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A theoretical framework to investigate the time evolution of the quantum entanglement due to the dynamical
Lamb effect between two and three superconducting qubits coupled to a coplanar waveguide in the presence
of different sources of dissipation is developed. Guidelines on how to proceed in the N -qubit case are also
given. We quantitatively analyze the case of single switching of the coupling and absence of dissipation within a
perturbative approach and show that it is a good approximation to the case of periodic switching of the coupling
for high frequencies of switching. The same systems are analyzed for the general case of periodic switching of
the coupling at any frequency and in the presence of dissipation via numerical calculations. Different measures
of entanglement compatible with mixed states are adopted. It is demonstrated that the different measures show
a different level of detail of the latter. The concurrence and the negativity are obtained in the two-qubit case;
the three-π and the negativity are obtained in the three-qubit case. It is shown that time-dependent Greenberger-
Horne-Zeilinger states can be created even in the presence of dissipation. To maximize the quantum entanglement
between the qubits, the effects of tuning several parameters of the system are investigated.
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I. INTRODUCTION

Recent experiments in circuit quantum electrodynamics
have demonstrated the possibility of probing quantum vacuum
phenomena which have no classical analog. These phenomena
arise when the vacuum is perturbed and virtual fluctuations are
converted into real particles. One example is the dynamical
Casimir effect (DCE), a dynamical version of the Casimir
effect [1]. The latter results in the creation of real photons
from the vacuum electromagnetic field of a cavity through
the nonadiabatic modulation of its boundary conditions. The
DCE was predicted by Moore in Ref. [2] and it was recently
observed in experiments with superconducting circuit de-
vices [3] and Josephson metamaterials [4]. Another quantum
vacuum phenomenon which also arises in the nonadiabatic
regime is the dynamical Lamb effect (DLE), first described in
Ref. [5]. One can think of it in the following way: An atom in a
cavity is characterized by a certain Lamb shift which depends
on the vacuum electromagnetic field of the cavity. Depending
on the size of the cavity, only a certain set of modes of
the electromagnetic field are allowed. By changing the size
of the cavity nonadiabatically, the set of allowed modes of
the electromagnetic field in the cavity suddenly changes.
Therefore, the atom experiences an instantaneous change of
its Lamb shift, which in turn leads to its parametric excitation.
In Ref. [5], a first proposal of how to give rise to the DLE
for atoms in a cavity was given. However, it is quite difficult
to implement such hypothetical setup with real atoms and
cavities. In Refs. [6,7], it was proposed to use superconducting
qubits (as atoms) coupled to a coplanar waveguide (as cavity)
to realize the nonadiabatic change of boundary conditions.
To be nonadiabatic, the change in boundary condition of the
cavity has to happen in a time τ smaller than any parameter of

the system with dimensions of time, τ � ω−1
0 and τ � ω−1

c ,
where ω0 is the transition frequency of the qubits (here and
throughout the rest of the article, we take h̄ = 1) and ωc is the
frequency of the cavity photons.

In Ref. [8], it was shown that for the case of two qubits
coupled to a nonstationary cavity, the DCE and the DLE
generate quantum entanglement between the qubits. The work
was taken a step further in Ref. [9], where the case of three
qubits coupled to a nonstationary cavity was treated. For this
case, it was found that the DCE and the DLE can lead to
the simultaneous entanglement of all three qubits, forming a
Greenberger-Horne-Zeilinger (GHZ) state [10,11]. However,
for the case of a nonstationary cavity, it is not possible to
isolate the contribution of the DLE to the quantum entan-
glement from the contribution of the DCE. This difficulty
can be overcome by following a different approach, presented
in Ref. [6]. If the cavity is taken to be stationary while the
qubit-cavity coupling is modulated nonadiabatically, the DLE
becomes the only contribution to the excitation of qubits
and cavity photons. The possibility of turning on and off
the qubit-cavity coupling was experimentally demonstrated
in Ref. [12] and its fast tunability was shown in Ref. [13].
Both features can be achieved by modulating the magnetic
flux passing through an auxiliary superconducting quantum
interference device (SQUID). Similar proposals were made in
Refs. [14–17]. The problem of studying the time evolution of
the quantum entanglement due to the DLE was first presented
in Ref. [18], where the dissipative evolution of a system of two
qubits coupled to a cavity through nonadiabatic modulation
of its coupling is considered. It was demonstrated that by
switching the qubit-cavity coupling on and off periodically,
the concurrence saturates at a fraction of its maximum value,
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thus showing that the DLE can be used to generate quantum
entanglement between qubits reliably.

