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The recent discovery of fully homomorphic classical encryption schemes has had a dramatic effect on the
direction of modern cryptography. Such schemes, however, implicitly rely on the assumption that solving certain
computation problems is intractable. Here we present a quantum encryption scheme which is homomorphic for
arbitrary classical and quantum circuits which have at most some constant number of non-Clifford gates. Unlike
classical schemes, the security of the scheme we present is information theoretic and hence independent of the
computational power of an adversary.
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I. INTRODUCTION

Harnessing the power of quantum mechanics to build
cryptosystems [1,2] is a key motivation for developing quan-
tum technologies. Quantum cryptography often provides
information-theoretic security guarantees relying only on the
correctness of quantum mechanics and avoids the need for
assumptions about the computational hardness of certain
problems as is commonplace in many classical cryptographic
protocols. Such successful quantum approaches to crypto-
graphic problems include secure randomness generation [3,4],
coin flipping [5–7], secret sharing [8–10], and bit commit-
ment [11–14]. One area in particular that has seen significant
progress in recent years is the development of quantum cryp-
tographic protocols for delegated computation [15], which
includes blind quantum computation [16–21] and verifiable
quantum computation [22–27]. Homomorphic encryption has
been recognized as an important primitive for building secure
delegated computation protocols for many decades [28]. It
provides a processing functionality for encrypted quantum
data which stays secret during the evaluation, and a scheme is
said to be fully homomorphic if it allows for arbitrary quantum
computation. Despite widespread interest in this problem, it
was not until 2009 that a computationally secure classical
scheme for fully homomorphic encryption (FHE) was discov-
ered [29], with many improvements following rapidly from
this initial discovery [30,31]. Recently, this topic also has
drawn attention within the quantum information community
[32–37]. One might wonder if quantum cryptosystems can of-
fer unconditionally secure homomorphic encryption schemes
and whether homomorphic encryption could be extended to
allow for evaluation of quantum circuits.

Like their classical counterparts, quantum homomorphic
encryption (QHE) schemes comprise four parts: key gener-
ation, encryption, evaluation, and decryption. Unlike blind
quantum computation [16], in which the computation to be
performed forms part of the secret, QHE schemes do not
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have secret circuit evaluations. Rather, they serve to obscure
only the information that is contained within the state to be
processed using the chosen circuit. The extent to which a
scheme is secure depends on its specifics and in previous
work has varied depending on the precise nature of the set
of computations which can be performed on the encrypted
input. Quantum homomorphic encryption schemes described
in Refs. [36,37] offer some information-theoretic security, but
this is only in the form of a gap between the information
accessible with and without the secret key, a notion of se-
curity which does not imply the stronger notion of security
under composition. These schemes are also limited in the
set of operations that can be performed on the encrypted
data. The scheme in [36] only allows computations in the
boson sampling model, while that in [37] is not known
to support encoded universal quantum computing. Recently,
Dulek et al. [38] used the garden-hose model of computation
with Broadbent and Jeffery’s quantum homomorphic schemes
[39] to allow the evaluation of polynomial-depth circuits.
Several other schemes for computing on encrypted data have
previously been introduced which offer universal quantum
computation, but require interactions between the client and
evaluator [32–35]. This requirement for interaction places
them outside the formalism of homomorphic encryption.

