
factor changes the sign of terms in (C36) which correspond to any string q̄ for which q̄j = 1. The final form of the output of the
circuit when input is Y(k)

j |ψ〉 can be written as

1

2
3n
2

∑
q̄∈(0,1)n

[⊗n
i=1(−1)q̄j

(
1 + (−1)q̄i iY(k)

i X(k)
i

)(
1 + Z(k)

i

)|ψ〉CA]
σ

C′
j

y

[⊗n
i=1|�+〉C′

iA
′
i
]|q̄q̄〉C′′A′′

, (C46)

which is equivalent to the formulation from Lemma 2:

U
[
YC

j |ψ〉CA ⊗ |00〉] = σ
C′′

j

z |ξ 〉[σy
C′

j ⊗n
i=1 |�+〉C′

iA
′
i
]
, (C47)

which completes the proof.

APPENDIX D: PROOF OF LEMMA 3

Correlations 〈ψ |Sl,a|ψ〉 = 〈ψ |Sl,a|ψ〉 = 1
4 for every l ∈ {1, . . . , m} and a ∈ {0, 1, 2, 3}, given in Table I, imply that the norm

of states Sl,a|ψ〉 and Tl,a|ψ〉 is equal to 1
2 . These correlations allow us to write

Sl,0|ψ〉 ∼ 1
4

(|ψ〉 + Z(k)
2l−1Z(k)

2l |ψ〉 + X(k)
2l−1X(k)

2l |ψ〉 − Y(k)
2l−1Y(k)

2l |ψ〉). (D1)

Since states |ψ〉, Z(k)
2l−1Z(k)

2l |ψ〉, X(k)
2l−1X(k)

2l |ψ〉, and Y(k)
2l−1Y(k)

2l |ψ〉 all have unit norm and are mutually orthogonal they can be seen
as a part of the basis of all states from HC ⊗ HA. Moreover, Sl,0|ψ〉 has the same norm as the expression from the right-hand
side of ∼ in Eq. (D1) which implies that

Sl,0|ψ〉 = 1
4

(|ψ〉 + Z(k)
2l−1Z(k)

2l |ψ〉 + X(k)
2l−1X(k)

2l |ψ〉 − Y(k)
2l−1Y(k)

2l |ψ〉). (D2)

The same reasoning leads to the following set of equations:

Sl,1|ψ〉 = 1
4

(|ψ〉 + Z(k)
2l−1Z(k)

2l |ψ〉 − X(k)
2l−1X(k)

2l |ψ〉 + Y(k)
2l−1Y(k)

2l |ψ〉), (D3)

Sl,2|ψ〉 = 1
4

(|ψ〉 − Z(k)
2l−1Z(k)

2l |ψ〉 + X(k)
2l−1X(k)

2l |ψ〉 + Y(k)
2l−1Y(k)

2l |ψ〉), (D4)

Sl,3|ψ〉 = 1
4

(|ψ〉 − Z(k)
2l−1Z(k)

2l |ψ〉 − X(k)
2l−1X(k)

2l |ψ〉 − Y(k)
2l−1Y(k)

2l |ψ〉), (D5)

Tl,0|ψ〉 = 1
4

(|ψ〉 + Z(k)
2l Z(k)

2l+1|ψ〉 + X(k)
2l X(k)

2l+1|ψ〉 − Y(k)
2l Y(k)

2l+1|ψ〉), (D6)

Tl,1|ψ〉 = 1
4

(|ψ〉 + Z(k)
2l Z(k)

2l+1|ψ〉 − X(k)
2l X(k)

2l+1|ψ〉 + Y(k)
2l Y(k)

2l+1|ψ〉), (D7)

Tl,2|ψ〉 = 1
4

(|ψ〉 − Z(k)
2l Z(k)

2l+1|ψ〉 + X(k)
2l X(k)

2l+1|ψ〉 + Y(k)
2l Y(k)

2l+1|ψ〉), (D8)

Tl,3|ψ〉 = 1
4

(|ψ〉 − Z(k)
2l Z(k)

2l+1|ψ〉 − X(k)
2l X(k)

2l+1|ψ〉 − Y(k)
2l Y(k)

2l+1|ψ〉). (D9)

Equations (D2)–(D5) are equivalent to the following set of equations:

Z(k)
2l−1Z(k)

2l |ψ〉 = (Sl,0 + Sl,1 − Sl,2 − Sl,3)|ψ〉, (D10a)

X(k)
2l−1X(k)

2l |ψ〉 = (Sl,0 − Sl,1 + Sl,2 − Sl,3)|ψ〉, (D10b)

Y(k)
2l−1Y(k)

2l |ψ〉 = (−Sl,0 + Sl,1 + Sl,2 − Sl,3)|ψ〉. (D10c)
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Based on the last set of equations and the fact that {Sl,a}l,a is orthogonal set of projectors which all commute with all the
operators from {Z(k)

j , X(k)
j }j,k , one can show that

X(k)
2l−1X(k)

2l Z(k)
2l−1Z(k)

2l |ψ〉 = X(k)
2l−1X(k)

2l (Sl,0 + Sl,1 − Sl,2 − Sl,3)|ψ〉
= (Sl,0 + Sl,1 − Sl,2 − Sl,3)(Sl,0 − Sl,1 + Sl,2 − Sl,3)|ψ〉
= (Sl,0 − Sl,1 − Sl,2 + Sl,3)|ψ〉
= −Y(k)

2l−1Y(k)
2l |ψ〉. (D11)

