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Quantum annealing of the p-spin model under inhomogeneous transverse field driving
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We solve the mean-field-like p-spin Ising model under a spatiotemporal inhomogeneous transverse field to
study the effects of inhomogeneity on the performance of quantum annealing. We previously found that the
problematic first-order quantum phase transition that arises under the conventional homogeneous field protocol
can be avoided if the temperature is zero and the local field is completely turned off site by site after a finite
time. We show in the present paper that, when these ideal conditions are not satisfied, another series of first-order
transitions appear, which prevents us from driving the system while avoiding first-order transitions. Nevertheless,
under these nonideal conditions, quantitative improvements can be obtained in terms of narrower tunneling
barriers in the free-energy landscape. A comparison with classical simulated annealing establishes a limited
quantum advantage in the ideal case, since inhomogeneous temperature driving in simulated annealing cannot
remove a first-order transition, in contrast to the quantum case. The classical model of spin-vector Monte Carlo
is also analyzed, and we find it to have the same thermodynamic phase diagram as the quantum model in the
ideal case, with deviations arising at nonzero temperature.

DOI: 10.1103/PhysRevA.98.042326

I. INTRODUCTION

Quantum annealing (QA) is a metaheuristic for
combinatorial optimization problems and is closely related to
adiabatic quantum computation [1–7], in which the final-time
classical ground state of an Ising Hamiltonian encodes the
optimal solution of a combinatorial optimization problem [8].
Quantum fluctuations are applied to the Ising model, first with
a very large amplitude and then slowly reduced to zero, to
reach the ground state of the original Ising model representing
the solution to the combinatorial optimization problem. The
amplitude of quantum fluctuations is a key control parameter,
analogous to the temperature in the classical analog, simulated
annealing [9].

As the amplitude of quantum fluctuations is reduced, quite
generally a quantum phase transition takes place in the ther-
modynamic limit and at zero temperature from a disordered
paramagnetic phase to an ordered phase. The existence of
such a phase transition can be a serious problem for QA
because it may slow down the annealing process significantly.
This can be understood in terms of the adiabatic theorem of
quantum mechanics, which states that a sufficient condition
for the system to stay in the instantaneous ground state
is that the total evolution time is inversely proportional to
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a polynomial of the energy gap between the instantaneous
ground state and the first excited state [10,11]. It is known
empirically that the energy gap decreases exponentially as
a function of the system size at a first-order quantum phase
transition1 whereas the scaling of gap decrease is significantly
milder, i.e., polynomial in the system size, at a second-order
transition as expected generally from finite-size scaling [14].
This, in combination with the adiabatic theorem, means that
the order of a quantum phase transition, or its mere existence,
can be a decisive factor for the efficiency of QA in its adiabatic
realization, because the time complexity grows exponentially
for a first-order transition but is polynomial at a second-order
transition or for the case of no transition.2 The situation is
considerably more complicated at finite temperature in an
open system, where the quantum adiabatic theorem involves
the gap of the Liouvillian rather than the Hamiltonian [15,16].
Nevertheless, similar scaling considerations apply [17].

While the phase-transition perspective is certainly not suf-
ficient for a complete understanding of the scaling of QA-
based algorithms, since there does not exist a strict relation
between the static properties in the thermodynamic limit and

1A few exceptions exist as exemplified, e.g., in Refs. [12,13].
2The leading contribution to the computation time or computational

complexity is the denominator (the energy gap) of the formula for the
adiabatic theorem. However, when the gap stays finite as in the case
without transition, the numerator dominates the behavior, which is
polynomial in system size.
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the dynamic properties at finite system size, it is nevertheless
an insightful heuristic amenable to an analytical treatment
that allows one to anticipate the finite-size scaling behavior,
and we adopt it here for this reason, in line with a recent
series of other studies, e.g., Refs. [18–22].3 In the same vein,
efforts have been invested to reduce the difficulty arising from
a first-order transition by, for example, the increase of the
order of the transition from first to second using nonstoquastic
Hamiltonians [25–28] or by the reverse annealing protocol
[29].

Recently, the protocol of inhomogeneous driving of the
transverse field has been studied as a candidate to enhance
the performance of QA. In this method, one changes the
amplitude of quantum fluctuations site by site individually.4

For example, the one-dimensional ferromagnetic Ising model
with weak disorder was studied in Refs. [30,31], where the
residual energy was found to be smaller than in the homoge-
neous case. Similar improvements by inhomogeneous driving
were reported in one-dimensional models in Refs. [32,33].
Inhomogeneous field driving for the random 3-SAT problem
has been shown to mitigate difficulties near the end of an-
nealing processes by numerical computations in Ref. [34].
Avoidance of problematic anticrossings near the end of the
anneal was also discussed analytically in Refs. [35,36] and
was tested on an experimental quantum annealer [37]. See also
Refs. [38–40] for related studies.

Given these circumstances, several of the present authors
solved the ferromagnetic p-spin model under inhomogeneous
driving of the transverse field exactly5 and showed that first-
order transitions can be removed if the inhomogeneity of the
field is appropriately controlled [42]. However, the analysis
in Ref. [42] is valid under idealized conditions such as the
zero-temperature limit and complete turning off of the field
at each site after a finite amount of time. Here we generalize
this previous study and investigate what happens under more
realistic conditions, including a nonzero temperature. We also
compare the quantum system with its classical counterparts to
clarify if and how quantum effects are essential in the present
problem.

This paper is organized as follows. In Sec. II, we formulate
the problem. In Sec. III, we examine the effects of inhomo-
geneous driving of the transverse field under idealized condi-
tions. Section IV removes some of those conditions. In Sec. V,
we consider two classical approaches, simulated annealing
with site dependent temperature and the spin-vector Monte
Carlo method. The final section is devoted to conclusions.