The difficulty in creating a perfectly secure quantum fully
homomorphic encryption scheme persists and is in line with
the no-go results that perfect [40] and approximate [41]
information-theoretic security while enabling arbitrary pro-
cessing of encrypted data is impossible, unless the size of the
encoding grows exponentially. Nonetheless, given the grow-
ing interest in QHE schemes and the multitude of possibilities,
Broadbent and Jeffery set out to provide a rigorous frame-
work for defining QHE schemes [39], basing their security
definitions on the requirement for indistinguishability of code-
words under chosen plaintext attack. Broadbent and Jeffery
also require that a quantum fully homomorphic encryption
satisfies two properties: correctness and compactness. Perfect
correctness occurs when the evaluated output on the cipher-
state after decryption is equivalent to the output of the direct
evaluation on the quantum plaintext. A scheme is compact
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if the circuit complexity of the decryption algorithm does
not depend on the computation to be evaluated and scales
only polynomially in the size of the plaintext. An important
implication of the compactness requirement for QHE schemes
is that the decryption algorithm of such schemes cannot in any
way depend on the evaluated computation. This necessarily
implies that a one-time-padding scheme, where random Pauli
matrices encrypt the quantum input, does not qualify as a
QHE scheme. This is because the decryption algorithm of a
one-time-padding scheme is not independent of the evaluated
computation.

We present a QHE scheme that supports evaluation
of quantum circuits with a constant number of T gates
on multiple copies of the input qubits while providing
strong information-theoretic security guarantees. The pro-
posed scheme, which requires the encoder to be able to pro-
duce multiple copies of the input state, builds on constructions
taken from quantum codes to provide gates for universal
quantum computation. The block of qubits that contains the
code is embedded in a larger set of qubits that are initialized
in a maximally mixed state. The qubits are then shuffled in a
specific but random way to hide the qubits that contain that
code. In our scheme, the evaluation of each T gate succeeds
with a probability of 1

2 . This leads to a trade-off between the
size of the encoding and the success probability, since the
probability of success can be amplified by encoding several
instances of the plaintext in parallel. To achieve a constant
success probability, however, the size of this encoding would
scale exponentially in the total number of T gates to be
performed. Hence, in order to maintain compactness, we
restrict evaluation to circuits containing at most some constant
number of T gates. The computational model that we consider
is nontrivial in the sense that even performing just the Clifford
operations on an arbitrary quantum input is known to be hard
unless the polynomial hierarchy collapses [42–45].

Our protocol guarantees that the trace distance between
ciphertexts corresponding to arbitrary pairs of quantum inputs
is exponentially suppressed in the key size less half the total
number of qubits used for the quantum input. An encryption
scheme has entropic security if an adversary whose minimum
entropy on the encrypted message is upper bounded cannot
guess any function of the message [46,47]. When the quantum
minimum entropy of the source in our scheme is sufficiently
large, the trace distance between ciphertexts is exponentially
suppressed in only the key size. Since an exponentially
suppressed trace distance implies entropic security [46], our
scheme is also secure for high-entropy quantum inputs on any
number of qubits with a constant key size.

This is a significantly stronger security guarantee than
previous homomorphic encryption schemes presented in
Refs. [36,37]. Moreover, the computational power of our
scheme is similar to that of Broadbent and Jeffery’s while
avoiding reliance on the classical homomorphic encryption
scheme. This use of classical fully homomorphic encryption is
the weakest link in the Broadbent-Jeffery cryptosystem, since
it relies on computational assumptions.1 When considering

1We note that since the Broadbent-Jeffery cryptosystem utilizes the
classical FHE to compute sums of hidden subsets, it may be possible
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FIG. 1. The shaded circles represent data qubits. Within the xth
row, the n data qubits are in a code encoded by Ux . The unshaded
circles are ancilla qubits which are completely mixed. There are b

copies of r logical qubits. A random permutation of the columns
completes the encryption procedure of our quantum homomorphic
encryption scheme.

the case of no T gates, it is instructive to compare the de-
cryption complexities of our QHE scheme and the non-QHE
quantum one-time-padding scheme. In the one-time-padding
scheme, it is necessary for the decryption routine to take into
account a description of the entire circuit which has been
performed. Due to the number of Clifford group operations,
this implies that the decryption algorithm has complexity at
least quadratic in the plaintext size. In contrast, our QHE
scheme requires only a linear complexity for decryption, as
long as it has at most a constant number of T gates in the
evaluated computation.

