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We study a generalized coupling system between a superconducting qubit and two nanomechanical resonators.
When the eigenfrequency of the superconducting qubit is twice the frequency of the resonators, we show
that one qubit is able to excite simultaneously two resonators. Moreover, tripartite and bipartite macroscopic
entangled states are generated, respectively. We give conditions under which general tripartite and bipartite
entangled nonorthogonal states become maximally entangled states. Under a large detuning condition, the
coupling between two resonators is induced by a superconducting qubit. This coupling strength can be enhanced
via a squeezing transformation.

DOI: 10.1103/PhysRevA.98.042331

I. INTRODUCTION

With the rapid development of fabrication techniques, a
nanomechanical resonator (NR) is a promising candidate for
studying the quantum behavior in mesoscopic mechanical sys-
tems, due to frequencies in the gigahertz range [1] and quality
factors approaching 105 at millidegrees Kelvin temperatures
[2,3]. In the past decade, NR has attracted great attention
from both theorists and experimentalists. For instance, the
superpositions of macroscopically distinct quantum states in
a NR have been created and detected [4], the ground-state
cooling of a NR has been explored [5–10], a phonon blockade
in a NR has been studied [11], quantum entanglement between
two NRs has been experimentally demonstrated [12,13], the
coupling between NR and several types of matter qubits [su-
perconducting qubits, atoms, or nitrogen-vacancy (NV) cen-
ters] has been considered [4,14–20], and quantum information
processing with nanomechanical qubits has been proposed
[21], and so on.

The flexural modes of thin beams of a NR can be described
by the Euler-Bernoulli equations [22]. Its fundamental-mode
response can be well described as a damped simple harmonic
oscillator with a characteristic resonant frequency ω and ef-
fective mass m [23]. After a second quantization, the Hamilto-
nian can be written as HNR = h̄ω(a†a + 1/2), where a† (a) is
the phonon creation (annihilation) operator. The fundamental
vibrational mode frequencies in the range from 10 MHz to
1 GHz [24,25] and an effective mass m = 4 × 10−16 kg [14]
have been fabricated. The quantized nature of the oscillator
energy yields an intrinsic fluctuation amplitude, that is, a
zero-point uncertainty �x = √

h̄/2mω. Because of the small
mass, a zero-point uncertainty �x = 2 × 10−14 m has been
reported [2]. The NR could be a candidate for detecting the
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transition from classical to quantum noise, because its small
mass gives a relatively large zero-point displacement noise
[2]. The displacement of the NR results in a linear modulation
of the capacitance between the NR and the superconducting
qubit [14].

In this paper, we study a hybrid solid quantum model,
which consists of a superconducting qubit and two NRs.
We find that one qubit is able to excite simultaneously two
NRs when the eigenfrequency of the superconducting qubit is
twice the frequency of the NRs. When the external magnetic
flux is set as �e ≈ �0/2, where �0 is the magnetic-flux
quantum, the coupling is longitudinal and the system’s parity
is conserved. We show that macroscopic tripartite entangled
states can be generated by this system. The measurement
of the entanglement of nonorthogonal macroscopic tripartite
states is demonstrated. Moreover, entangled coherent states
of two NRs are obtained by quantum measuring of the su-
perconducting qubit. If the superconducting qubit works near
the degenerate point, the system can be described by the Rabi
model. When the detuning between the superconducting qubit
and the NR is much larger than their coupling strength, the
system reduces to the Jaynes-Cummings (JC) model under the
rotating-wave approximation. The superconducting qubit can
induce the interaction of two NRs.