II. FORMULATION

We write the Hamiltonian of QA as

Ĥ (s) = sĤ0 + V̂ , (1)

3We nevertheless should keep in mind that there exist examples
in which thermodynamic calculations do not necessarily lead to
the correct understanding of finite-size properties of quantum sys-
tems [23,24].

4We use the terms “site” and “spin” interchangeably.
5In Ref. [41], it has been shown that the “static approximation”

used in Ref. [42] leads to the exact solution in the present problem.

where Ĥ0 is the target Hamiltonian, the ground state of which
encodes the solution to a given combinatorial optimization
problem, V̂ is the driver Hamiltonian used to induce quantum
fluctuations, and s is a dimensionless parameter that controls
the time dependence. We choose the p-spin model as the
target Hamiltonian,

Ĥ0 = −N

(
1

N

N∑
i=1

σ̂ z
i

)p

, (2)

where p(� 3) is an integer, σ̂ z
i is the z component of the Pauli

operator, N is the total number of spins, and i is the site (qubit)
index running from 1 to N .

The ground state of Ĥ0 is trivial, ⊗N
i=1 |0〉i for odd p, where

|0〉i denotes the spin-up state, i.e., σ̂ z
i |0〉i = |0〉i . For even p,

another state ⊗N
i=1 |1〉i is also a ground state, where σ̂ z

i |1〉i =
− |1〉i . This model reduces to the Grover problem [43] in the
limit p → ∞ [19].

We choose the driver Hamiltonian in the following form:

V̂ = −
N∑

i=1

�i σ̂
x
i , (3)

where σ̂ x
i is the x component of the Pauli operator. We assume

�i � 0 without loss of generality.
Let us briefly recall the situation under conventional QA,

where the coefficient �i satisfies �i = 1 − s, which is ho-
mogeneous in i. In this case the ground state of the driver
Hamiltonian is trivial, ⊗N

i=1(|0〉i + |1〉i )/
√

2. As time evolves,
s increases from 0 to 1, and the Hamiltonian (1) changes
from V̂ at s = 0 to Ĥ0 at s = 1. Under this homogeneous
transverse field, it is known that QA for the p-spin model
has a first-order phase transition for p � 3 [19]. This would
appear to be a disturbing failure of QA, since the optimization
problem is trivial but is difficult for QA, although classical
simulated annealing also fails due to a first-order thermal
phase transition. However, it is possible to change this first-
order transition to second order by the introduction of antifer-
romagnetic transverse interactions, which makes the Hamilto-
nian nonstoquastic [25–27]. It is also possible to remove the
transition by reverse annealing [29].

An alternative way to circumvent the difficulties of first-
order transitions is via spatiotemporal inhomogeneity of the
transverse field [42]:

�i =
⎧⎨
⎩

1 for 0 � i/N � 1 − τ,

N (1 − τ ) + (1 − i) for 1 − τ<i/N < 1 − τ + 1/N,

0 for 1 − τ + 1/N � i/N � 1.

(4)

Here, τ is another dimensionless time-dependent parameter
varying from 0 to 1, used to control the number of spins
under the influence of the transverse field. This describes a
step function with a diagonal drop. In the limit N � 1, the
drop becomes vertical [the range of i in the middle line on
the right-hand side of Eq. (4) becomes negligible] and the
following form is asymptotically correct:

�i =
{

1 for 0 � i/N � 1 − τ,

0 for 1 − τ < i/N � 1.
(5)
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In this limit the driver Hamiltonian V̂ with the above �i

reduces to the simple form

V̂ = −
N (1−τ )∑

i=1

σ̂ x
i , (6)

which describes a “zipper-closing”-like schedule for the trans-
verse field, starting from the last site.

III. IDEALIZED CASE

We first recapitulate the idealized case with the transverse
field applied only to a part of the system as in Eq. (6) at
zero temperature as studied in Ref. [42]. We can derive an
explicit form of the free energy for the Hamiltonian (1) with
the p-spin model (2) and the general driver Hamiltonian (3)
by the standard method of the Suzuki-Trotter decomposition
in combination with the static approximation. We delegate
the details to Appendix A and just write the results for the
free energy per spin and the self-consistent equation for the
magnetization at finite temperature T (= 1/β ):

f (m) = s(p − 1)mp

− 1

β

∫ 1

0
dx ln 2 cosh β

√
(spmp−1)2 + �(x)2,

(7a)

m =
∫ 1

0
dx

spmp−1√
(spmp−1)2 + �(x)

× tanh β
√

(spmp−1)2 + �(x), (7b)

respectively, where x is the normalized site index i/N in
the continuous (large-N ) limit. In the zero-temperature limit,
these equations reduce to

f (m) = s(p − 1)mp −
∫ 1

0
dx

√
(spmp−1)2 + �(x)2, (8a)

m =
∫ 1

0
dx

spmp−1√
(spmp−1)2 + �(x)

. (8b)

Substituting the continuum limit of Eq. (5) into the free energy
(8a), we reproduce Eq. (1) of Ref. [42],

f (m) = s(p − 1)mp − (1 − τ )
√

(spmp−1)2 + 1

− τ (spmp−1). (9)

We can draw the phase diagram from these equations as
in Fig. 1. The process of annealing starts at s = τ = 0 and
terminates at s = τ = 1. It is seen that we can choose a
path that avoids phase transitions between the starting and
the ending points. This is to be contrasted with the case of
a homogeneous transverse field, corresponding to the τ = 0
axis, in which there is no way to avoid a first-order transition.

Another quantity that it would be instructive to look at
is the entanglement entropy, which also exhibits the char-
acteristic behavior of phase transitions (or their absence)
depending on the path connecting the starting and end points,
as described in Appendix B.
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s

   p = 3
   p = 4
   p = 5

FIG. 1. Phase diagram on the s-τ plane for the idealized case at
zero temperature. Each color denotes a line of first-order transitions
for a given p, which is chosen to be 3, 4, and 5.