II. OUR QHE SCHEME

Our QHE scheme takes as its input an r-qubit state ρinput

and t independent copies of the magic state |T 〉〈T | = I
2 +

X+Y

2
√

2
, all arranged in a single column (see Fig. 1), where I ,

X, Y , and Z are the usual Pauli matrices. We then introduce
2n − 1 more columns of maximally mixed qubits to obtain
a grid of qubits with r + t rows and 2n columns. Here we
require n−1

4 to be a non-negative integer. Of the new columns
introduced, n − 1 of them are incorporated as data qubits
while the remaining n columns are used as ancillae in the
encryption. An encoding quantum circuit U = U1 ⊗ · · · ⊗
Ur+t applies row-wise on the first n columns, where Ux

operates on the xth row (see Fig. 2). We take Ax and Bx to
denote the first and last n − 1 gates in Ux , respectively, so
Ux = BxAx . Applying U spreads the quantum input from just
the first column to the first n columns. Since every qubit not
residing on the first column is maximally mixed, the encoding
circuit on each row encodes the quantum data on the first
column into a random quantum code, the resultant quantum
information of which resides in a random codespace on the
first n columns. Namely, on the xth row, the encoding maps an
arbitrary state ρinput = I+rXX+rY Y+rZZ

2 in the first column and
with maximally mixed states on the remaining n − 1 columns

to remove the computational assumptions by replacing the FHE
scheme with an information-theoretic secure scheme which allows
evaluation of only linear circuits. However, no analysis of such a
modification has yet appeared in the literature.
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FIG. 2. Encoding quantum circuit Ux = BxAx that is applied on
the first n qubits in the xth row. Each line represents one qubit and
the gates are applied in the order from left to right.

to the mixed state Ux[ I+rXX+rY Y+rZZ
2 ⊗ [( I

2 )⊗n−1]]U †
x , which

is equivalent to 2−n(I⊗n + rXX⊗n + rY Y⊗n + rZZ⊗n). We
emphasize at this point that any state in our random codespace
is a highly mixed state. Encryption is then achieved via ran-
domly permuting the 2n columns using a secret permutation
κ . Permuting the columns brings the quantum information
to be processed from the first n columns to the columns
k1, . . . , kn, where 1 � k1 < · · · < kn � 2n. For the decryp-
tion algorithm, one performs the inverse permutation of the
columns κ−1, followed by the inverse unitary U † on the first
n columns of the grid. Finally, every qubit in the rows r + 1
to r + t is measured in the computation basis. The quantum
output of our scheme is then located on the first r rows of the
first column of our grid of qubits.

The single-qubit logical Clifford operators of each of our
random codes on n qubits are transversal gates on those
n qubits. This means that a logical G operator on the xth
row is G⊗n that operates on the first n columns for every
Clifford gate G in the set generated by {S,H }, where S =
|0〉〈0| + i|1〉〈1| and H = X+Z√

2
is the Hadamard matrix. To

see this, notice that Ux (Z ⊗ I⊗n−1) = BxAx (Z ⊗ I⊗n−1) =
Bx (Z ⊗ I⊗n−1)Ax = Z⊗nBxAx = Z⊗nUx . Hence our encod-
ing circuit Ux maps the physical Z on one qubit to Z⊗n. Sim-
ilarly, Ux (X ⊗ I⊗n−1) = BxAx (X ⊗ I⊗n−1) = BxX

⊗nAx =
Xn ⊗ X⊗n−1BxAx . Since n is odd, we get Ux (X ⊗ I⊗n−1) =
X⊗nUx . Thus our encoding circuit Ux maps the physical X on
one qubit to X⊗n. Since Y = iXZ and n − 1 is also divisible
by 4, our encoding circuit Ux maps the physical Y on one
qubit to Y⊗n. Now X⊗n and Z⊗n anticommute because n is
odd, and the Y⊗n anticommutes with X⊗n and Z⊗n. Upon
conjugation by H⊗n, X⊗n becomes Z⊗n and Z⊗n becomes
X⊗n, and Y⊗n becomes −Y⊗n. Upon conjugation by the S⊗n

gate, X⊗n and Y⊗n become Y⊗n and −X⊗n, respectively.
Transversality of the logical CNOT operation with the control
and target on distinct rows follows immediately from the
transversality of the logical X operation. Thus the transversal
Clifford operations on the n columns containing the encoded
quantum data are precisely the logical Clifford operations.