We present a study of a system of two and three qubits
coupled to a common cavity, where the qubit-cavity coupling
is suddenly and periodically switched on and off in the
presence of dissipation, which extends previous work on the
entanglement created by the DLE. The tunable coupling, in
contrast to the nonstationary cavity, allows one to isolate the
DLE as the only source of quantum entanglement between the
qubits. Furthermore, the suppression of the DCE has a positive
effect on the entanglement of the qubits, as photons created
by the DCE tend to destroy quantum correlations between
the qubits. We also give guidelines on how to treat a system
of N qubits; our interest in such a system stems from the
possible application of this model to Josephson metamaterials
[4,19–21] and from the ongoing effort to make a quantum
computer with more and more superconducting qubits. For
instance, in Ref. [22], 10 superconducting transmon qubits
were coupled to a common resonator. A realistic description
of a system of N qubits coupled to a cavity requires careful
consideration of dissipative effects. Studying the interplay
of dissipation and driving allows one to determine the
steady-state properties of the system. We propose a theoretical
approach to describe the DLE in a Josephson metamaterial
and the entanglement that is consequently generated. In
particular, we are interested in the dissipative evolution of
the quantum entanglement between the qubits. In previous
work [8,9], where dissipation was not considered, we used
the concurrence [23] and the three-tangle [24] to quantify the
two- and three-way entanglement of the pure states of the
qubits in the Hilbert space. Here, we adopt the density matrix
formalism to describe the state of the system in the presence
of dissipation, which can be an incoherent mixture of pure
states or a mixed state in Liouville space. In this way, it is
possible to study the time evolution of the system taking into
account its interaction with the environment. In the following
analysis, we quantify the entanglement in a system of two
qubits by using the concurrence [23], the mutual information
[25], and the negativity [26], and for the three-qubit case, we
use the negativity and the three-π [27]. The consideration
of different measures of entanglement highlights different
details of the entanglement in the system, revealing features
which are not captured by one single measure. Moreover, we
investigate the dependence of these quantities on the system’s
parameter to find the values which maximize the quantum
entanglement of the system. In particular, the dependence
on the following parameters is studied: the frequency of
switching of the qubit-cavity coupling, the frequency of the
resonant mode of the cavity, and the cavity dissipation rate.

From the numerical calculations of the two-qubit case, we
find that when the qubit-cavity coupling is turned on and off
nonadiabatically and periodically at a frequency equal to the
sum frequency of the transition frequencies of the qubits, it
is possible to periodically reach the maximum value of the
measures of entanglement used. Two different scenarios are
possible, depending on the value of the cavity and qubit dissi-
pation rates. If the cavity dissipation rate is low, the measures
of entanglement reach their maximum value periodically with
time; if the latter is high, they saturate at a fraction of the
maximum value. For the case of three qubits with the same