Starting from Eqs. (D6)–(D9) one can obtain

X(k)
2l X(k)

2l+1Z(k)
2l Z(k)

2l+1|ψ〉 = −Y(k)
2l Y(k)

2l+1|ψ〉. (D12)

Equations (D11) and (D12) hold for every k and every l. Let us take l = 1 and check how Eq. (D11) affects vector |ξq̄〉 =
⊗n

i=1(1 + (−1)q̄i iY(k)
i X(k)

i )(1 + Z(k)
i )|ψ〉. Let us write it in the following form:

|ξq̄〉 = Lrest ⊗ (
1 + (−1)q̄1 iY(k)

1 X(k)
1

)(
1 + Z(k)

1

) ⊗ (
1 + (−1)q̄2 iY(k)

2 X(k)
2

)(
1 + Z(k)

2

)|ψ〉,
where Lrest = ⊗n

i=3(1 + (−1)q̄i iY(k)
i X(k)

i )(1 + Z(k)
i ). Let us assume q̄1 �= q̄2 and omit Lrest for the sake of shorter exposition.

Then |ξq̄〉 reads

|ψ〉 ± iY(k)
2 X(k)

2 |ψ〉 + Z(k)
2 |ψ〉 ± iY(k)

2 X(k)
2 Z(k)

2 |ψ〉 ∓ iY(k)
1 X(k)

1 |ψ〉 + Y(k)
1 X(k)

1 Y(k)
2 X(k)

2 |ψ〉 ∓ iY(k)
1 X(k)

1 Z(k)
2 |ψ〉

+ Y(k)
1 X(k)

1 Y(k)
2 X(k)

2 Z(k)
2 |ψ〉 + Z(k)

1 |ψ〉 ± iZ(k)
1 Y(k)

2 X(k)
2 |ψ〉 + Z(k)

1 Z(k)
2 |ψ〉 ± iZ(k)

1 Y(k)
2 X(k)

2 Z(k)
2 |ψ〉 + ∓iY(k)

1 X(k)
1 Z(k)

1 |ψ〉
+ Y(k)

1 X(k)
1 Z(k)

1 Y(k)
2 X(k)

2 |ψ〉 + ∓iY(k)
1 X(k)

1 Z(k)
1 Z(k)

2 |ψ〉 + Y(k)
1 X(k)

1 Z(k)
1 Y(k)

2 X(k)
2 Z(k)

2 |ψ〉.
This expression can be written as a sum of expressions, each equal to 0. To show this let us rearrange Eq. (D11) for the case
l = 1. It can be written in eight different ways, which are given below:

|ψ〉 + Y(k)
1 X(k)

1 Z(k)
1 Y(k)

2 X(k)
2 Z(k)

2 |ψ〉 = 0, Y(k)
2 X(k)

2 |ψ〉 + Y(k)
1 X(k)

1 Z(k)
1 Z(k)

2 |ψ〉 = 0,

Z(k)
2 |ψ〉 + Y(k)

1 X(k)
1 Z(k)

1 Y(k)
2 X(k)

2 |ψ〉 = 0, Y(k)
2 X(k)

2 Z(k)
2 |ψ〉 + Y(k)

1 X(k)
1 Z(k)

1 |ψ〉 = 0,

Y(k)
1 X(k)

1 |ψ〉 + Z(k)
1 Y(k)

2 X(k)
2 Z(k)

2 |ψ〉 = 0, Y(k)
1 X(k)

1 Y(k)
2 X(k)

2 |ψ〉 + Z(k)
1 Z(k)

2 |ψ〉 = 0,

Y(k)
1 X(k)

1 Z(k)
2 |ψ〉 + Z(k)

1 Y(k)
2 X(k)

2 |ψ〉 = 0, Y(k)
1 X(k)

1 Y(k)
2 X(k)

2 Z(k)
2 |ψ〉 + Z(k)

1 |ψ〉 = 0. (D13)

All these equations are obtained from Eq. (D11) by using commutation relations (C19), expressions (C14), anticommutation

relations (C11), and the fact that operators P
(k)
i for P ∈ {X, Y,Z} are reflections, defined by property P

(k)
i

2 = 1 on the support
of |ψ〉.

Premise q̄1 �= q̄2 leads to conclusion |ξq̄〉 = 0. In a completely analogous way, starting from Eq. (D11) one can show that
|ξq̄〉 = 0 if there exists l such that q̄2l−1 �= q̄2l . Similarly, Eq. (D12) can be used to prove that |ξq̄〉 = 0 if there exists l such that
q̄2l �= q̄2l+1. The only two states |q̄〉 which satisfy q̄2l−1 = q̄2l = q̄2l+1 are |q̄〉 = |0 · · · 0〉 and |q̄〉 = |1 · · · 1〉. This means that

|ξ 〉 = |ξ0〉 ⊗ |0 · · · 0〉 + |ξ1〉 ⊗ |1 · · · 1〉, (D14)

which is exactly what had to be proven.