The evaluator operates independently and identically on
not n but 2n columns of qubits, n columns of which are
the maximally mixed state. The independent and identical
structure of the evaluator’s operations allows these operations
to commute with any secret permutation of the columns of
the qubits on the grid. In addition, the evaluators’ operations
necessarily map the n columns of qubits initialized in the max-
imally mixed state to the maximally mixed state, thereby im-
plementing independently and identically quantum operations

TH|0 Z meas

|ψ T |ψ with probability 1
2

FIG. 3. Gate teleportation of the T gate without correction.

on only the columns containing the encoded quantum data.
This allows the evaluator to perform transversal gates on the n

columns with the quantum data without knowing where they
are located.

The evaluation algorithm takes as input a sequence of
unitary operations V1, . . . , Vd to be performed securely on r

qubits, where each Vi either applies a Clifford gate or a T gate
locally on a single qubit or applies a CNOT gate locally on a
pair of qubits. The number of T gates to be applied locally
among the unitary operations V1, . . . , Vd is at most t . The
circuit to be evaluated is V = Vd, . . . , V1, where the evaluator
applies homomorphisms of the gates V1, . . . , Vd sequentially.

When Vi is a unitary operation that applies a Clifford
gate G locally on the xth qubit, the evaluator can apply the
logical G gate on our random code on the xth row without
any knowledge of the data columns k1, . . . , kn. To do so, the
evaluator simply applies the unitary G⊗2n on the 2n qubits
located on the xth row on each copy. Since conjugating a
maximally mixed state I

2 by any qubit unitary operation yields
also a maximally mixed state, the net effect is to apply the
unitary G⊗n on the qubits in the encrypted data columns
k1, . . . , kn on the xth row, which is the logical G gate on the
xth row.

When Vi is a unitary operation that applies a CNOT gate
with a control on the xth qubit and a target on the yth
qubit, denoted by CNOTx,y , the evaluator can also apply the
corresponding logical CNOT gate on our random code on the
xth and yth row without any knowledge of the data columns
k1, . . . , kn. To do so, the evaluator simply applies a CNOT gate
with a control qubit on the xth row and the j th column and
a target qubit on the yth row and the j th column for every
j = 1, . . . , 2n. As before, the net effect is to apply the unitary
CNOT⊗n gate on the qubits in the encrypted data columns
k1, . . . , kn with control qubits on the xth row and target qubits
on the yth row, which is the correct logical CNOT gate, which
we denote by CNOTx,y .

When Vi is a unitary operation that applies the kth non-
Clifford gate T = |0〉〈0| + eiπ/4|1〉〈1| on the xth qubit, the
evaluator has to perform gate teleportation [48,49]. Now
consider gate teleportation of a single-qubit gate T . Omitting
the correction operation required by gate teleportation allows
this procedure to succeed with probability 1

2 , as depicted
in Fig. 3. The principle of deferred measurement [50] al-
lows deferment of the required measurement until decryp-
tion. To implement gate teleportation of the logical T op-
eration, the evaluator applies homomorphisms for CNOTx,r+k

and CNOTr+k,x sequentially. Because of the ancilla columns
being in the maximally mixed state, the unitary CNOTx,r+k

and then the unitary CNOTr+k,x are effectively applied on
the data columns k1, . . . , kn. For the data qubits encoded on
the random codespace, this action implements a logical T

gate on the random codespace with probability 1
2 when the
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outcome of the logical Z measurement is 0. This scheme
works because by replacing each Pauli operator in the Pauli
decomposition of |T 〉〈T | with the corresponding logical Pauli
operator, we obtain precisely the logical |T 〉〈T | state. We
emphasize that the outcome of the logical Z measurement
is a flag for the correctness of the implementation of the T

gate: If the outcome is 0 the gate is successfully implemented;
otherwise the implementation fails.