We can evaluate the energy gap � in the limit of large
system size N → ∞ by the standard semiclassical method
[26,44] as explained in some detail in Appendix B. The result
is

� = min(�a1 ,�b ) (10a)

�a1 = δ
√

1 − ε2, �b = 2sp{τ + (1 − τ ) cos θ0}p−1,

(10b)

where

θ0 = arg min
θ

{−s[τ + (1 − τ ) cos θ ]p − (1 − τ ) sin θ}
(11a)

ε = −2γ

δ
, (11b)

γ = −1

2
sp(p − 1)(1 − τ ) sin2 θ0{τ + (1 − τ ) cos θ0}p−2,

(11c)

δ = �b cos θ0 + 2 sin θ0 + 2γ. (11d)

Figures 2(a) and 2(b) show the two energy gap candi-
dates, �a1 and �b, for p = 3 along the paths τ = s, which
avoids phase transitions, and τ = s2.366, which just touches
the critical point where the first-order line terminates (the
paths are illustrated in Fig. 9 in Appendix B). The smaller
of these two candidates is the true energy gap as shown in
Appendix B. In Fig. 2(b), �b is seen to be the smaller one and
is a monotonically increasing function of s. On the other hand,
in Fig. 2(b), the energy gap �a1 is seen to vanish at the critical
point sc ≈ 0.52, as expected. To check these thermodynamic
limit predictions, we calculated the energy gap for finite-size
systems by direct numerical diagonalization along the τ = s

path. The result is plotted in Fig. 2(c), which is compatible
with the asymptotic behavior in the limit N → ∞ as observed
in �b of Fig. 2(a). It is seen in Fig. 2(c) that the energy gap
takes its minimum value when the transverse field is turned off
at the first site as indicated by the arrows, which implies that
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FIG. 2. Two types of energy gap �a1 and �b for p = 3 as functions s for (a) τ = s (away from the transition line) and (b) τ = s2.366 (just
touching the critical point). The smaller of these two is the final energy gap. (c) The energy gap for finite-size systems with τ = s obtained by
direct numerical diagonalization. The location of the minimum is indicated by an arrow for each N .

the minimum of the gap is located at s = 0 in the N → ∞
limit.

It is interesting and important to check the behavior of the
minimum energy gap as a function of the system size. As seen
in Figs. 2(a) and 2(c), the minimum of the energy gap exists
near the origin τ = s = 0 when there is no transition along the
annealing path (τ = s), whereas the minimum is at the critical
point when such a transition exists along the path [Fig. 2(b)].
We have chosen a series of paths as drawn in Fig. 3(a) to see
the combined effects of the conventional path (τ = 0) and the
inhomogeneous driving protocol (τ > 0). More explicitly, τ

follows the schedule

τ =
{

0 if s < a,

(s − a)/(1 − a) if s � a,
(12)

with a control parameter a. The path τ = s is reproduced
with a = 0, and the path with a = 0.4 just touches the critical
point at the end of the first-order line for p = 3. For a = 0.8,
the path goes across the first-order transition point in the
conventional homogeneous way (τ = 0) and, only after the
transition is crossed, the inhomogeneity sets in. The minimal

energy gap as a function of the system size, as shown in
Fig. 3(b), is seen to decrease polynomially for a = 0 and 0.4.
The case of a = 0.8 has an exponential decrease as expected
from the existence of a first-order transition. The remaining
a = 0.6 and 0.7 are marginal; a clear signal of an exponential
decrease would show up only for larger system sizes than
we studied here, N = 70. In other words, the energy gap
stays relatively large until the system size becomes very large
if we choose a path along the τ = 0 axis (the conventional
protocol) until just before a first-order phase transition is hit
and then introduce the inhomogeneity. Figure 3(c) shows the
s dependence of the gap for N = 70, the largest system size
we studied.

IV. NONIDEAL CASES

The problem we studied in the previous section concerns
the ideal case of zero temperature and a complete turning off
of the transverse field at each site. In this section we relax
some of these restrictions in order to see what happens under
nonideal circumstances.
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FIG. 3. (a) The dashed lines show the schedule of τ expressed by Eq. (12) in the phase diagram. The black sold line represents first-order
phase transitions. (b) The minimal value of the energy gap against N in a log-log scale as calculated by numerical diagonalization. (c) The
energy gap for N = 70 in two cases a = 0.7 and 0.8 of Eq. (12). The inset shows the behavior around the phase-transition point. All results
shown are for p = 3.
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FIG. 4. Two nonideal cases: (a)–(c) finite temperature and (d)–(f) incomplete turn-off . (a) Illustrative behavior of the free energy f (m)
and the jump �m in the order parameter at a first-order phase transition. (b) Finite-temperature phase diagram for p = 3. All curves represent
first-order phase transitions. The red circle and blue square correspond to the respective points in panel (c). (c) Jump in magnetization along the
line of first-order transitions depicted in panel (b). Symbols in red circle and blue square represent the respective points in the phase diagram of
panel (b). (d) Amplitude of the transverse field �i of Eq. (13). (e) Phase diagram for p = 3. The curves represent first-order phase transitions.
(f) Jump in magnetization �m along the first-order transition line. We note that (e) and (f) are remarkably similar to (b) and (c), though we do
not presently have an explanation for this fact.

A. Phase transition at finite temperature

It is straightforward to draw the phase diagram at finite (but
low) temperature from the free energy and the self-consistent
equation, Eqs. (7a) and (7b). The result is depicted in Fig. 4(b)
with the annealing schedule of Eq. (5) kept intact.

As seen in the case of T = 0.01, a new line of first-order
transitions appear at low but finite temperature in addition
to the line that already exists at T = 0. This new line of
first-order transitions merges with the existing line at T = 0
as the temperature rises, as observed in the cases of T = 0.1
and 1.