APPENDIX E: ROBUST VERSION OF LEMMA 3

In this Appendix we show how one can derive a noise robust version of Lemma 3 given a noise robust version of Lemma 2.
Specifically, we show that if each of the probabilities differ by at most η from the values in Table I one has

∥∥U [|ψ〉 ⊗ |00〉] − |ξ̃〉 ⊗ [⊗n
i=1

∣∣�+〉]‖ � O(εm) + O(
√

η), (E1)∥∥U
[
�jZC

j |ψ〉 ⊗ |00〉] − |ξ̃〉 ⊗ [⊗j σz
C′

j ⊗n
i=1 |�+〉]∥∥ � O(εm) + O(

√
η), (E2)∥∥U

[
�jXC

j |ψ〉 ⊗ |00〉] − |ξ̃〉 ⊗ [⊗j σx
C′

j ⊗n
i=1 |�+〉]∥∥ � O(εm) + O(

√
η), (E3)∥∥U

[
�jYC

j |ψ〉 ⊗ |00〉] − σz
C′′

j |ξ̃〉 ⊗ [⊗j σy
C′

j ⊗n
i=1 |�+〉]∥∥ � O(εm) + O(

√
η), (E4)

where |ξ̃〉 is the state given in Eq. (32),

|ξ̃〉 = |ξ0〉 ⊗ |0 · · · 0〉 + |ξ1〉 ⊗ |1 · · · 1〉 (E5)

042336-17
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and the scaling εm (for some m) follows from a robust self-test of Lemma 2 (see following) given nonmaximal violation of
the triple CHSH Bell inequalities. Here we focus on proving (E1); a similar technique can be applied to the remaining three
equations. First, note that by writing |�+

n〉 = ⊗n
i=1|�+〉 and using the triangle inequality we have

‖U [|ψ〉 ⊗ |00〉] − |ξ̃〉 ⊗ |�+
n〉‖ = ‖U [|ψ〉 ⊗ |00〉] − |ξ 〉 ⊗ |�+

n〉 + |ξ 〉 ⊗ |�+
n〉 − |ξ 〉 ⊗ |�+

n〉‖ (E6)

� ‖U [|ψ〉 ⊗ |00〉] − |ξ̃〉 ⊗ |�+
n〉‖ + ‖|ξ̃〉 ⊗ |�+

n〉 − |ξ 〉 ⊗ |�+
n〉‖, (E7)

where |ξ 〉 is taken to be the state appearing in Lemma 2. The first term now gives the bound of order εm that follows from the
robust self-test of Lemma 2. We now focus on the second term, that is, we need to bound

‖|ξ 〉 − (|ξ0〉 ⊗ |0 · · · 0〉 + |ξ1〉 ⊗ |1 · · · 1〉)‖ ∼ O(
√

η).

Given that there is a positive η such that observed probabilities are at most η far from the values given in Table I, let us upper
bound the following expression: ∥∥∥∥Sl,0|ψ〉 − I + Z2l−1Z2l + X2l−1X2l − Y2l−1Y2l

4
|ψ〉

∥∥∥∥. (E8)

By definition it is equal to(
〈Sl,0〉 − 〈Sl,0〉 + 〈Sl,0Z2l−1Z2l〉 + 〈Sl,0X2l−1X2l〉 − 〈Sl,0Y2l−1Y2l〉

2
+ 〈I〉

4
+ 〈Z2l−1Z2l〉 + 〈X2l−1X2l〉 − 〈Y2l−1Y2l〉

8

+ 〈Z2l−1Z2lX2l−1X2l〉 + 〈X2l−1X2lZ2l−1Z2l〉 − 〈Z2l−1Z2lY2l−1Y2l〉
16

+ −〈Y2l−1Y2lZ2l−1Z2l〉 − 〈X2l−1X2lY2l−1Y2l〉 − 〈Y2l−1Y2lX2l−1X2l〉
16

)1/2

. (E9)

Observe now that∣∣(〈ψ | ⊗ 〈00|)Z2l−1ZC
2l|ψ〉 ⊗ |00〉∣∣

= ∣∣(〈ψ | ⊗ 〈00|)U †U
(
Z2l−1ZC

2l|ψ〉 ⊗ |00〉)∣∣
= ∣∣(〈ψ | ⊗ 〈00|)U †[U(

Z2l−1ZC
2l |ψ〉 ⊗ |00〉) − |ξ̃〉 ⊗ [

σ
C′

2l−1
z ⊗ σ

C′
2l

z ⊗n
i=1 |�+〉] + |ξ̃〉 ⊗ [

σ
C′

2l−1
z ⊗ σ

C′
2l

z ⊗n
i=1 |�+〉]]∣∣

� ‖U [|ψ〉 ⊗ |00〉]‖∥∥U
(
Z2l−1ZC

2l|ψ〉 ⊗ |00〉) − |ξ̃〉 ⊗ [
σ

C′
2l−1

z ⊗ σ
C′

2l
z ⊗n

i=1 |�+〉]∥∥
+ ∣∣((〈ψ | ⊗ 〈00|)U † − 〈ξ̃ | ⊗ [⊗n

i=1〈�+|] + 〈ξ̃ | ⊗ [⊗n
i=1〈�+|])|ξ̃〉 ⊗ [

σ
C′

2l−1
z ⊗ σ

C′
2l

z ⊗n
i=1 |�+〉]∣∣

� O(εm) + ∥∥U [|ψ〉 ⊗ |00〉] − |ξ̃〉 ⊗ [⊗n
i=1|�+〉]∥∥∥∥|ξ̃〉 ⊗ [⊗j σ

C′
j

z ⊗n
i=1 |�+〉]∥∥ � O(εm). (E10)

In the first line we just added a unitary which does not change the inner product, while in the second line we just added a zero
term. In the third line we used triangle and Cauchy-Schwartz inequalities. In the fourth line we again added a zero term and used
again triangle and Cauchy-Schwartz inequalities to obtain the fifth line. Using the same sequence of steps the equivalent bound
can be obtained for inner products of 〈X2l−1X2l〉 and 〈Y2l−1Y2l〉 and also for all inner products from the third and fourth line of
(E9). All these inner products have absolute value as the one derived in Eq. (E10). Finally, to bound the first line from (E9) let
us assume the worst case correction of Table I, i.e.,

〈S0,l〉 = 1
4 + η, 〈S0,lZ2l−1Z2l〉 = 1

4 − η, 〈S0,lX2l−1X2l〉 = 1
4 − η, 〈S0,lY2l−1Y2l〉 = − 1

4 + η.