Our scheme with heralded success satisfies the correctness
condition of Broadbent and Jeffery. Each copy of our scheme
yields the correct quantum output with constant probability
2−t . Extra copies simply amplify the probability of success.
Thus, although each instance of our scheme implements T

nondeterministically, it has heralded perfect completeness:
Namely, b = �√ α

2 + 1�222t copies of our scheme yield the
correct output in at least one copy with probability at least
1 − e−α and we know which of the b copies yields the correct
output. A large α amplifies the success probability close to
unity.

In the three-part algorithm for the decryption, U † requires
2(n − 1)b(r + t ) gates and unpermuting of the columns re-
quires at most (2n − 1)b(r + t ) gates (the largest cycle con-
tained in any element of S2n is a 2n-cycle which can be
written as a product of 2n − 1 swaps). The remainder of
the decryption involves a readout of Z measurements and
discarding a subsystem. Since t is constant, b is also constant,
and the total number of gates required for decryption scales
linearly with r and is independent of the depth of the circuit
to be evaluated. Hence, our scheme is compact for the family
of circuits on r qubits with a constant maximum number of T

gates and any number of Clifford gates.
Randomly permuting the columns of qubits obfuscates the

subset of columns where the quantum information resides,
thereby encrypting the quantum data. The maximum trace
distance between any two quantum ciphertexts with minimum
entropy h is

ε �
√

2p−h

(
2n

n

)−1/2

, (1)

where p = b(r + t ). In the worst case, where h = 0, ε is
exponentially suppressed in n as long as the key size n grows
linearly with the input size r . However, when t = 0, b = 1,
and h = r − x for any constant x, the key size n can be
independent of the input size r while having ε exponentially
suppressed in n. In both cases, any two quantum ciphertexts
are essentially the maximally mixed state and hence indistin-
guishable in our scheme.

To obtain Eq. (1), we first obtain a Pauli decomposition of
any arbitrary state that the evaluator receives. Let the density
matrices ρ and ρ ′ on b copies of 2n(r + t ) qubits be any two
arbitrary inputs to the scheme before encoding and encryption.
Let ρ̃ and ρ̃ ′ be the corresponding states after encoding and
encryption. Then ε = 1

2 maxρ,ρ ′ ‖ρ̃ − ρ̃ ′‖tr . In this maximiza-
tion, only the p = b(r + t ) qubits in the first column are
arbitrary and the remaining columns are in the maximally
mixed state. Note that ‖ρ̃ − ρ̃ ′‖tr = Tr[M (ρ̃ − ρ̃ ′)] for some
optimal Hermitian M diagonal in the same basis as ρ̃ − ρ̃ ′,
with eigenvalues equal to +1 or −1. More precisely, if
ρ̃ − ρ̃ ′ has the spectral decomposition

∑
i λi |i〉〈i|, then M =

∑
i sgn(λi )|i〉〈i|, where sgn(λi ) = 1 if λi � 0 and sgn(λi ) =

−1 otherwise. Now define σ0 = I , σ1 = X, σ2 = Y , and σ3 =
Z. Let Mp,2n(Z4) denote the set of all matrices with p rows
and 2n columns and entries from {0, 1, 2, 3}. Given any matrix
A ∈ Mp,2n(Z4), let ax,y denote its component in the xth
row and the yth column. Define the unitary matrix σA to
be one that applies σax,y

on the xth row and yth column of
our grid of qubits for every x = 1, . . . , p and y = 1, . . . , 2n.
Define the set of all column permutations of σA as SA and
the corresponding symmetric sum of σA as σ̃A = ∑

τ∈SA
τ .