transition frequency, we find that driving the qubit-cavity
coupling at a frequency equal to the sum frequency of the
transition frequencies of the qubits maximizes the simulta-
neous entanglement of the three qubits. This is indicated by
the three-π , which reaches its maximum value periodically
with time when the qubit-cavity coupling is under modulation.
Therefore, time-dependent GHZ states can be created even
in the presence of dissipation. The generation of GHZ states
in a dissipative system of superconducting qubits where the
resonator is absent and the qubits are directly coupled between
each other was studied in Ref. [28]. Here we consider the
interaction between the qubits as mediated by a common
resonator, and we go beyond the rotating-wave approximation
by taking into account counter-rotating terms which lead to
the DLE. The importance of maximally entangled states,
or GHZ states, of three and more qubits comes from the
fact that they can be used to test the validity of quantum
mechanics (GHZ theorem [10,11]). Furthermore, quantum-
error-correction codes rely on the ability to produce entangled
states to protect quantum information from unwanted errors.
A simple quantum-error-correction code for superconducting
qubits, which requires one to encode a logical qubit into an
entangled states of three qubits, was presented in Ref. [29].
Alternatively, we find that when the three qubits have different
transition frequencies, the driving of the coupling selectively
entangles the pair of qubits for which the sum of the transition
frequencies matches the frequency of the driving of the qubit-
cavity coupling. The ability to perform entangling two-qubit
gates is fundamental to form an elementary set of quantum
gates for quantum computation, which allows one to carry out
any unitary operation, as proven in Ref. [30].

The article is organized in the following way. In Sec. II,
different measures of entanglement are introduced as a way to
quantify the entanglement between two and three qubits. Sec-
tion III describes the methods of analysis valid for the general
N -qubit case. The Hamiltonian of the system is specified and
an analytical and numerical approach to find the time evolu-
tion of the system is proposed. We consider the particular case
of two and three qubits in Secs. IV and V, respectively. We
find the time evolution of the quantum entanglement between
the qubits, in the framework of a perturbative approach for
the case of no dissipation and time-independent perturbation,
and within a numerical approach for the case of periodic
switching of the coupling in the presence of dissipation. To
find the optimal values of the parameters of the system which
maximize the quantum entanglement, the values of various
parameters are changed over an experimentally accessible
range. The conclusions follow in Sec. VI.

II. MEASURES OF QUANTUM ENTANGLEMENT

We are interested in quantifying the simultaneous entangle-
ment between all qubits in the system. In general, the problem
of detecting and quantifying the multipartite entanglement in
a system of N qubits with mixed states is a very challenging
one. References [25,31] contain a review of possible can-
didates to be measures of the entanglement; however, each
of them emphasizes a particular aspect of entanglement and,
as of today, no particular one has become the standard. In
order to define an entanglement measure, the quantity has to
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satisfy the following minimal set of requirements, first stated
in Ref. [32]: (i) it is a function of positive values; (ii) it is
zero for a separable state; and (iii) its value does not increase
under local operations and classical communication (LOCC).
Further postulates such as additivity and continuity can be
made to construct a measure with desirable properties, but are
not strictly necessary.

Below we present the measures of quantum entanglement
used for the case of two, three, and N qubits. The different
measures of entanglement show a different level of detail of
the latter. Therefore, the use of multiple measures helps us
draw a richer picture of the features of the quantum entangle-
ment between the qubits.

A. Quantum entanglement of two qubits

We adopt different measures of entanglement to quantify
its time evolution. One of the measures of entanglement that
we use for the two-qubit case is the concurrence C, introduced
in Ref. [23], which is valid both for pure and mixed states.
In Ref. [24], it is defined through the density matrix of two
qubits A and B, ρAB , in the following way. First, define the
“spin-flipped” density matrix ρ̃AB ≡ (σ̂2 ⊗ σ̂2)ρAB (σ̂2 ⊗ σ̂2),

σ̂2 =
[

0 −i

i 0

]
, (1)

where σ̂2 is the Pauli matrix. Then, find the eigenvalues λi of
the operator ρABρ̃AB . Finally, the concurrence can be written
as

C = max {λ1 − λ2 − λ3 − λ4, 0}, (2)

where the eigenvalues λi are sorted in decreasing order.
Let us use the mutual information I to measure the cor-

relations between the two qubits. The mutual information
measures the difference between the correlated state ρAB and
the uncorrelated state ρA ⊗ ρB and is presented as

I (ρAB ) = S(ρA) + S(ρB ) − S(ρAB ), (3)

where S(ρ) = −Tr(ρlog2ρ) is the von Neumann entropy. The
mutual information, however, is unable to distinguish classical
and quantum correlations and we use it as a check for the
validity of the results given by the concurrence. Whenever
the system has nonzero concurrence, the mutual information
should also be nonzero, while the reverse statement does not
hold. Moreover, the mutual information is not well defined for
the case of a mixed state and can only be used for pure states
[32].