To understand what happens at this new transition line, it
is useful to fix τ at a low but finite value and consider the
system behavior as s is increased. For small s, the influence
of the ferromagnetic interactions in the cost function Ĥ0 is
weak and the system is disordered (magnetization m = 0) due
to thermal fluctuations at finite temperature. As s increases,
the system is driven into the ferromagnetic phase (m > 0),
which is heralded by the new first-order transition appearing
in the finite-temperature phase diagram. For small τ , the other
first-order transition that already existed at T = 0 causes a
jump in magnetization from a small value to a larger value.
If we reduce the temperature from a small but finite value
toward zero, the location of this first-order transition comes
closer to the s = 0 axis until it merges with the s = 0 axis

in the zero-temperature limit. In other words, at T = 0, the
system becomes ordered (m > 0) as soon as a finite value of
s is introduced, as long as τ > 0.

The structure of the phase diagram makes it impossible
to avoid a first-order transition at finite temperature when
one starts from the origin s = τ = 0 and proceeds toward the
goal at s = τ = 1. Nevertheless, the inhomogeneous driving
protocol leads to quantitative improvements, if not qualitative,
over its homogeneous counterpart. To see this, we calculate
the jump in magnetization �m along the line of first-order
transitions. The jump represents the width of a free energy
barrier at a first-order transition as illustrated in Fig. 4(a).
Thus, a decrease of the jump �m enhances the quantum
tunneling rate through the free energy barrier quantitatively
though the exponential dependence of the tunneling rate on
the system size is unchanged.6

Figure 4(c) shows the result. The red circle denotes the
value of the jump at the point marked by the same red circle
in the phase diagram of Fig. 4(b), as a representative example
of the system behavior under inhomogeneous field. The same

6The connection between the free-energy barrier width and tunnel-
ing rates can be made quantitative using the instanton method; see,
e.g., [19,22].
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is true for the blue square in Figs. 4(c) and 4(b), this being
for the conventional homogeneous annealing case. In general,
any point on the purple curve T = 0.01 in Fig. 4(c) shows
�m at the corresponding first-order transition point on the
purple curve (T = 0.01) in Fig. 4(b). It is clearly seen that
the jump is reduced at T = 0.01 and 0.1 for most values of
s in comparison with the homogeneous case marked by the
blue square. We may therefore conclude that inhomogeneous
driving is advantageous to standard homogenous driving in
that it enhances the tunneling rate even when a first-order
transition is unavoidable, as in the present nonideal (finite
temperature) situation.

B. Different types of inhomogeneity

Let us next consider the case with a nonvanishing final
value of the transverse field, at T = 0. We expect this pre-
scription to induce a similar behavior to the finite-temperature
case as the nonvanishing transverse field may disorder the
system after the field is turned off incompletely.

The formal definition of the transverse field is now

�i =
{

1 for 0 � i/N � 1 − τ,

γ for 1 − τ < i/N � 1,
(13)

where a small transverse field (0 < γ < 1) remains after an
incomplete turn-off [Fig. 8(a)]. It is easy to show from Eq. (8a)
that the free energy at zero temperature becomes

f (m) = s(p − 1)mp − (1 − τ )
√

(spmp−1)2 + 1

− τ
√

(spmp−1)2 + γ 2, (14)

which is to be compared with Eq. (9). The phase diagram and
the behavior the order parameter can be derived from this free
energy.

Figure 4(e) is the phase diagram and Fig. 4(f) is the jump
in magnetization �m along the transition line. The qualitative
similarity to the finite temperature case depicted in Figs. 4(b)
and 4(c) is striking. We conclude that quantum fluctuations
induced by a small but finite γ indeed play a similar role as
the temperature effects.

As the second example, we study the following function
[30],

�i (τ ; a) =
⎧⎨
⎩

0 for τ > −(
1 − 1

a

)
i

N−1 + 1
a(1 − τ ) − (a − 1) i

N−1 otherwise
1 for τ < −(

1 − 1
a

)
i

N−1 + 1 − 1
a

, (15)

which is drawn in Fig. 5(a). The parameter a controls the slope
that interpolates two values �i = 0 and 1. The limit a → 1
corresponds to the homogeneous field, whereas a → ∞ is the
simple step function of Eq. (5).

The zero-temperature free energy is derived from Eqs. (8a)
and (15) and reads

f (s, τ ; m) = (p − 1)smp + x1

√
(spmp−1)2 + 1

+G(�0) − G(�1) + (1 − x0)spmp−1, (16)

where

x1 =
{

1 − a
a−1 for τ < 1 − 1

a

0 for 1 − 1
a

� τ
, (17)

x0 =
{

1 for τ < 1
a

a
a−1 (1 − τ ) for 1

a
� τ

, (18)

�1 =
{

1 for τ < 1 − 1
a

a(1 − τ ) for 1 − 1
a

� τ
, (19)

�0 =
{

1 − aτ for τ < 1
a

0 for 1
a

� τ
, (20)

and

G(�) = − 1

2(a − 1)
{�

√
(spmp−1)2 + �2

+ (spmp−1)2 ln(
√

(spmp−1)2 + �2 + �)}. (21)

Figure 5(b) is the resulting phase diagram. It can be seen
that paths exist that avoid first-order transitions when the
inhomogeneity is turned on, i.e., a > 1.

As mentioned earlier, Ref. [30] discusses inhomoge-
neous annealing for a weakly disordered ferromagnetic one-
dimensional chain. It is not straightforward to compare our
results with theirs, since this is a very different problem with
its own characteristics such as a low cost of domain formation.
Nevertheless, the conclusion common to both this work and
Ref. [30] is that inhomogeneous driving is useful for reaching
better solutions.