Let � denote the set of nonzero column vectors of length p

with entries from {0, 1, 2, 3}. For all v ∈ �, let ϕ(v) denote
a matrix with p rows and 2n columns such that its first n

columns are identical to v and the last n columns have all en-
tries equal to zero. Notice that for distinct v, v′ ∈ �, σ̃ϕ(v) and
σ̃ϕ(v′ ) are also distinct. Let S denote some minimal subset of
Mp,2n(Z4) such that {σ̃A : A ∈ S} = {σ̃A : A ∈ Mp,2n(Z4)}.
Now we can always have ϕ(v) ∈ S for every v ∈ �. Let M̃ =

1
(2n)!

∑
π πMπ †, where π is any column permutation. Then

we can write M̃ = ∑
A∈S aAσ̃A for appropriate real constants

aA.
Linearity and the cyclic property of the trace give

Tr[M (ρ̃ − ρ̃ ′)] = Tr[M̃ (ρ − ρ ′)]. Using the decomposition
ρ − ρ ′ = ∑

v∈�

rv−r ′
v

22np σϕ(v) for appropriate real constants rv

and r ′
v, the decomposition of M̃ , the linearity of trace, and

the triangle inequality, we get

‖ρ̃ − ρ̃ ′‖tr �
∑
v∈�

∑
B∈S

∣∣∣∣Tr aBσ̃B

rv − r ′
v

22np
σϕ(v)

∣∣∣∣. (2)

Orthogonality of the Pauli operators under the Hilbert-
Schmidt inner product gives

‖ρ̃ − ρ̃ ′‖tr �
∑
v∈�

|Tr aϕ(v)(rv − r ′
v )|. (3)

The Cauchy-Schwarz inequality implies that ‖ρ̃ − ρ̃ ′‖tr �√∑
v∈� a2

ϕ(v)

√∑
v∈�(rv − r ′

v )2. Since in Loewner
order M̃2 � I and hence Tr(M̃2) � Tr(I ), we have∑

v∈� a2
ϕ(v)

(2n

n

)
� 1. Next we show that

∑
v∈�(rv − r ′

v )2 �
2p−h+2 if the p-qubit inputs to the first column of our
scheme have a quantum minimum entropy [51] of h.
Let τ and τ ′ be unencrypted p-qubit states, with ρ =
U [τ ⊗ (I/2)⊗(2n−1)p]U † and ρ ′ = U [τ ′ ⊗ (I/2)⊗(2n−1)p]U †.
The Pauli decompositions τ = 2−p

∑
v∈� rvσv and

τ ′ = 2−p
∑

v∈� rvσv imply that Tr[(τ − τ ′)2] = ∑
v∈�(rv −

r ′
v )22−p. Given the minimum entropy of τ and τ ′, their

maximum eigenvalue is 2−h. Hence Tr[(τ − τ ′)2] � 2−h+2.
Then

∑
v∈�(rv − r ′

v )2 � 2p−h+2 and Eq. (1) can thereby be
obtained.

III. CONCLUSION

In summary, our QHE scheme encodes the quantum input
using random codes, encrypts and decrypts via a secret permu-
tation, and allows the evaluator to compute a constant number
of non-Clifford (T ) gates on the encrypted data. Since the en-
crypted quantum ciphertexts are almost indistinguishable, the
evaluator is essentially oblivious to the quantum input, which
gives our scheme its information-theoretic security. Moreover,
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our scheme trivially allows homomorphisms of arbitrary re-
versible linear Boolean circuits using the homomorphisms of
CNOT and X gates. Our scheme may also offer robustness to
noise when the encrypter holds purifications to the maximally
mixed states used in the random encodings and performs a
recovery operation dependent on the classical measurement
outcomes on the encrypter’s ancillary registers, and we leave
this for future study. We would also like to point out that it
is sometimes preferable to use a quantum one-time-padding
scheme as opposed to our scheme for delegated computation,
for example, when no T gates need to be performed and when
all the input states are stabilized by Clifford gates.
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APPENDIX: SECURITY PROOF

Here we provide a detailed proof of Eq. (1). We begin by
reviewing some terminology.