II. MODEL

We study a hybrid quantum model depicted in Fig. 1, which
consists of a superconducting qubit interacting with two NRs
via an electrostatic force. Superconducting qubits based on
Josephson junctions have recently become the subjects of
intense research because they can be designed, fabricated, and
controlled for various research purposes [26–29]. Supercon-
ducting qubits based on Josephson junctions can basically be
divided into four kinds of qubits, called charge, flux, phase,
and transmon qubits [28,29]. In this paper, we choose the
charge qubit as an example. Also, we can choose the flux,
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FIG. 1. Schematic diagram of a charge qubit coupled with two
nanomechanical resonators (NRs). This superconducting qubit is
constructed by two identical Josephson junctions and can be con-
trolled by the gate voltage Vg , gate capacitance Cg , and the external
magnetic flux �e. Cx is the coupling capacitance between the charge
qubit and the NR. C ′

x and Vx are the capacitance and bias voltage of
the NR, respectively.

phase, or transmon qubit. The charge qubit is constructed of
two identical Josephson junctions with a charging energy EC ,
Josephson energy EJ , and Josephson capacitance CJ . It can
be controlled by the gate voltage Vg , gate capacitance Cg , and
the external magnetic flux �e. The Hamiltonian of a charge
qubit is Hs = −2EC (1 − 2ng )σz − EJ cos(π�e/�0)σx [28],
where ng = CgVg/2e is the gate charge, σx = |0〉〈1| + |1〉〈0|
and σz = |1〉〈1| − |0〉〈0| are the Pauli matrices, and quantum
states |0〉 and |1〉 represent zero and one extra Cooper pairs.

The interaction between the charge qubit and the NR is
realized via the coupling capacitance Cx . The linear coupling
of a NR to a superconducting qubit will produce interest-
ing nonclassical effects [17]. If the distance d between the
charge qubit and the NR is much larger than the zero-point
uncertainty of the NR �x, the interaction Hamiltonian is
g(a + a†)σz [4,14,17], where g = −2ECCxVx�x/de is the
capacitive coupling constant with a bias voltage Vx of the NR.

The total Hamiltonian of a charge qubit coupled to two
NRs reads (h̄ = 1)

H = εσz − δσx +
∑
i=1,2

[ωia
†
i ai + g(a†

i + ai )σz], (1)

where the parameters ε = 2EC[2(ng + nx ) − 1] with a charg-
ing energy EC = e2/2(2CJ + Cg + 2C� ), the effective ca-
pacitance C� is given by C� = CxC

′
x/(Cx + C ′

x ), where
C ′

x is the capacitance of the NR, nx = CxVx/2e, and δ =
2EJ cos(π�e/�0). The first and second terms are free Hamil-
tonians of the charge qubit. The third term is a free Hamil-
tonian of two NRs, where ωi and a

†
i (ai) are the frequency

and phonon creation (annihilation) operators of the ith NR,
respectively. The last term represents the interaction Hamilto-
nian between a charge qubit and two NRs.

FIG. 2. Transitions between the bare states |+00〉 and |−11〉
via an intermediate state (|−10〉 + |−01〉)/

√
2. Here, the

excitation-number nonconserving process is represented by the
arrowed dashed line.

After transformation to the eigenbasis of the charge qubit,
the total Hamiltonian (1) can be written as

H = �τz +
∑
i=1,2

[ωia
†
i ai + g(a†

i + ai )(cos θτz − sin θτx )],

(2)

where � = √
ε2 + δ2 is the energy-level separation of the

charge qubit, and τx = τ+ + τ− = |+〉〈−| + |−〉〈+| and
τz = |+〉〈+| − |−〉〈−| are the Pauli matrices, where the
eigenbasis |+〉 and |−〉 are defined by |+〉 = cos θ |0〉 +
sin θ |1〉 and |−〉 = − sin θ |0〉 + cos θ |1〉, respectively. The
parameters cos θ = ε/� and sin θ = δ/� can be adjusted by
the gate voltage Vg , gate capacitance Cg , coupling capacitance
Cx , bias voltage Vx , and the external magnetic flux �e.
Longitudinal and transverse couplings coexist in this model
[30]. Hamiltonian (2) contains counter-rotating terms a

†
i τz,

aiτz, a
†
i τ

+, and aiτ
−. The first and second terms create and

annihilate one excitation while the last two terms create and
annihilate two excitations, respectively. Also, this Hamilto-
nian describes the system consisting of a two-level atom
interacting with double-cavity modes with symmetry-broken
potentials.