C. Longitudinal random field

We next consider the case with random longitudinal fields:

Ĥ0 = −N

(
1

N

N∑
i=1

σ̂ z
i

)p

−
N∑

i=1

hiσ̂
z
i , (22)

where each hi is drawn from the bimodal or the Gaussian
distribution:

Pb(hi ) = 1

2
[δ(hi + h0) + δ(hi − h0)], (23a)

Pg (hi ) = 1√
2πσ 2

e−hi/2σ 2
. (23b)

It is noteworthy that the introduction of nonstoquasticity into
the Hamiltonian of the p-spin model without random field
removes a first-order phase transition for p > 3 [25,26,28]
whereas the same idea fails if random longitudinal field exists
[45]. Thus, this model with random field is a test bed to
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FIG. 5. (a) The field amplitude �i (τ ; a) of Eq. (15). (b) Phase
diagram for p = 3 for several values of a.

compare the performance of inhomogeneous driving and that
of the nonstoquastic Hamiltonian.

The computation of the free energy proceeds as before, and
the result for T = 0 is

f (m) =s(p − 1)mp −
[∫ 1

0
dx

√
(spmp−1 + h)2 + �(x)2

]
,

(24)

where the brackets [. . . ] denote the average over the distribu-
tion of the random field variable denoted as h, and we have
used the law of large numbers,

lim
N→∞

1

N

N∑
i=1

(· · · ) = [(· · · )]. (25)

Figure 6 shows the phase diagram for the simple inho-
mogeneity of Eq. (4). Panels (a) and (b) are for the bimodal
and Gaussian distributions, respectively. In both cases we see
that the inhomogeneous transverse field eliminates first-order
phase transitions. This leads to the interesting conclusion
that the present method of inhomogeneous driving of the
transverse field is more powerful for the removal of first-order
transitions than the introduction of nonstoquastic Hamiltoni-
ans, at least for the p-spin model under random longitudinal
fields.

V. COMPARISON WITH CLASSICAL MODELS

It is useful to compare the results of the previous sections
with those of the classical counterparts of QA. Here we focus

0
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0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

τ

s

   h0 = 0.1
   h0 = 0.5
   h0 = 1

(a)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
τ

s

   σ = 0.1
   σ = 0.5
   σ = 1

(b)

FIG. 6. (a) Phase diagram for bimodal random longitudinal fields
with strengths h0 = 0.1, 0.5, and 1. (b) Phase diagram for Gaussian
random longitudinal fields with standard deviations σ = 0.1, 0.5,
and 1. All lines are for first-order phase transitions. All the data are
for p = 3.

on two classical models: simulated annealing [9] and spin
vector Monte Carlo (SVMC) [46].

A. Simulated annealing with an inhomogeneous
temperature schedule

A “limited quantum speedup” is a speedup of quantum
annealing relative to its classical counterparts, such as simu-
lated annealing [47]. Indeed, it was through this viewpoint that
the concept of quantum annealing was proposed in Ref. [1].
We therefore study the classical Ising model with an inho-
mogeneous driving parameter, i.e., the (inverse) temperature
in simulated annealing. We consider the p-spin model under
random local fields:

H = −N

(
1

N

N∑
i=1

βiσi

)p

−
N∑

i=1

βihiσi, (26)

where σi (= ±1) is a simple classical Ising variable and βi

is the inhomogeneous (site-dependent) inverse temperature.
It is to be noted that we take the above Hamiltonian to be
dimensionless, corresponding to the product βH , where β is
the (homogeneous) inverse temperature. The site-dependent
temperature Ti = 1/βi is also dimensionless. The random
field hi follows the bimodal or the Gaussian distribution.
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FIG. 7. Behavior of the order parameter in simulated annealing
with inhomogeneous temperature driving. We choose p = 3 and
β0 = 2 and the bimodal distribution of random local fields.

The partition function can be calculated as

Z =Tre−H

=Tr
∫

dm δ

(
Nm −

N∑
i=1

βiσi

)
eNmp+∑N

i=1 βihiσi

=Tr
∫

dm dm̃ e−m̃(Nm−∑N
i=1 βiσi )+Nmp+∑N

i=1 βihiσi

=
∫

dm dm̃ e−Nmm̃+Nmp+∑N
i=1 ln 2 cosh β(m̃+hi ). (27)

The saddle-point condition with respect to m is m̃ = pmp−1.
Then the free energy per site is

f = (p − 1)mp − 1

N

N∑
i=1

ln 2 cosh βi (pmp−1 + hi ). (28)

Under the inhomogeneous protocol we decrease the local
temperature or increase the inverse temperature βi sitewise.
Suppose that βi = 0 for i = 1, 2, . . . , N (1 − τ ) and βi =
β0 for i = N (1 − τ ) + 1, . . . , N . In other words, the local
temperature Ti = 1/βi has been decreased from ∞ to 1/β0

for Nτ spins and is kept ∞ for the remaining N (1 − τ ) spins.
Thus, as we increase τ from 0 to 1, the fraction of sites with
low temperature increases. Under this prescription, the free
energy per spin becomes

f = (p − 1)mp − τ [ln 2 cosh β0(pmp−1 + hi )] + const.
(29)

Figure 7 shows the order parameter m = (1/N )
∑N

i=1 βiσi

evaluated from the free energy. Here the amplitude of the
bimodal distribution of random fields is chosen as (a) h0 = 0.5
and (b) h0 = 1. This figure shows that the first-order phase
transition does not disappear in simulated annealing under in-
homogeneous temperature driving, since the order parameter
has a discontinuity. We found essentially the same behavior
for any combination of the parameters, p(� 3), β0, h0, and
τ , as long as β0 or h0 is not too large, in which cases the final
state belongs to the same paramagnetic phase as the initial
one, and therefore no phase transition can ever happen. The
same holds for the Gaussian distribution of random fields. We
therefore conclude that inhomogeneous temperature driving
of simulated annealing is incapable of removing a first-order
transition (at least for the p-spin model), in contrast to the
corresponding quantum case.