In this case the value of the first line from (E9) is equal to 2η. By summing all the terms we obtain for (E8)∥∥∥∥Sl,0|ψ〉 − I + Z2l−1Z2l + X2l−1X2l − Y2l−1Y2l

4
|ψ〉

∥∥∥∥ � O(η1/2 + εm). (E11)

Similar robust versions of Eqs. (D3)–(D9) can be obtained, each having the same robustness bound. Furthermore, using triangle
inequality and relations analogous to (E11) the following bounds can be obtained:∥∥Z(k)

2l−1Z(k)
2l |ψ〉 − (Sl,0 + Sl,1 − Sl,2 − Sl,3)|ψ〉∥∥

= ∥∥Z(k)
2l−1Z(k)

2l |ψ〉 − Z2l−1Z2l|ψ〉 + Z2l−1Z2l |ψ〉 − (Sl,0 + Sl,1 − Sl,2 − Sl,3)|ψ〉∥∥
�

∥∥Z(k)
2l−1Z(k)

2l |ψ〉 − Z2l−1Z2l|ψ〉∥∥ + ‖Z2l−1Z2l|ψ〉 − (Sl,0 + Sl,1 − Sl,2 − Sl,3)|ψ〉‖

� O(εm) +
∥∥∥∥Z2l−1Z2l + I + X2l−1X2l − Y2l−1Y2l

4
|ψ〉 + Z2l−1Z2l + I − X2l−1X2l + Y2l−1Y2l

4
|ψ〉
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+ Z2l−1Z2l − I + X2l−1X2l + Y2l−1Y2l

4
|ψ〉 + Z2l−1Z2l − I − X2l−1X2l − Y2l−1Y2l

4
|ψ〉 − (Sl,0 + Sl,1 − Sl,2 − Sl,3)|ψ〉

∥∥∥∥
� O(εm) +

∥∥∥∥
(

Sl,0 − Z2l−1Z2l + I + X2l−1X2l − Y2l−1Y2l

4

)
|ψ〉

∥∥∥∥ +
∥∥∥∥
(

Sl,1 − Z2l−1Z2l + I − X2l−1X2l + Y2l−1Y2l

4

)
|ψ〉

∥∥∥∥
+

∥∥∥∥
(

Sl,2 + Z2l−1Z2l − I − X2l−1X2l − Y2l−1Y2l

4

)
|ψ〉

∥∥∥∥ +
∥∥∥∥
(

Sl,3 + Z2l−1Z2l − I + X2l−1X2l + Y2l−1Y2l

4

)
|ψ〉

∥∥∥∥
� O(η1/2 + εm), (E12)

and similarly ∥∥X(k)
2l−1X(k)

2l |ψ〉 − (Sl,0 − Sl,1 + Sl,2 − Sl,3)|ψ〉∥∥ � O(η1/2 + εm), (E13)∥∥Y(k)
2l−1Y(k)

2l |ψ〉 − (−Sl,0 + Sl,1 + Sl,2 − Sl,3)|ψ〉∥∥ � O(η1/2 + εm). (E14)

The robust analog of (D11) is obtained through the following chain of inequalities:∥∥X(k)
2l−1X(k)

2l Z(k)
2l−1Z(k)

2l |ψ〉 + Y(k)
2l−1Y(k)

2l |ψ〉∥∥
= ∥∥X(k)

2l−1X(k)
2l Z(k)

2l−1Z(k)
2l |ψ〉 − X(k)

2l−1X(k)
2l (Sl,0 + Sl,1 − Sl,2 − Sl,3)|ψ〉

+ X(k)
2l−1X(k)

2l (Sl,0 + Sl,1 − Sl,2 − Sl,3)|ψ〉 + Y(k)
2l−1Y(k)

2l |ψ〉∥∥
� O

(
η

1
2 + εm

) + ∥∥X(k)
2l−1X(k)

2l (Sl,0 + Sl,1 − Sl,2 − Sl,3)|ψ〉 + Y(k)
2l−1Y(k)

2l |ψ〉∥∥
= O

(
η

1
2 + εm

) + ∥∥X(k)
2l−1X(k)

2l (Sl,0 + Sl,1 − Sl,2 − Sl,3)|ψ〉 − (Sl,0 + Sl,1 − Sl,2 − Sl,3)(Sl,0 − Sl,1 + Sl,2 − Sl,3)|ψ〉
+ (Sl,0 + Sl,1 − Sl,2 − Sl,3)(Sl,0 − Sl,1 + Sl,2 − Sl,3)|ψ〉 + Y(k)

2l−1Y(k)
2l |ψ〉∥∥ � O

(
η

1
2 + εm

)
. (E15)

To obtain the first inequality we used (E12) and the fact that multiplication by a unitary (X(k)
2l−1X(k)

2l ) does not change the norm.
The last inequality is the consequence of (E13) and (E14) and the fact that Sl,0 + Sl,1 − Sl,2 − Sl,3 is a unitary operator. In a
similar manner one can obtain ∥∥X(k)

2l X(k)
2l+1Z(k)

2l Z(k)
2l+1|ψ〉 + Y(k)

2l Y(k)
2l+1|ψ〉∥∥ � O(η1/2 + εm). (E16)

Finally, to obtain (D14) for 2n − 2 different values of l one of two inequalities (E15) and (E16) is used eight times [see (D13)],
thus leading to the final bound.