To deal with mixed states, let us turn to the negativity
N , which measures the entanglement of each qubit with the
rest of the system. The negativity makes use of the positive
partial transpose (PPT) criterion to quantify the entanglement
in a system. The PPT criterion, first presented in Ref. [33],
says that if a state is separable, its density matrix has only
positive eigenvalues. For the case of two qubits, it represents
a necessary and sufficient condition for the separability of
a state. In general, density matrices ρ have non-negative
eigenvalues and Trρ = 1. However, the partial transpose of
a density matrix with respect to its subsystem A, denoted by
ρTA , might have some negative eigenvalues, while still main-
taining Tr(ρTA ) = 1. Since separable states remain separable

under partial transposition, if a partially transposed density
matrix ρTA fails to have all positive eigenvalues, it means
that the density matrix ρ describes an entangled state. The
negativity was defined by Vidal and Werner [26] as

NA(ρ) = ‖ρTA‖1 − 1

2
, (4)

where ‖ρ‖1 ≡ Tr
√

ρ†ρ is the trace norm. An alternative way
to calculate the negativity is to take the absolute value of
the sum of the negative eigenvalues of the partial transpose
density matrix of the system, which one can write as

NA(ρ) =
∑

i (|λi | − λi )

2
, (5)

where λi are both positive and negative eigenvalues of ρTA .
For separable states, whose density matrix only have positive
eigenvalues, the negativity is zero. Thus, one can use the
negativity to measure how much entanglement exists between
the subsystem considered and the rest of the system, indepen-
dently of its size.

B. Quantum entanglement of three qubits

For the case of three qubits, the quantum entanglement may
arise in two ways. First, any pair of qubits can be entangled.
Second, all qubits can be simultaneously entangled with each
other. We use the negativity as a measure of the entanglement
of one qubit with the rest of the system, therefore allowing
us to detect entanglement between pairs. However, issues
arise for the case of a system of more than two qubits. In
particular, for such a system, the PPT criterion is only a
necessary condition for separability, meaning that there can
be an entangled state even if N = 0. Nonetheless, if the
negativity is found to be positive, then entanglement is present
in the system.

The amount of entanglement that a qubit can share with
a second qubit cannot be the same as the amount it shares
with another one. This property of quantum entanglement is
called the monogamy of entanglement and it is one of its most
fundamental properties. A monogamy relation for the three-
qubit case was explicitly found in Ref. [24] in terms of the
tangle τ , which is the square of the concurrence (2), between
a qubit A and the other qubits B (τAB) and C (τAC) and the
pair BC (τA(BC)),

τAB + τAC � τA(BC). (6)

The meaning of Eq. (6) is that the amount of entanglement that
A shares with B and C individually is bound by the amount
it shares with BC as a single element. Thus, the entanglement
between a qubit and the other cannot be shared with a third
one.

A quantity, called three-tangle τABC , which quantifies the
simultaneous entanglement of all three qubits, can be defined
as residual amount of entanglement that is left in the entangle-
ment between A and the pair BC after removing the amount
of entanglement of A with B and A with C [24],

τABC = τA(BC) − τAB − τAC. (7)

To detect the presence of maximally entangled GHZ states
in the system of three qubits, we need to measure the
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simultaneous entanglement of all the qubits. For this task, we
make use of the three-π , which was introduced in Ref. [27].
The three-π is defined in the same way as the three-tangle,
with the concurrence replaced by the negativity. In Ref. [27],
a strong monogamy inequality like Eq. (6) was proven for
the negativity, which allowed introduction of the three-π as
a measure of the simultaneous entanglement between three
qubits when mixed states are considered. First, one can find
the residual entanglement for one of the three qubits A, B, or
C. For example, the residual entanglement for qubit A is