B. Spin vector Monte Carlo

In this section we consider the spin vector Monte Carlo
(SVMC) algorithm, in which one replaces σ̂ x

i and σ̂ z
i by

sin θi and cos θi , respectively, and applies Metropolis moves
to update the angles. This algorithm was developed as a
classical model for the D-Wave processors [46], and has been
the subject of scrutiny in this context [48–52]. It can be
derived as the semiclassical limit of the spin-coherent states
path integral, so that it can be understood as a mean-field
approximation of the simulated quantum annealing (SQA)
algorithm [48,53]. We therefore anticipate that it will be a
close approximation to our mean-field solution of the p-spin
model as well.

In the context of the p-spin model with an inhomogeneous
transverse field, the Hamiltonian is rewritten in the SVMC
model as

H (s) = −sN

(
1

N

N∑
i=1

cos θi

)p

−
N∑

i=1

�i sin θi . (30)

The partition function is calculated as

Z =Tre−βH (s)

=Tr
∫

dm δ

(
Nm −

N∑
i=1

cos θi

)
eβ(sNmp+∑N

i=1 �i sin θi )

=Tr
∫

dm

∫
dm̃ ei(Nm−∑N

i=1 cos θi )m̃+β(sNmp+∑N
i=1 �i sin θi ).

(31)

The saddle-point condition for m is im̃ + βspmp−1 = 0. The
trace over the angles is straightforwardly evaluated as

Tr exp

[
−im̃

N∑
i=1

cos θi + β

N∑
i=1

�i sin θi

]

=
N∏

i=1

∫ 2π

0
dθi exp[βspmp−1 cos θi + β�i sin θi]

=
N∏

i=1

2πI0
(
β

√
(spmp−1)2 + �2

i

)
, (32)

where In(x) is the modified Bessel function of the first kind.
Then we have

Z =
∫

dm exp

[
− β(p − 1)sNmp

+
N∑

i=1

ln
{
2πI0

(
β

√
(spmp−1)2 + �2

i

)}]
. (33)

Thus the free energy per spin is

f =s(p − 1)mp

− 1

βN

N∑
i=1

ln
{
2πI0

(
β

√
(spmp−1)2 + �2

i

)}
=s(p − 1)mp

− 1

β

∫ 1

0
dx ln{2πI0(β

√
(spmp−1)2 + �(x)2)}, (34)
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FIG. 8. Phase diagram for p = 3 for the SVMC model.

where we replaced i/N by a continuous variable x for large
N . In the zero-temperature limit β → ∞, this free energy
reduces to

f = s(p − 1)mp −
∫ 1

0
dx

√
(spmp−1)2 + �(x)2, (35)

which coincides with the free energy (8a) for the quantum
model. The finite-temperature phase diagram as depicted in
Fig. 8 has qualitatively the same structure as the quantum
counterpart, Fig. 4(b), when the temperature is low. Therefore,
as long as static properties in the large-N and low-temperature
limits are concerned, the SVMC model faithfully describes the
behavior of the quantum system.

VI. CONCLUSIONS

We have solved the ferromagnetic p-spin model with
and without random longitudinal field under inhomogeneous
driving of the transverse field. The zero-temperature phase
diagram for the case of ideal control of the transverse field,
i.e., complete turning off of the field at each site, showed
that the first-order transition that exists under homogeneous
driving can be circumvented by inhomogeneous driving. Un-
der nonideal circumstances, with a nonzero temperature or
a nonzero value of the final transverse field, a new line
of first-order transitions appears, which prevents us from
avoiding a first-order transition. However, the new first-order
transitions are weaker than the original one in the sense that
the width of the free-energy barrier between local minima is
smaller than in the original homogeneous case, which leads
to an increase in the quantum tunneling rate. We therefore
conclude that inhomogeneous driving of the transverse field
has the potential to be at least quantitatively beneficial for a
performance enhancement of quantum annealing.

It is not easy to understand why inhomogeneous driving
mitigates the difficulties of first-order transitions. A phase
transition is a phenomenon involving a large number of micro-
scopic degrees of freedom simultaneously and cooperatively,
resulting in a diverging correlation length in the case of a
second-order transition. The introduction of a spatiotemporal
inhomogeneity of the driving field significantly reduces the
number of microscopic degrees of freedom that are involved
in the process of modification of the system properties at
a given time, concurrently reducing the correlation length
and modifying critical exponents, which may lead to the

disappearance of transition as observed here. A theory based
on a suppression of topological defects (Kibble-Zurek mech-
anism [54]) via inhomogeneous driving in interacting spin
systems that can be mapped onto a free fermionic system
has been proposed in Ref. [31]. Our mean-field approach
complements this theory and leads to similar conclusions
about the benefits of inhomogeneous driving.

Related is the problem of practical inhomogeneous driving
protocols, e.g., the order in which spins are to be chosen to
have the transverse field turned off. In our mean-field-like
model, all spins are equivalent in the cost function, and there
is no specific way to choose a particular spin as the next target.
Even spin i = N , which has its transverse field turned off
immediately after the annealing process starts, points in the
right direction thanks to the weak but non-negligible effective
field from other spins, −s(

∑N−1
i=1 σ̂ z

i )p−1/N . This mechanism
clearly comes from the uniform mean-field characteristics of
the present problem and is not straightforward to generalize.
The situation is nontrivial in general problems. Empirical
protocols have been devised and tested on a physical quantum
annealing device [37,40]. Systematic theoretical guidelines
remain to be established.