We investigate the situation where the charge qubit is in
the quantum state |+〉 and the two NRs are initially in the
vacuum state |00〉, corresponding to the initial state |+00〉 of
the system. We find that, if � ≈ 2ωi , a qubit is able to excite
simultaneously two NRs, i.e., |+00〉 → |−11〉. The process
is shown in Fig. 2, where the initial state |+00〉 goes to an
intermediate state (|−10〉 + |−01〉)/

√
2, and then comes back

to the final state |−11〉. This path includes two transitions
involving resonance with the intermediate state. By applying
standard perturbation theory, the transition rate can be written
as

�i→f = 2π
∣∣�eff

f i

∣∣2
δ(Ef − Ei ), (3)

where the subscripts i and f represent the initial state |+00〉
and final state |−11〉 with corresponding energies Ei and
Ef , and �f i is the effective coupling strength between the
initial and final states. According to second-order perturbation
theory, the effective coupling strength is

�eff
f i = 8g2 sin θ cos θ

�
, (4)
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with a perturbation of the form � = g
∑

i=1,2[(a†
i + ai )

(cos θτz − sin θτx )]. From Eq. (4), we find that the effective
coupling strength �eff

f i depends on the mixing angle θ , and it
is maximum for θ = π/4. We choose the coupling rate g/� =
0.1, and an effective Rabi splitting 2�eff

f i/2π = 16 MHz can
be obtained for the coupling strength g/2π = 10 MHz. Ref-
erence [31] has discussed that one photon can simultaneously
excite two atoms in a quantum system, which constituted two
atoms coupled to a single-mode resonator.

III. GENERATION OF MACROSCOPIC
ENTANGLED STATES

Under the operating condition of �e ≈ �0/2, the total
Hamiltonian (2) becomes

H1 ≈ �τz +
∑
i=1,2

[ωia
†
i ai + g(a†

i + ai )τz]. (5)

The system only exists with longitudinal coupling. In the
interaction picture, the Hamiltonian of the total system is

H1,I =
∑
i=1,2

g(a†
i e

iωi t + aie
−iωi t )τz. (6)

This Hamiltonian describes two NRs that are
conditionally displaced by the states of the charge
qubit. The unitary evolution operator associated with
the Hamiltonian (6) can be expressed as U (t ) =
exp{i�(t )} exp {τz

∑
i [ηi (t )a†

i − η∗
i (t )ai]}, where �(t ) =∑

i (g/ωi )2[ωit − sin(ωit )] is a global phase factor and
ηi (t ) = (g/ωi )(1 − eiωi t ) is the displacement amplitude.
Initially, suppose the charge qubit is in a superposition
state (|+〉 + |−〉)/

√
2 and the NRs are in the ground

state |0〉1|0〉2. Hence, the initial state of the system is
|	(0)〉 = (1/

√
2)(|+〉 + |−〉)|0〉1|0〉2. By utilizing the unitary

evolution operator U (t ), the initial state of the total system
evolves as

|	(t )〉 = ei�(t )

√
2

[|+〉|η1(t )〉|η2(t )〉 + |−〉|−η1(t )〉|−η2(t )〉],
(7)

where |ηi (t )〉 and |−ηi (t )〉 are coherent states of the ith NR
(i = 1, 2). Quantum state (7) describes a tripartite entangled
state of one charge qubit and two NRs. Thus, this scheme can
be applied to generate a tripartite entangled state by a one-step
operation. Because the coherent states |ηi (t )〉 and |−ηi (t )〉 are
nonorthogonal, quantum state (7) is not a maximal tripartite
entangled state. The overlap of two coherent states |ηi (t )〉 and
|−ηi (t )〉 is exp[−2|ηi (t )|2], which decreases exponentially
with |ηi (t )|. For a large enough coherent amplitude |ηi (t )|,
coherent states |ηi (t )〉 and |−ηi (t )〉 are approximatively or-
thogonal. Then, quantum state (7) can be approximated by a
tripartite Greenberger-Horne-Zeilinger (GHZ)-like state.