πA = N 2
A(BC) − N 2

AB − N 2
AC. (8)

However, this definition is not invariant under permuta-
tions of the qubits. Thus one needs to specify the residual
entanglement for the other qubits (B and C) πB and πC to
define a measure of entanglement which is invariant under
permutations, the three-π ,

πABC = 1
3 (πA + πB + πC ), (9)

as the average of all the residual entanglements. The three-π
was proven to be a good measure of entanglement, satisfying
the necessary conditions required in order to properly quantify
entanglement listed in Ref. [32]. Since the three-π is based
on the negativity, it shares the same weaknesses. Namely,
nonzero three-π is only a necessary but not sufficient con-
dition for the entanglement of the qubits and there can be an
entangled state with vanishing three-π .

C. Quantum entanglement of N qubits

The N -qubit case has interesting applications to Josephson
metamaterials [4,19–21]. These systems, made from a collec-
tion of a large number of superconducting qubits, were used
in experiments on the DCE [4]. Due to quantum vacuum phe-
nomena such as the DCE and the DLE, quantum entanglement
between the qubits of the Josephson metamaterial can arise.
For the case of mixed states of N qubits, we propose to use
another measure of entanglement defined in Ref. [34] as the
square of convex-roof extended negativity (SCREN),

Nsc(ρ) =
[

min{pk,|φk〉}
∑

k

pkN (|φk〉)

]2

, (10)

where the minimum is taken over all possible pure-state
decompositions of ρ = ∑

k pk|φk〉〈φk|. Since the SCREN
is based on the convex-roof extension of the negativity, it
inherits all the properties satisfied by the latter, such as the
monotonicity under LOCC and the separability criterion. As
follows from Ref. [34], a strong monogamy inequality as in
Eq. (6) also holds for the SCREN, making it a good measure
for the simultaneous entanglement of all the qubits in the
system. For a two-qubit system, the SCREN is equivalent to
the tangle. The advantage of the SCREN with respect to other
multipartite measures of entanglement is that its definition
can be applied to higher-dimensional systems, such as qudits,
as well. This means that one can go beyond the two-level
approximation for the states of the Josephson junction and still
quantify the simultaneous entanglement between all N qudits
using this measure.

III. SYSTEM OF N QUBITS COUPLED TO A CAVITY

Here we give an outline of the general method that can
be used to treat a system with any number of qubits N . The
Hamiltonian of the system is the Tavis-Cummings Hamilto-
nian [35],

Ĥ (t ) = Ĥ0 + δĤI (t ), (11)

where Ĥ0 is the unperturbed Hamiltonian, ĤI (t ) is the time-
dependent interaction Hamiltonian, and δ is a small dimen-
sionless parameter which is used to define the qubit-cavity
coupling strength. The unperturbed Hamiltonian reads

Ĥ0 = ωcâ
†â + ω0

N∑
i=1

σ̂+
i σ̂−

i , (12)

where ωc is the frequency of the cavity photons, ω0 is the
transition frequency of the qubits, â, â† are the creation
and annihilation operators for the cavity photons, and σ̂− =
σ̂1−iσ̂2

2 , σ̂+ = σ̂1+iσ̂2
2 are defined through the Pauli matrices σ̂1

and σ̂2 for each qubit. The interaction Hamiltonian is

ĤI (t ) = g(t )(â + â†)
N∑

i=1

(σ̂−
i + σ̂+

i ), (13)

where δg(t ) is a qubit-cavity coupling. As mentioned earlier,
in order to give rise to the DLE, the switching of the qubit-
cavity coupling must be done instantaneously. Furthermore,
in Refs. [6,7], it was found that the periodic switching of the
coupling, rather than single switching, greatly increases the
DLE. For these reasons, g(t ) is taken as

g(t ) = g0θ (cos �st ), (14)

where θ (·) is the Heaviside function and δg0 is the qubit-
cavity coupling strength. The Heaviside function in Eq. (14)
switches on periodically at a specified time and stays switched
on during the period Ts = 1/�s , where �s is the frequency of
the switching of the coupling,

θ (cos �st ) =
{

0 if cos �st < 0
1 if cos �st � 0.