In practice, quantum annealing operates away from the
adiabatic limit and is a dynamical process, and thus the static
analysis in the present paper needs careful scrutiny before its
conclusions are applied to practical situations. For example,
though the static phase diagram is shared by the quantum
model and the classical SVMC model in the ideal situation
of zero temperature and complete turning off of the transverse
field, the dynamical properties are expected to be quite differ-
ent since quantum dynamics for large but finite-size systems
allows tunneling through an energy barrier whereas there
is no such mechanism classically at T = 0. Nevertheless,
dynamics is notoriously difficult to analyze since we should,
in principle, solve the time-dependent Schrödinger equation
directly, which is in general out of reach beyond small to
moderate sizes. It is encouraging in this respect that the static
properties of the p-spin model are very much in accordance
with the dynamical behavior in the case of reverse annealing.7

Further investigations of dynamics will shed more light on the
relevance of the static analysis to physical quantum annealing,
and are highly desired.
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APPENDIX A: DERIVATION OF THE FREE ENERGY

In this appendix we derive the free energy Eq. (8a) for the Hamiltonian in Eqs. (1)–(3), following the standard procedure
[19,25].

Using the Suzuki-Trotter decomposition, we can write the partition function as

Z = lim
M→∞

ZM = lim
M→∞

Tr(e−(β/M )sĤ0e−(β/M )V̂ )M = lim
M→∞

Tr

{
exp

[
βsN

M

(
1

N

N∑
i=1

σ̂ z
i

)p]
exp

[
β

M

N∑
i=1

�i σ̂
x
i

]}M

, (A1)

where β is the inverse temperature. For M replicas, we insert the closure relation

1̂(α) =
∑

{σ z
i (α)}

∣∣{σ z
i (α)

}〉〈{
σ z

i (α)
}∣∣ ∑

{σx
i (α)}

∣∣{σx
i (α)

}〉〈{
σx

i (α)
}∣∣ (α = 1, 2, . . . ,M ), (A2)

and obtain

ZM =
∑

{σ z
i (α)}

∑
{σx

i (α)}

M∏
α=1

exp

[
βsN

M

(
1

N

N∑
i=1

σ z
i (α)

)p]
exp

[
β

M

N∑
i=1

�iσ
x
i (α)

]
N∏

i=1

〈
σ z

i (α)
∣∣σx

i (α)
〉 〈

σx
i (α)

∣∣σ z
i (α + 1)

〉
. (A3)

Periodic boundary conditions are imposed by the trace operation, |σ z
i (1)〉 = |σ z

i (M + 1)〉.
To facilitate the calculations, we use the following relation:

δ

(
Nm(α) −

N∑
i=1

σ z
i (α)

)
=

∫
dm̃(α) exp

[
−m̃(α)

(
Nm(α) −

N∑
i=1

σ z
i (α)

)]
(A4)

and express the partition function as

ZM =
∑

{σ z
i (α)}

∑
{σx

i (α)}

M∏
α=1

∫
dm(α)dm̃(α) exp

[
N

(
βs

M
m(α)p − m̃(α)m(α)

)]

× exp

[
N∑

i=1

(
m̃(α)σ z

i (α) + β

M
�iσ

x
i (α)

)]
N∏

i=1

〈
σ z

i (α)
∣∣σx

i (α)
〉 〈

σx
i (α)

∣∣σ z
i (α + 1)

〉

=
∫ M∏

α=1

dm(α)dm̃(α) exp

[
N

M∑
α=1

(
βs

M
m(α)p − m̃(α)m(α)

)]
exp

[
N∑

i=1

ln Tr
M∏

α=1

exp[m̃(α)σ̂ z] exp

(
β

M
�i σ̂

x

)]

=
∫ M∏

α=1

dm(α)dm̃(α) exp[−NβfN,M ]. (A5)

For N � 1, the saddle-point condition for m̃(α) reads

m̃(α) = βsp

M
m(α)p−1. (A6)

Then, the free energy becomes

fN,M ({m(α)}) =s(p − 1)
1

M

M∑
α=1

m(α)p − 1

βN

N∑
i=1

ln Tr
M∏

α=1

exp

(
βsp

M
m(α)p−1σ̂ z

)
exp

(
β

M
�i σ̂

x

)
. (A7)

We now use the static approximation m = m(α) for all α. Taking the trace by the reverse operation of the Suzuki-Trotter
decomposition for M → ∞, we obtain

f (m) = s(p − 1)mp − 1

βN

N∑
i=1

ln 2 cosh β

√
(spmp−1)2 + �2

i . (A8)

The extremization condition of f (m) leads to

m = 1

N

N∑
i=1

spmp−1√
(spmp−1)2 + �2

i

tanh β

√
(spmp−1)2 + �2

i . (A9)
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For N � 1, we rewrite �i with discrete valuable i in terms of �(x) with a continuous valuable x ∼ i/N . Then the free energy
and self-consistent equation reduce to

f (m) = s(p − 1)mp −
∫ 1

0
dx ln 2 cosh β

√
(spmp−1)2 + �(x)2, (A10)

m =
∫ 1

0
dx

spmp−1√
(spmp−1)2 + �(x)2

tanh β
√

(spmp−1)2 + �(x)2. (A11)

APPENDIX B: SEMICLASSICAL COMPUTATIONS OF THE
ENERGY GAP AND THE ENTANGLEMENT ENTROPY

We calculate in this appendix the energy gap in the limit
N → ∞ as quoted in Sec. III and the entanglement entropy
by the semiclassical method [26,44]. The methods we employ
are semiclassical since a large spin (for large N ) behaves
classically.

We divide the system into two subsystems A and B, the
former with i = 1, . . . , N (1 − τ ) and the latter for the rest of
the sites. Note that according to our convention the transverse
field is turned on in subsystem A but is off in subsystem B. We
further divide subsystem A into two subsystems, A1 with i =
1, . . . , Nu(1 − τ ), A2 with i = Nu(1 − τ ) + 1, . . . , N (1 −
τ ), where u is a parameter between 0 and 1. Our goal is
to compute the energy gap and the entanglement entropy
between the two subsystems A1 and A2 in the limit of large
N .