‖|ξ 〉 − |ξ0〉 ⊗ |0 · · · 0〉 − |ξ1〉 ⊗ |1 · · · 1〉‖ � O[n1/2(η1/2 + εm)].

APPENDIX F: ENTANGLEMENT CERTIFICATION
PROOFS: QUBITS

1. Positivity of I for separable states: qubits

Our aim is to prove that under maximal violation in step
(ii) of the protocol

I =
∑
cduw

ωzw
cd p(c,+,+, d|z, x = 
, y = 
,w) � 0 (F1)

holds for all separable 	AB. First, note that the projectors for
Charlie’s measurement can be compactly written

�C′C′′
c|z = U

†
C

∑
j

(
πC′

c|z
)T j ⊗ |j 〉〈j |C′′

UC, (F2)

where UC is the local unitary from lemma 1 and πc|z are
projectors onto the Pauli eigenvectors, i.e., πc|z = 1

2 [1 + cσz]
for σz = σz, σx, σy. Thus, at maximum violation, the (subnor-
malized) states that Alice receives in the A0 spaces conditional

on a certain c, z are given by

τc|z = 1

2
U

†
A

⎡
⎣∑

j

	
j

ξ ⊗ (
π

A′
0

c|z
)Tj

⎤
⎦UA, (F3)

where

	
j

ξ = trC′′CC′[|j 〉〈j |C′′ |ξ 〉〈ξ |C′′CA′′
0 A0 ]. (F4)

Here we have used the property trC[|�+〉〈�+|C ⊗ 1] = CT .
We thus have

p(c,+,+, d|z, x = 
, y = 
,w)

= tr[MA0A
+|
 ⊗ MB0B

+|
 τc|z ⊗ 	AB ⊗ τd|w] (F5)

=
∑
j,k

tr
[
A ⊗ B 	

j

ξ ⊗ (
π

A′
0

c|z
)Tj ⊗ 	AB ⊗ (

π
B′

0
d|w

)Tk ⊗ 	k
ξ

]
,

(F6)

where A = 1
2UAMA0A

+|
 U
†
A, B = 1

2UBMBB0
+|
 U

†
B. Now, assume

that 	AB is product so that 	AB = σ A ⊗ σ B (mixtures of such
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states will be considered later). Then the above takes the form∑
j,k

tr
[
π

Tj

c|z ⊗ π
Tk

d|w Aj ⊗ Bk

]
, (F7)

where

Aj = trAA0A′′
0

[
A 	

j

ξ ⊗ 1A′
0
⊗ σ A

]
,

Bk = trBB0B′′
0

[
B σ B ⊗ 1B′

0
⊗ 	k

ξ

]
. (F8)

Note that Aj and Bk are positive operators since Aj can be
seen as a positive map applied to σ A. Using this we may now
write I as

I =
∑
jk

∑
cdzw

ωzw
cd tr

[
π

Tj

c|z ⊗ π
Tk

d|w Aj ⊗ Bk

]
(F9)

=
∑
jk

∑
cdzw

ωzw
cd tr

[
πc|z ⊗ πd|w ATj

j ⊗ BTk

k

]
(F10)

=
∑
jk

tr
[
W ATj

j ⊗ BTk

k

]
� 0, (F11)

where the second equality follows from tr[X] = tr[XT ], and
the final inequality follows from the fact that ATj

j and BTk

k

are positive operators and thus ATj

j ⊗ BTk

k is a unnormalized
product state. Since I is linear in 	AB one also has I � 0 for
mixtures of product states and thus all separable states.

2. Positivity of I for separable states: arbitrary dimension

The proof follows the same structure as for the qubit case.
As a consequence of Lemma 3, we have that Alice receives
the subnormalized steered states conditioned on z, c:

τc,z = 1

d
U

†
A

⎡
⎣ 1∑

j=0

	
j

ξ ⊗ (
π

A′
0

c|z
)T j

⎤
⎦UA, (F12)

where we define

π
A′

0
c|z = ⊗i π

A′
0i

ci |zi
and

	
j

ξ = trC′′CC′
[
(⊗i |j 〉〈j |C′′

i ) |ξ 〉〈ξ |C′′CA′′
0 A0

]
, (F13)

and Bob has analogous states conditioned on Daisy’s input
and output. Now, the probabilities are given by

p(c,+,+, d|z, x = 
, y = 
, w)

= tr
[
MA0A

+|
 ⊗ MB0B
+|
 τc|z ⊗ 	AB ⊗ τd|w

]
(F14)

=
∑
j,k

tr
[
A ⊗ B 	

j

ξ ⊗ (
π

A′
0

c|z
)Tj ⊗ 	AB ⊗ (

π
B′

0
d|w

)Tk ⊗ 	k
ξ

]
,

(F15)

and A = 1
d
UAMA0A

+|
 U
†
A, B = 1

d
UBMBB0

+|
 U
†
B. For separable

	AB = σ A ⊗ σ B this takes the form

p(c,+,+, d|z, x = 
, y = 
, w)