In realistic situations, it is worth investigating the influence
of decoherence from the charge qubit and NRs’ decay. The
dynamics of the system is therefore governed by the following
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FIG. 3. The fidelity F as function of ωt at γ1 = γ2 = κ1 = κ2 =
0.001g. Other parameters are ω1 = ω2 = ω = g.

master equation,

ρ̇ = i[ρ,H1,I ] + γ1

2
(τzρτz − ρ) + γ2L[τ−]ρ

+
∑
i=1,2

κiL[ai]ρ, (8)

where ρ is the density matrix of the system, L[o]ρ = oρo† −
(o†oρ + ρo†o)/2 is the Lindblad superoperator for a given op-
erator o, γ1 and γ2 are the pure dephasing and relaxation rates
of the charge qubit, respectively, and κi is the ith NR decay
rate. For an initial state |	(0)〉 = (1/

√
2)(|+〉 + |−〉)|0〉1|0〉2,

the master equation (8) can be numerically solved. We can
evaluate the generation efficiency of the state (7) by calculat-
ing the fidelity F = 〈	(t )|ρ(t )|	(t )〉. In Fig. 3, we display
the time dependence of the fidelity at selected values. The fi-
delity is a periodic function with ωt . A high-fidelity entangled
state can be generated.

Orthogonally tripartite states receive much attention in
the study of quantum entanglement [32–34]. A pure three-
qubit state entanglement can be measured by three-tangle
[32]. However, how can we measure the entanglement of
nonorthogonal macroscopic tripartite entangled states? In or-
der to characterize the entanglement of the tripartite quantum
state (7), we introduce the even and odd coherent states (the
Schrödinger cat states)

|1〉i = M+
i (|ηi (t )〉 + |−ηi (t )〉), (9)

|0〉i = M−
i (|ηi (t )〉 − |−ηi (t )〉), (10)

where M±
i = 1/

√
2(1 ± e−2|ηi (t )|2 ) are normalization coeffi-

cients. One can also use Schrödinger cat states to encode a
qubit and they are exactly orthogonal. Under the Schrödinger
cat state representation, quantum state (7) can be rewritten as

|	(t )〉 = ei�(t )

4

(
1

M+
1 M+

2

|1〉|1〉1|1〉2 + 1

M+
1 M−

2

|0〉|1〉1|0〉2

+ 1

M−
1 M+

2

|0〉|0〉1|1〉2 + 1

M−
1 M−

2

|1〉|0〉1|0〉2

)
.

(11)

Equation (11) is an exactly orthogonal tripartite entangled
state. Then, the entanglement can be measured by three-
tangle. For a tripartite pure state of qubits, |ψ〉 =
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FIG. 4. Three-tangle T (t ) with the coherent amplitudes |η1(t )|
and |η2(t )|.

∑1
i,j,k=0 aijk|ijk〉, the three-tangle can be given by [32]

T = 4|d1 − 2d2 + 4d3|, (12)

with

d1 = a2
000a

2
111 + a2

001a
2
110 + a2

010a
2
101 + a2

100a
2
011,

d2 = a000a111a011a100 + a000a111a101a010

+ a000a111a110a001 + a011a100a101a010

+ a011a100a110a001 + a101a010a110a001,

d3 = a000a110a101a011 + a111a001a010a100. (13)

Therefore, the three-tangle of the quantum state (11) is

T (t ) = (
1 − e−4|η1(t )|2)(1 − e−4|η2(t )|2). (14)

In Fig. 4, we plot the three-tangle T (t ) with the coherent
amplitudes |η1(t )| and |η2(t )|. We can see that the entan-
glement can be enhanced with increasing both |η1(t )| and
|η2(t )|. According to the expression of coherent amplitude
|ηi (t )| = (2g/ωi ) sin(ωit/2), we can see that the three-tangle
can be changed by the g/ωi and ωit . In Fig. 5(a), we plot
the three-tangle T (t ) with the ω1t and ω2t for the coupling
rate g/ωi = 1. Figure 5(b) shows the three-tangle T (t ) with
the ω1t and ω2t for the coupling rate g/ωi = 0.5. We can
see that the entanglement is a periodic function of ωit . When
the evolution time takes t = 2nπ/ωi for a natural number
n, the coherent amplitude is zero, i.e., |ηi (t )| = 0. At this