(15)

The possibility of turning on or off the qubit-cavity cou-
pling was experimentally demonstrated in Refs. [12,13]. It can
be achieved by modulating the magnetic flux passing through
an auxiliary SQUID coupled to the qubit.

A. Dynamical Lamb effect without dissipation:
Perturbative analytical approach

As a first step, let us consider the nondissipative system
where the periodic switching of the qubit-cavity coupling is
approximated by a constant value of the coupling after a
single switching at time t = 0. This approximation is valid
for high frequencies of switching of the coupling �s 	 ωc +
ω0. Then, following Ref. [18], one can find an approximate
solution for the time evolution of the system by solving the
time-dependent Schrödinger equation perturbatively. That is,
solving the time-dependent Schrödinger equation order by
order for the perturbative expansion of the wave function
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|ψ (t )〉 and the approximated Hamiltonian,

Ĥ (t ) =
{
Ĥ0 if t = 0
Ĥavg if t > 0,

(16)

where Ĥavg is the time average of Hamiltonian (11) after the
qubit-cavity coupling has been suddenly switched on at t = 0,

Ĥavg ≡ 〈Ĥ (t )〉t = Ĥ0 + δ〈ĤI (t )〉t , (17)

where 〈·〉t denotes time averaging and

〈ĤI (t )〉t = 〈g(t )(â + â†)
N∑

i=1

(σ̂−
i + σ̂+

i )〉t . (18)

In the Schrödinger picture, the operators do not depend on
time; therefore, Eq. (18) becomes

〈ĤI (t )〉t = 〈g(t )〉t (â + â†)
N∑

i=1

(σ̂−
i + σ̂+

i ), (19)

with

〈g(t )〉t = 1

T

∫ T

0
g(t ) dt = 1

T

∫ T

0
g0θ (cos �st ) dt = g0

2
,

(20)

where the coupling is averaged over the cavity round-trip time
T = 2π

ωc
, giving

〈ĤI (t )〉t = g0

2
(â + â†)

N∑
i=1

(σ̂−
i + σ̂+

i ). (21)

The DLE arises because of the sudden switching of the
qubit-cavity coupling at t = 0 and the Hamiltonian (17)
gives an approximate description of the system under time-
periodical modulation of the qubit-cavity coupling for t > 0.

In our approach, in order to perturbatively solve the time-
dependent Schrödinger equation, we consider the Hamilto-
nian (17) in the Schrödinger picture,

i
d|ψ (t )〉

dt
= Ĥavg|ψ (t )〉. (22)

We also truncate the infinite tower of possible photon states
at a certain value of the photon number. Thus, the wave
function for the system of N qubits and n photons can be

written as

|ψ (t )〉 =
n∑

i=0

αgg...g,i (t )|gg . . . g, i〉 + αge...g,i (t )|ge . . . g, i〉

+ · · · + αee...e,i (t )|ee . . . e, i〉, (23)

where indices g and e correspond to the ground and excited
states of the qubit and i counts the number of photons. Fur-
thermore, if the interaction term in the Hamiltonian is small
compared to the energy difference between the eigenvalues of
the unperturbed Hamiltonian, one can perturbatively expand
the wave function and the Hamiltonian in terms of δ and
solve the time-dependent Schrödinger equation order by
order:

|ψ (t )〉 = |ψ (t )〉(0) + δ|ψ (t )〉(1) + δ2|ψ (t )〉(2) + · · · , (24)

Ĥ = Ĥ0 + δ〈ĤI (t )〉t . (25)

As a result, one obtains the following set of differential
equations. At zeroth order, in terms of δ:

i
d|ψ (t )〉(0)

dt
= Ĥ0|ψ (t )〉(0). (26)