=
∑
j,k

tr
[
π

Tj

c|z ⊗ π
Tk

d|w Aj ⊗ Bk

]
, (F16)

where again we have the positive operators

Aj = trAA0A′′
0

[
A 	

j

ξ ⊗ 1A′
0
⊗ σ A

]
,

Bk = trBB0B′′
0

[
B σ B ⊗ 1B′

0
⊗ 	k

ξ

]
. (F17)

Hence we find

I =
∑
jk

∑
cdzw

ωzw
cd tr

[
π

Tj

c|z ⊗ π
Tk

d|w Aj ⊗ Bk

]
(F18)

=
∑
jk

∑
cdzw

ωzw
cd tr

[
πc|z ⊗ πd|w ATj

j ⊗ BTk

k

]
(F19)

=
∑
jk

tr
[
W ATj

j ⊗ BTk

k

]
� 0. (F20)

Again, due to the linearity of I in 	AB, one has I � 0 for all
separable states, completing the proof.

APPENDIX G: ROBUST ENTANGLEMENT
CERTIFICATION

In this Appendix we prove a relation (61) from the
main text. We start from robust self-testing statements for
Lemma 3: ∥∥U [|ψ〉 ⊗ |00〉] − |ξ 〉 ⊗ [⊗n

i=1|�+〉C′
iA

′
i
]∥∥ � θ,∥∥U

[
ZC

j |ψ〉 ⊗ |00〉] − |ξ 〉 ⊗ [
σ

C′
j

z ⊗n
i=1 |�+〉C′

iA
′
i
]∥∥ � θ,∥∥U

[
XC

j |ψ〉 ⊗ |00〉] − |ξ 〉 ⊗ [
σ

C′
j

x ⊗n
i=1 |�+〉C′

iA
′
i
]∥∥ � θ,∥∥U

[
YC

j |ψ〉 ⊗ |00〉] − σ
C′′

j

z |ξ 〉 ⊗ [
σ

C′
j

y ⊗n
i=1 |�+〉C′

iA
′
i
]∥∥ � θ,

(G1)

and similarly for Daisy’s measurements. These inequalities
imply

U [|ψ〉 ⊗ |00〉] = |ξ 〉 ⊗ [⊗n
i=1|�+〉C′

iA
′
i
] + |�̂〉,

U [Zj |ψ〉 ⊗ |00〉] = |ξ 〉 ⊗ [
σ

C′
j

Z ⊗n
i=1|�+〉C′

iA
′
i
] + ∣∣�̂Zj

〉
,

U [Xj |ψ〉 ⊗ |00〉] = |ξ 〉 ⊗ [
σ

C′
j

X ⊗n
i=1|�+〉C′

iA
′
i
] + ∣∣�̂Xj

〉
,

U [Yj |ψ〉 ⊗ |00〉] = |ξ 〉 ⊗ [
σ

C′
j

Y ⊗n
i=1|�+〉C′

iA
′
i
] + ∣∣�̂Yj

〉
,

(G2)

where |�̂〉, |�̂Zj
〉, |�̂Xj

〉 all have vector norm smaller than or
equal to θ . Let us concentrate on the first two equations from
(G2) to get

U

[
I ± Zj

2
|ψ〉 ⊗ |00〉

]

= |ξ 〉 ⊗
[
I ± σ

C′
j

Z

2
⊗n

i=1|�+〉C′
iA

′
i

]
+ ∣∣�±

Zj

〉
, (G3)

where ∣∣�±
Zj

〉 = 1
2

(|�̂〉 ± ∣∣�̂Zj

〉)
is such that ∥∥∣∣�±

Zj

〉∥∥ � 1
2

(∥∥∣∣�̂Zj

〉∥∥ + ‖|�̂〉‖) = θ, (G4)
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due to the triangle inequality. Let us also recall that

∥∥∥∥|ξ 〉 ⊗
[
I ± σ

C′
j

Z

2
⊗n

i=1|�+〉C′
iA

′
i

]∥∥∥∥ = ‖|ψZ,±〉‖ = 1√
2
.

(G5)
The subnormalized state Alice receives after Charlie measures
Zj and obtains ±1 is

τ̂Zj ,± = trC ′′CC ′
[
U

†
A

(|ψZ,±〉〈ψZ,±| + ∣∣�±
Zj

〉〈
�±

Zj

∣∣
+ |ψZ,±〉〈�±

Zj

∣∣ + ∣∣�±
Zj

〉〈ψZ,±|)UA

]
= trC ′′CC ′

[
U

†
A

(|ψZ,±〉〈ψZ,±| + �±
Zj

)
UA

]
. (G6)

It is useful to estimate trace norm ‖M‖1 = tr |M| of operator
�±

Zj
. For that purpose we use triangle inequality

∥∥�±
Zj

∥∥
1 = ∥∥∣∣�±

Zj

〉〈
�±

Zj

∣∣ + |ψZ,±〉〈�±
Zj

∣∣ + ∣∣�±
Zj

〉〈ψZ,±|∥∥1

�
∥∥∣∣�±

Zj

〉〈
�±

Zj

∣∣∥∥
1 + ∥∥|ψZ,±〉〈�±

Zj

∣∣∥∥
1

+ ∥∥∣∣�±
Zj

〉〈ψZ,±|∥∥1. (G7)

Let us now estimate the trace norm of each term separately,
starting from the first term

∥∥∣∣�±
Zj

〉〈
�±

Zj

∣∣∥∥
1 = tr

(∣∣∣∣�±
Zj

〉〈
�±

Zj

∣∣∣∣) = tr
(∣∣�±

Zj

〉〈
�±

Zj

∣∣)
= tr

(〈
�±

Zj

∣∣�±
Zj

〉)
� θ2.