In our scheme, qubits are arranged on a grid with p

rows and 2n columns. In the encryption procedure, the
columns of 2n qubits are randomly permuted. Hence we
consider S2n, a symmetric group of order 2n, and its rep-
resentation νp,2n. For every permutation π ∈ S2n and every
A = ∑p

x=1

∑2n
y=1 ax,y |x〉〈y| ∈ Mp,2n, we let νp,q : S2n →

M(C2np ) be a representation of S2n such that for every matrix
representation Pπ = νp,q (π ) of π ∈ S2n we have

PπσAP †
π =

2n⊗
y=1

⎛
⎝ p⊗

y=1

σax,π (y)

⎞
⎠. (A1)

The matrices Pπ are the permutation operations that permute
the columns in our scheme. With these permutation opera-
tions, we can define the set of Pauli matrices generated from
all possible column permutations of a particular Pauli matrix
σA, given by

SA = {PπσAP †
π : π ∈ S2n}. (A2)

The symmetrized Pauli matrix associated with the Pauli ma-
trix σA is the sum of all the terms in SA given explicitly by
σ̃A = ∑

τ∈SA
τ .

Equation (1) provides an upper bound on the trace norm of
the difference between two encrypted inputs to our scheme,
given by ρ̃ and ρ̃ ′, respectively. Here ρ̃ and ρ̃ ′ are uniform
mixtures of all column permutations of the unencrypted inputs
ρ and ρ ′, respectively, where

ρ̃ = 1

(2n)!

∑
π ∈ S2n

PπρP †
π , ρ̃ ′ = 1

(2n)!

∑
π ∈ S2n

Pπρ ′P †
π .

(A3)

The matrix ρ̃ − ρ̃ ′ admits the spectral decomposition

ρ̃ − ρ̃ ′ =
∑

i

λi |ψi〉〈ψi | , (A4)

where {|ψi〉} is an eigenbasis of ρ̃ − ρ̃ ′. Now let
M = ∑

i sgn(λi ) |ψi〉〈ψi |, where sgn(x) = 1 if x � 0 and
sgn(x) = −1 if x < 0. From the definition of the trace norm,
we have ‖ρ̃ − ρ̃ ′‖tr = Tr[M (ρ̃ − ρ̃ ′)] because

‖ρ̃ − ρ̃ ′‖tr = Tr |ρ̃ − ρ̃ ′| = Tr[
√

(ρ̃ − ρ̃ ′)2]

=
∑

i

|λi | =
∑

i

sgn(λi )λi

= Tr[M (ρ̃ − ρ̃ ′)]. (A5)

The trace norm is non-negative and hence equal to its absolute
value. Thus,

‖ρ̃ − ρ̃ ′‖tr =| Tr[M (ρ̃ − ρ̃ ′)]|, (A6)

and using the cyclic property of the trace, we get

‖ρ̃ − ρ̃ ′‖tr =| Tr[M̃ (ρ − ρ ′)]|, (A7)

where

M̃ = 1

(2n)!

∑
π ∈ S2n

PπMP †
π . (A8)

The decomposition of M̃ into the symmetrized Pauli matrices
and the decomposition of the traceless quantity ρ − ρ ′ into the
usual Pauli matrices can be substituted into Eq. (A7) to yield

‖ρ̃ − ρ̃ ′‖tr =
∣∣∣∣∣Tr

(∑
A∈S

aAσ̃A

∑
v∈�

rv − r ′
v

22np
σϕ(v)

)∣∣∣∣∣. (A9)

Recall that � is the set of all nonzero column vectors of length
p with components from the set {0, 1, 2, 3}, and for every
v ∈ �, ϕ(v) is a matrix with 2n columns where the first n

columns are identical to v and the remaining n columns are
zero vectors. Using the orthogonality of the Pauli operators
on Eq. (A9) yields