moment, the charge qubit and the NRs are decoupling and
the entanglement disappears. Also, comparing with Figs. 5(a)
and 5(b), the three-tangle depends on the coupling rate g/ωi ,
due to the fact that the coherent amplitude |ηi (t )| is in direct
proportion to the coupling rate g/ωi . For a large enough
coupling rate g/ωi , the coherent states |ηi (t )〉 and | − ηi (t )〉
are approximatively orthogonal.

We change the basis states of the charge qubit to optional
basis states |μ〉 = sin ϑ |+〉 + cos ϑ |−〉 and |ν〉 = cos ϑ |+〉 −
sin ϑ |−〉 with parameter ϑ , and quantum state (7) is written as

|	(t )〉 = ei�(t )[|α−(t )〉|ν〉 + |α+(t )〉|μ〉], (15)

where |α−(t )〉 = (cos ϑ |η1(t )〉|η2(t )〉 − sin ϑ | − η1(t )〉|
− η2(t )〉)/

√
2 and |α+(t )〉 = (sin ϑ |η1(t )〉|η2(t )〉 + cos ϑ | −

η1(t )〉| − η2(t )〉)/
√

2 are entangled coherent states. If we
measure the charge qubit in the basis {|μ〉, |ν〉}, the quantum
state of two NRs collapses into |α−(t )〉 or |α+(t )〉. That
is to say, macroscopic entangled states of two NRs can be
generated by this scheme.

Quantum states |α−(t )〉 and |α+(t )〉 are bipartite entangled
nonorthogonal states. The concurrence for bipartite entangled
nonorthogonal states has been studied [35,36]. Therefore, the
concurrence for |α±(t )〉 is given by

C±(t ) = | sin(2ϑ )|
√

(1−e−4|η1(t )|2 )(1−e−4|η2(t )|2 )

1 ± e−2(|η1(t )|2+|η2(t )|2 )| sin(2ϑ )| . (16)

We plot the concurrence C+(t ) of the even entangled coherent
state with ω1t and ω2t in Fig. 6(a), and the concurrence
C−(t ) of the odd entangled coherent state with ω1t and ω2t

is shown in Fig. 6(b). We can see that the entanglement is a
periodic function of ωit , but the entanglement of two kinds
of entangled coherent states presents different behaviors for a
different ωit .

IV. ENHANCED COUPLING OF TWO NRs

If the charge qubit works near the degenerate point, the
total Hamiltonian becomes

H2 ≈ �τz +
∑
i=1,2

[ωia
†
i ai + g(a†

i + ai )τx]. (17)

The system only exists with transverse coupling. In the in-
teraction picture, under the rotating-wave approximation the

FIG. 5. Three-tangle T (t ) with ω1t and ω2t for different cases: (a) g/ωi = 1, (b)g/ωi = 0.5.
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FIG. 6. Concurrence of the entangled coherent states |α±(t )〉 with ω1t and ω2t , where we set sin(2ϑ ) = 0.95 and g/ωi = 1. (a) is for an
even entangled coherent state and (b) is for an odd entangled coherent state.

Hamiltonian (16) can be written as

H2,I =
∑
i=1,2

g(ei�i t aiτ
+ + H.c.), (18)

where �i = � − ωi is the detuning between the charge qubit
and the ith NR. Under the large-detuning condition |�i | 	 g

and when the superconducting qubit is prepared in the quan-
tum state |−〉, the Hamiltonian of Eq. (18) can be expressed
as the following effective Hamiltonian [37],

H2,e = g2

�1
a
†
1a1 + g2

�2
a
†
2a2 + λ

(
a
†
2a1e

i(�1−�2 )t + H.c.
)
,

(19)

where the first two terms describe the phonon-number-
dependent Stark shifts, and the third term represents the
interaction of two NRs with the coupling strength λ =
g2