The first equality is just the definition of the trace norm,
the second uses positivity of |�±

Zj
〉〈�±

Zj
|, and the inequality

follows from (G4). Trace norm of the second term from (G7)
can be bounded in the following way:

∥∥|ψZ,±〉〈�±
Zj

∣∣∥∥
1 = tr

(√|ψZ,±〉〈�±
Zj

∣∣∣∣�±
Zj

〉〈ψZ,±|) � θ√
2
,

where the inequality follows from (G4) and norm of |ψZ,±〉.
Finally, the trace norm of third term from (G7) is∥∥∣∣�±

Zj

〉〈ψZ,±|∥∥1 = tr
(√∣∣�±

Zj

〉〈ψZ,±||ψZ,±〉〈�±
Zj

∣∣)
= 1√

2
tr

(√∣∣�±
Zj

〉〈
�±

Zj

∣∣) � θ√
2
.

To get the last inequality we used the relation

tr
(√∣∣�±

Zj

〉〈
�±

Zj

∣∣) = tr

⎛
⎝

√√√√〈
�±

Zj

∣∣�±
Zj

〉 ∣∣�±
Zj

〉〈
�±

Zj

∣∣〈
�±

Zj

∣∣�±
Zj

〉
⎞
⎠ � θ,

where the last inequality comes from the fact that
|�±

Zj
〉〈�±

Zj
|/〈�±

Zj
|�±

Zj
〉 is a projector. Finally, (G7) reduces to∥∥�±

Zj

∥∥
1 �

√
2θ + θ2. (G8)

An equivalent bound can be obtained when Charlie measures
Xj or Yj . By rewriting (G7), we can see that Alice’s steered
states have the following form:

τ̂c|z = τc|z + �c|z ∀c, z,

where τc|z are the ideal steered states given in Eq. (F12).
Depending on c and z the operators �c|z are obtained by
tracing out Charlie’s system from the corresponding �±

Pj
, with

P ∈ {Z, X, Y}. For every c and z the correction states �c|z have
bounded trace norm

‖�c|z‖1 = ∥∥ trCC ′C ′′
(
�±

Pj

)∥∥
1 �

∥∥�±
Pj

∥∥
1 �

√
2θ + θ2. (G9)

The first inequality comes from the fact that trace norm cannot
increase by performing partial trace [44]. Similarly, Bob’s
steered states have form

τ̂d|w = τd|w + �d|w,

‖�d|w‖1 �
√

2θ + θ2. (G10)

Equipped with characterization of Alice’s and Bob’s steered
states let us estimate the lowest value of I from (57) when
evaluated on a separable state 	AB = ∑

λ pλ	
A
λ ⊗ 	B

λ :

I =
∑

λ

pλ

∑
c,d,z,w

ω
z,w
c,d tr

[
MA0A

+|
 ⊗ MB0B
+|
 τ̂c|z ⊗ 	A

λ ⊗ 	B
λ ⊗ τ̂d|w

]

=
∑

λ

pλ

∑
c,d,z,w

ω
z,w
c,d tr

[
MA0A

+|
 ⊗ MB0B
+|
 (τc|z + �c|z) ⊗ 	A

λ ⊗ 	B
λ ⊗ (τd|w + �d|w)

]

= Inoiseless +
∑

λ

pλ

∑
c,d,z,w

ω
z,w
c,d

{
tr

[
MA0A

+|
 �c|z ⊗ 	A
λ

]
tr

[
MB0B

+|
 τd|w ⊗ 	B
λ

]
+ tr

[
MA0A

+|
 τc|z ⊗ 	A
λ

]
tr

[
MB0B

+|
 �d|w ⊗ 	B
λ

] + tr
[
MA0A

+|
 �c|z ⊗ 	A
λ

]
tr

[
MB0B

+|
 �d|w ⊗ 	B
λ

]}
. (G11)

Inoiseless is the value I would have in the ideal case θ = 0. To
estimate how negative the total value of I given in Eq. (G11)
can be, we assume the worst case, i.e., Inoiseless = 0 and all
other contributions give negative contribution. To bound the
absolute value of those contributions note that∣∣ tr

[
MA0A

+|
 �c|z ⊗ 	A
λ

]∣∣ � tr
∣∣MA0A

+|
 �c|z ⊗ 	A
λ |

= ∥∥MA0A
+|
 �c|z ⊗ 	A

λ

∥∥
1

�
∥∥MA0A

+|

∥∥

∞
∥∥�c|z ⊗ 	A

λ

∥∥
1

� tr(|�c|z|) tr
(
	A

λ

)
= ‖�c|z‖1 �

√
2θ + θ2. (G12)

The first line follows from the inequality | tr(A)| � tr |A|. To
obtain the third line we used Hölder’s inequality tr(AB ) �
‖A‖∞‖B‖1 [45,46]. The fourth lines uses the fact that infinite
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Schatten norm of MA0A
+|
 is its maximal eigenvalue which

cannot be larger than one. Finally in the fifth line we used
the fact that 	A

λ is a normalized state and (G9). By using the
same argumentation one can show that∣∣ tr

[
MA0A

+|
 τd|w ⊗ 	A
λ

]∣∣ � 1
2 . (G13)

If we plug (G12) and (G13) and their analogs obtained by
transforming (z, c) ↔ (w, d) into (G11) we have that in the
worst case

I ∼ O(θ ).