The latter allows one to obtain the coefficients’ equations
[seeking the simplicity in notation, here and below we are
omitting the argument “t” for the time-dependent coefficients
α(t )],

i
dα

(0)
x̄,n

dt
= [ωcn + ω0(x̄ · 1̄)]α(0)

x̄,n, (27)

where x̄ stands for the N -bit string which represents the state
of the qubits as a string of zeros (for the ground state g) and
ones (for the excited state e), e.g., x̄ ≡ 001 . . . 1 = gge . . . e.
Also, x̄ · 1̄ is the dot product between the N -bit string and the
string of all ones, namely, x̄ · 1̄ = x01 + x11 + x21 + · · · +
xN 1, which counts the number of qubit’s excitations in the
system. The general recursive differential equation for any
other order (j ) has the following form:

i
d|ψ (t )〉(j )

dt
= Ĥ0|ψ (t )〉(j ) + 〈ĤI (t )〉t |ψ (t )〉(j−1), (28)

which can be reduced to the set of differential equations for
the coefficients,

i
dα

(j )
x0x1...xN ,n

dt
= [ωcn + ω0(x̄ · 1̄)]α(j )

x0x1...xN ,n +
N∑

i=0

g0

2

(√
nδxi−1,0α

(j−1)
x0x1...xi−1...xN ,n−1

+ √
n + 1δxi+1,1α

(j−1)
x0x1...xi+1...xN ,n+1 + √

nδxi+1,0α
(j−1)
x0x1...xi+1...xN ,n−1 + √

n + 1δxi−1,1α
(j−1)
x0x1...xi−1...xN ,n+1

)
. (29)

In Eq. (29), xi denotes the ith element of the N -bit string
x̄ in the 0,1 notation. Therefore, Eq. (29) gives the differential
equation for any coefficient of the N -bit state specified by
x̄, n, at any order j . Now, solving for a certain initial value
αx̄ (0), one can find the time evolution of the coefficients
α(t ) and thus, from Eqs. (23) and (24), the wave function.
In particular, one has to solve a system of 2N × (n + 1)
differential equations for the coefficients α(t ).

These perturbative analytical solutions of Eq. (22) are
just an approximation valid for high frequency of switching
of the coupling �s 	 ωc + ω0 and no dissipation. We are
interested in finding these analytical solutions to provide a
check to the numerical procedure used to find the numerical
solutions for the same case. In this way, we can confidently
apply the same numerical procedure for the case of lower
frequency of switching of the coupling �s ≈ ωc + ω0 and the
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presence of dissipation where an analytical approach is not
viable.

B. Dynamical Lamb effect with dissipation:
Numerical approach

Dissipation, which is a result of losses in the system, is
an important factor in the description of the time evolution of
a quantum system which interacts with the environment. In
the previous work [8,9] on the quantum entanglement of two
and three qubits coupled to a nonstationary cavity, this was
not taken into account. We consider the effects of dissipation
by taking the system to be weakly coupled to a memoryless
reservoir. By considering the system-reservoir coupling to be
weak, we are assuming that the reservoir has a negligible
influence on the system (Born-Oppenheimer approximation
[36]). Furthermore, a memoryless reservoir is a reservoir
whose correlations with the system decay much faster than
the relaxation time of the system itself. Thus, the reservoir
does not have a memory of previous states of the system
(Markov approximation). One can describe the nonunitary
dynamics of the system through the Lindblad master equation
[37,38] for the system’s density matrix ρs (t ) = Trenv[ρ(t )]
with Hamiltonian Ĥ (t ),

dρs (t )

dt
= −i[Ĥ (t ), ρs (t )] + γj

2

∑
j

2Âjρs (t )Â†
j

− ρs (t )Â†
j Âj − Â

†
j Âjρs (t ). (30)

In Eq. (30), Ĥ (t ) is the Hamiltonian (12) of the qubit-
cavity subsystem excited by the DLE, Âj is the j th subsys-
tem’s annihilation operator, Â