2 ( 1
�1

+ 1
�2

). So, the coupling strength of two NRs can be
adjusted by changing the parameters g1, g2, �1, or �2. For
a simple case, we choose �1 = �2 = �, and we choose
g = 0.1� to satisfy the large detuning condition. We consider
a NR with frequency ω/2π = 1 × 102 MHz [3,6,38]. For
the charge qubit, a Josephson energy of EJ /2π = 2 × 104

MHz and charging energy EC/2π = 6.4 × 104 MHz were
considered in Refs. [6,38]. If the distance between the charge
qubit and the NR is d = 100 nm, the coupling strength is
evaluated as g/2π = 10 MHz [6,38]. Therefore, the effective
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FIG. 7. The relative coupling strength λc/λ with squeeze param-
eter r = g/�.

coupling strength of two NRs can be estimated as λ/2π = 1
MHz. Apparently, this coupling coefficient is much larger than
the decay rate κ/2π = 0.5 × 10−3 MHz of the NR [6]. This
implies that two NRs can be strongly coupled together via a
charge qubit.

We introduce the squeezing transformation ai =
di cosh(r ) − d

†
i sinh(r ) with the squeeze parameter r = g/�

[39]. Then, we choose �1 = �2 = �, and the Hamiltonian
(19) is written as

H̃ ′
2,e =

∑
i=1,2

[
χ1d

†
i di − χ2

(
d
†2
i + d2

i

)]
+ λc(d†

2d1 + d
†
1d2) − λs (d†

1d
†
2 + d1d2), (20)

where the first term describes the free Hamiltonian of two
NRs with an effective frequency χ1 = (g2/�) cosh(2r ), the
second term is two-phonon parametric driving with a drive
amplitude χ2 = (g2/2�) sinh(2r ), the third term is a single-
phonon exchange process of two NRs with a transformed
coupling strength λc = λ cosh(2r ), and the last term is the
two-phonon process with a coupling strength λs = λ sinh(2r ).
Figure 7 shows that the relative coupling strength λc/λ can
be enhanced by increasing the squeeze parameter r = g/�.
Because of the parametric-driving-induced squeezing to NRs,
the single-phonon state corresponds to an increased number
of phonons compared to the original mode.

V. DISCUSSIONS AND CONCLUSIONS

It is very interesting to discuss whether our proposal can be
realized in current experimental setups. The coupling between
a charge qubit and a NR has been reported [4,6,14,15,38].
The NR is formed from low-stress silicon nitride with a
thin coating of aluminum, and the superconducting qubit is
formed from aluminum during the same deposition steps as
the nanoresonator [14]. In order to generate stabled macro-
scopic entangled states, we require a large enough coupling
rate g/ωi . On the other hand, when the superconducting
qubit can induce the coupling between two NRs, the large
detuning condition |�i | 	 g should be satisfied, so that the
coupling rate g/ωi < 1. A recent experiment has reported that
a coupling rate g/ωi of the superconducting qubit and the
resonator, ranging from 0.72 to 1.34, has been realized [40].
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We note that this proposal could be used to achieve quan-
tum information transfer and quantum logic gates between
the two NRs. In general, qubits are encoded in two-level
systems, such as atoms, photons, and solid systems. Here,
a qubit is encoded in the high-dimensional space of a NR,
rather than in a two-level system. The main advantage of
this encoding is robust to the single-particle loss. A recent
experiment has implemented a controlled-NOT (CNOT) gate
between multiphoton encoding qubits in two cavities [41].

In conclusion, we have studied a solid quantum device
composed of a superconducting qubit and two NRs. We found
that one qubit is able to excite simultaneously two resonators.
When the system only exists with longitudinal coupling,
the generation and measurement of tripartite and bipartite
macroscopic entangled states have been discussed. When the
system only exists with transverse coupling, the interaction
of two NRs can be induced by a superconducting qubit,
and this coupling strength of two NRs can be enhanced via

parametric-induced squeezing. Moreover, we have justified
the experimental feasibility and challenges using currently
available technology.
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