To do so, we introduce two macroscopic spin operators as

Ŝ
z,x
A1

= 1

2

Nu(1−τ )∑
i=1

σ̂
z,x
i , (B1)

Ŝ
z,x
A2

= 1

2

N (1−τ )∑
i=Nu(1−τ )+1

σ̂
z,x
i , (B2)

Ŝ
z,x
B = 1

2

N∑
i=N (1−τ )+1

σ̂
z,x
i . (B3)

The Hamiltonian is then rewritten as

Ĥ (s, τ ) = −sN

{
2

N

(
Ŝz

A1
+ Ŝz

A2
+ Ŝz

B

)} − 2
(
Ŝx

A1
+ Ŝx

A2

)
.

(B4)

Rotating the spin operators around the y axis by an angle θ as(
Ŝx

A1,2

Ŝz
A1,2

)
=

(
cos θ sin θ

− sin θ cos θ

)(
ˆ̃Sx
A1,2

ˆ̃Sz
A1,2

)
, (B5)

we employ the Holstein-Primakoff transformation to treat
quantum corrections to the classical limit as

ˆ̃Sz
A1,2

= N1,2

2
− â

†
1,2â1,2, (B6)

ˆ̃S+
A1,2

= (N1,2 − â
†
1,2â1,2)1/2â1,2 = ( ˆ̃S−

A1,2
)†, (B7)

Ŝz
B = Nτ

2
− b̂†b̂, (B8)

Ŝ+
B = (Nτ − b̂†b̂)1/2b̂ = (Ŝ−

B )†, (B9)

where N1 = Nu(1 − τ ), N2 = N (1 − u)(1 − τ ), and â1, â2,
and b̂ are bosonic annihilation operators. Substituting these
transformations into the Hamiltonian Eq. (B4) and expand-
ing it to O(N0) (the semiclassical limit), the Hamiltonian
becomes

Ĥ (s, τ ) =Ne + γ + δ(â†
1â1 + â

†
2â2)

+ γ [u{(â†
1)2 + (â1)2} + (1 − u){(â†

2)2 + (â2)2}
+ 2

√
u(1 − u)(â†

1â
†
2 + â1â2)] + �bb̂

†b̂, (B10)

where

e = −s[τ + (1 − τ ) cos θ0]p − (1 − τ ) sin θ0, (B11)

γ = − 1
2 sp(p − 1)(1 − τ ) sin2 θ0{τ + (1 − τ ) cos θ0}p−2,

(B12)

δ = �b cos θ0 + 2 sin θ0 + 2γ, (B13)

�b = 2sp{τ + (1 − τ ) cos θ0}p−1 (B14)

with

θ0 = arg min
θ

{−s[τ + (1 − τ ) cos θ ]p − (1 − τ ) sin θ}.
(B15)

To compute the energy gap and the entanglement entropy, we
diagonalize the Hamiltonian using the Bogoliubov transfor-
mation as

â1 = √
u

{
cosh

�

2
ˆ̃a1 + sinh

�

2
ˆ̃a†

1

}
+ √

1 − u ˆ̃a2, (B16)

â2 = √
1 − u

{
cosh

�

2
ˆ̃a1 + sinh

�

2
ˆ̃a†

1

}
− √

u ˆ̃a2, (B17)

where

tanh � = −2γ /δ = ε, (B18)

and ˆ̃a1 and ˆ̃a2 are new bosonic annihilation operators. The
diagonalized Hamiltonian is given as

Ĥ (s, τ ) =Ne + γ + δ

2
(
√

1 − ε2 − 1)

+ �a1
ˆ̃a†

1
ˆ̃a1 + �a2

ˆ̃a†
2

ˆ̃a2 + �bb̂
†b̂, (B19)

where

�a1 = δ
√

1 − ε2, (B20)

�a2 = δ. (B21)
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Since �a2 � �a1 , the minimum energy gap is the smaller of
�a1 and �b, i.e.,

� = min(�a1 ,�b ). (B22)

The entanglement entropy between subsystems A1 and A2

is defined as E = −TrA1 (ρ̂A1 ln ρ̂A1 ), where ρ̂A1 = TrA2 ρ̂A is
the density matrix of subsystem A1 and ρ̂A is the one for
subsystem A. The technique for computing ρ̂A1 is detailed in
Ref. [44] Using this method, the density matrix of subsystem
A1 is described as

ρ̂A1 = 2

μ + 1
exp

[
− ln

(
μ + 1

μ − 1

)
ĉ†ĉ

]
, (B23)

where ĉ† and ĉ are bosonic creation and annihilation operators
and

μ =
√

[(1 − u) + uα][(1 − u) + u/α], (B24)

α =
√

(1 − ε)/(1 + ε). (B25)

The entanglement entropy E then becomes

E = μ + 1

2
ln

μ + 1

2
− μ − 1

2
ln

μ − 1

2
. (B26)

Figure 9 shows the entanglement entropy E along three
paths: (a) no crossing of the first-order transition line, (b) pass-
ing through the critical point, and (c) crossing the first-order
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FIG. 9. Left top panel is the phase diagram, where the solid line
represents a line of first-order phase transitions, and three lines (a),
(b), and (c) indicate paths with τ = s, s2.366, and 0. Panels (a)–(c)
show the entanglement entropy for the corresponding paths. In each
case we set p = 3 and u = 1/2.

transition line along the path corresponding to conventional
QA (τ = 0). In the case (b) we can confirm that the entropy
diverges continuously around the critical point. In contrast,
for the case (c) a discontinuity exists at the transition point, a
feature of a first-order phase transition [55].
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