APPENDIX H: ENTANGLEMENT CERTIFICATION
OF TWO-QUBIT WERNER STATES

Here we analyze the effect of noise in the auxiliary states
when certifying the entanglement of the two-qubit Werner
states

	W (p) = p|�+〉〈�+| + (1 − p)14 , (H1)

where |�+〉 = 1√
2
(|00〉 + |11〉). Note that the optimal entan-

glement witness for these state under white noise is

W = σz ⊗ σz + σy ⊗ σy + σx ⊗ σx + I. (H2)

One has Tr[WρSEP] � 0 and Tr[W	W(p)] = 1 − 3p. From
Eqs. (G11)–(G13) and taking the worst case, one can certify
entanglement using the above witness if

I < −12[(
√

2θ + θ2)2 +
√

2θ + θ2], (H3)

where θ quantifies the robustness of self-testing [see (G1)].
Here the number 12 comes from the number of terms in the
decomposition of the witness (H2) into products of Pauli pro-
jectors. Let us assume that the auxiliary states are also Werner
states with visibility η. Assuming noiseless measurements,
one would expect to observe a value

I = 1
16

(
(1 − 3p)η2 + 2η(1 − η) + (1 − η)2 1

4

)
, (H4)

since there is probability η2 that the auxiliary states both pro-
duce a maximally entangled state and if one or no maximally
entangled states are produced in the auxiliary states the value
of the inequality will be 1/16 or 1/64, respectively. Thus, one

0.92 0.94 0.96 0.98 1.00

0.0018

0.0020
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crit

FIG. 5. Critical robustness of self-testing needed to certify the
entanglement of the Werner state with noise parameter 0.6 as a
function of the visibility of the auxiliary states.

is able to certify entanglement if

I = 1
16

(
(1 − 3p)η2 + 2η(1 − η) + (1 − η)2 1

4

)
< −12[(

√
2θ + θ2)2 +

√
2θ + θ2]. (H5)

This inequality gives the condition that needs to be satisfied in
order to be able to certify the entanglement of the state (H1).
Note that θ will implicitly depend on η through some robust
self-testing statement. Given a particular η, one therefore
needs to ensure that there is a robust self-testing statement
with corresponding θ smaller than some critical θcrit given
by (H5). In Fig. 5 we plot the values of θcrit for different
values of η and taking p = 0.6 (note that the state has a
local hidden variable model in the standard Bell scenario for
this visibility [47,48]). For η = 1 we have θ = 0 which is
below θcrit. As one decreases η, at some point the θ given
by the robust self-testing statement will be above the critical
value and the method will not work. The question is then for
which value of η does this happen? Given the small values
of θcrit this will likely happen for a value of η very close to
1. We do not go further into the analysis here; to get precise
numbers one could use the methods we present in Appendix B
or for better results try to extend the method in Ref. [33] to
the self-testing of measurements. We note however that very
high visibilities can be achieved experimentally, e.g., using
photonic setup visibilities of above 0.999 [49] and 0.997 [50]
have been reported.
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[30] J. Bowles, I. Šupić, D. Cavalcanti, and A. Acín, Device-
independent entanglement certification of all entangled states,
Phys. Rev. Lett. 121, 180503 (2018).

[31] A. Coladangelo, A. Grilo, S. Jeffery, and T. Vidick, Verifier-on-
a-leash: New schemes for verifiable delegated quantum compu-
tation, with quasilinear resources, arXiv:1708.07359.

[32] M. McKague, Quantum information processing with adver-
sarial devices, Ph.D. Thesis, University of Waterloo, Ontario,
Canada, arXiv:1006.2352.

[33] J. Kaniewski, Analytic and (nearly) Optimal Self-Testing
Bounds for the Clauser-Holt-Shimony-Horne and Mermin In-
equalities, Phys. Rev. Lett. 117, 070402 (2016).

[34] A. Acín, S. Pironio, T. Vértesi, and P. Wittek, Optimal ran-
domness certification from one entangled bit, Phys. Rev. A 93,
040102 (2016).

[35] O. Andersson, P. Badziag, I. Bengtsson, I. Dumitru, and A. Ca-
bello, Self-testing properties of Gisin’s elegant Bell inequality,
Phys. Rev. A 96, 032119 (2017).

[36] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt,
Proposed Experiment to Test Local Hidden-Variable Theories,
Phys. Rev. Lett. 23, 880 (1969).

[37] A. Coladangelo, Parallel self-testing of (tilted) EPR pairs via
copies of (tilted) CHSH, Quantum Inf. Comput. 17, 831 (2017).

[38] M. Coudron and A. Natarajan, The parallel-repeated magic
square game is rigid, arXiv:1609.06306.

[39] F. Dupuis, O. Fawzi, and R. Renner, Entropy accumulation,
arXiv:1607.01796.

[40] C. Ci W. Lim, C. Portmann, M. Tomamichel, R. Renner, and
N. Gisin, Device-Independent Quantum Key Distribution with
Local Bell Test, Phys. Rev. X 3, 031006 (2013).

[41] H.-K. Lo, M. Curty, and B. Qi, Measurement-Device-
Independent Quantum Key Distribution, Phys. Rev. Lett. 108,
130503 (2012).

[42] S. L. Braunstein and S. Pirandola, Side-Channel-Free Quantum
Key Distribution, Phys. Rev. Lett. 108, 130502 (2012).
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