‖ρ̃ − ρ̃ ′‖tr =
∣∣∣∣∣Tr

(∑
v∈�

aϕ(v)
rv − r ′

v

22np
σ 2

ϕ(v)

)∣∣∣∣∣
=

∣∣∣∣∣
∑
v∈�

aϕ(v)(rv − r ′
v )

∣∣∣∣∣. (A10)

Applying the Cauchy-Schwarz inequality on the above yields

‖ρ̃ − ρ̃ ′‖tr �
√∑

v∈�

a2
ϕ(v)

√∑
v∈�

(rv − r ′
v )2. (A11)

Now define the input states on only the first column of qubits
to be

τ = I⊗p + ∑
v∈� rvσv

2p
, τ ′ = I⊗p + ∑

v∈� r ′
vσv

2p
. (A12)

The maximum eigenvalue of each of these states is 2−h, where
h is their minimum entropies. We can use these states to obtain
an upper bound on

∑
v∈�(rv − r ′

v )2. Note that

Tr[(τ − τ ′)2] � ‖τ − τ ′‖tr‖τ − τ ′‖∞, (A13)
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where ‖τ − τ ′‖∞ denotes the ∞-norm on the eigenvalues
of τ − τ ′. Since ‖τ − τ ′‖tr � ‖τ‖tr + ‖τ ′‖tr � 1 + 1 = 2 and
‖τ − τ ′‖∞ � ‖τ‖∞ + ‖τ ′‖∞ = 2−h + 2−h = 2−h+1, we get

Tr[(τ − τ ′)2] � 2−h+2. (A14)

Note also that by the orthogonality of the Pauli operators,

Tr[(τ − τ ′)2]

= Tr

[(∑
v∈�

(rv − r ′
v )2−pσv

)(∑
w∈�

(rw − r ′
w)2−pσw

)]

= Tr

(∑
v∈�

(rv − r ′
v )22−2pσ 2

v

)
=

∑
v∈�

(rv − r ′
v )22−p. (A15)

Hence √∑
v∈�

(rv − r ′
v )2 � 2

√
2p−h. (A16)

To obtain an upper bound for
√∑

v∈� a2
ϕ(v), we obtain

upper and lower bounds on Tr(M̃2). Now we obtain an
upper bound for Tr(M̃2). By Hölder’s inequality, Tr(M̃2) �
‖M̃‖tr‖M̃‖∞. Convexity of the norms then implies that

Tr(M̃2) � ‖M‖tr‖M‖∞ = 22np. (A17)

The lower bound on Tr(M̃2) requires us to expand M̃ in terms
of the symmetrized Pauli operators. Then

Tr(M̃2) = Tr

( ∑
A,A′∈S

aAaA′ σ̃Aσ̃A′

)
. (A18)

By the orthogonality of the symmetrized Pauli operators and
linearity of the trace, we get

Tr(M̃2) = Tr

(∑
A∈S

a2
A(σ̃A)2

)
=

∑
A∈S

a2
A Tr((σ̃A)2)

�
∑
v∈�

a2
ϕ(v) Tr[(σ̃ϕ(v) )

2]. (A19)

Now σ̃ϕ(v) is the sum of
(2n

n

)
Pauli operators, because there

are
(2n

n

)
ways to permute the 2n columns of a matrix with n

identical columns and n columns of zeros. Thus Tr(σ̃ 2
ϕ(v) ) =(2n

n

)
2np and

Tr(M̃2) �
∑
v∈�

a2
ϕ(v)

(
2n

n

)
22np. (A20)

Equations (A17) and (A20) together imply that√∑
v∈�

a2
ϕ(v) �

(
2n

n

)−1/2

. (A21)

Hence

‖ρ̃ − ρ̃ ′‖tr � 2
√

2p−h

(
2n

n

)−1/2

. (A22)

The trace distance between two states is half of the trace
norm of the difference between the two states and hence
ε �

√
2p−h( 2n

n
)−1/2.
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