†
j is its creation operator, and γj

is the corresponding decay rate. In our case, we take Âj =
â, σ̂−

1 , σ̂−
2 , . . . , σ̂−

N , σ̂
(3)
1 , σ̂

(3)
2 , . . . , σ̂

(3)
N , thus accounting for

the cavity and the qubits interaction with the environment
which causes excitation or relaxation in the system and
qubit dephasing. The decay rates are indicated as κ and
γ1, γ2, . . . , γN for the cavity photons and the qubits, respec-
tively, while γφ1 , γφ2 , . . . , γφN

denote the qubit’s dephasing
rate. For superconducting qubits coupled to a coplanar waveg-
uide, playing the role of the cavity, the dominant source
of relaxation is the Purcell effect [39,40]. The latter is the
increase or decrease in the decay rate γ of the qubit when
its transition frequency is in-resonance or off-resonance with
the frequency of the cavity mode. The qubit decay rate due to
the Purcell effect is given by γ ≈ κ

(δg0 )2

(ωc−ω0 )2 . The decay rate

of the qubit is related to its relaxation time as T1q = 1
γ

. For
the transmon superconducting qubit [41], the dephasing time
T2q = 1

γφ
, which is the time it takes to lose information about

the qubit’s phase, is limited by the relaxation time (T2 ∼ 2T1).
For the resonant mode of the cavity, it was experimentally
shown in Refs. [42–44] that at low temperature, the main
source of dissipation comes from its coupling with parasitic
two-level systems present at the cavity-substrate interface.
The decay rate of the cavity mode κ can be found from
the lifetime Tph of the photons in the cavity as κ = 1

Tph
. In

Ref. [43], the lifetime of the cavity photons was estimated
by studying their interaction with two-level systems and the

validity of the model was confirmed through experiments.
Furthermore, in Ref. [45], it was found that the relaxation time
of the resonant mode of the cavity can be greatly improved by
careful engineering of the fabrication techniques of the cavity.
Since the main sources of dissipation for the qubits and the
photons are unrelated, we model the two different relaxation
channels as separate environments for the qubit and the cavity
mode. This means that we consider the qubit as interacting
with a bath which has certain parameters and the cavity mode
as interacting with another independent bath characterized
by different parameters. As a result, we can apply Eq. (30)
specifying the system’s Hamiltonian and the subsystem’s
annihilation operators Âj for the case at hand. The master
equation (30) can be solved analytically exactly for the case
of simple models [7]. Also, perturbative techniques have been
developed to solve the master equation (30) in Liouville
space [46]. However, in our case, the Liouvillian superop-
erator L = −i[1 ⊗ Ĥ (t ) − Ĥ T (t ) ⊗ 1] + γj

2

∑
j 2[(Â†

j )T ⊗
Âj ] − [(Â†

j Âj )T ⊗ 1] − (1 ⊗ Â
†
j Âj ), obtained from Eq. (30)

following the procedure illustrated in Ref. [47], is a nondiag-
onal, high-dimensional, and time-dependent matrix that can
only be treated with numerical methods. Thus, the master
equation (30) is solved numerically by using the QUTIP soft-
ware [48,49].

IV. TWO QUBITS AND A CAVITY MODE

Let us first consider the case of two qubits coupled to the
same cavity. The Tavis-Cummings Hamiltonian for the case
N = 2 is

Ĥ = ωcâ
†â + ω

(1)
0 σ̂+

1 σ̂−
1 + ω

(2)
0 σ̂+

2 σ̂−
2 + g1(t )(â + â†)

× (σ̂−
1 + σ̂+

1 ) + g2(t )(â + â†)(σ̂−
2 + σ̂+

2 ), (31)

where the indices 1 and 2 are used to refer to operators
or quantities relative to the first and second qubits, respec-
tively. To achieve nonadiabatic modulation of the qubit-cavity
coupling, we assume a square-wave time-dependent coupling
as in Eq. (14). Following what was done in the previous
section, we first develop an analytical perturbative treatment
for the case of two qubits coupled to a cavity with constant
coupling in the absence of losses. Then we consider the
case of two qubits coupled to a cavity with the qubit-cavity
coupling periodically switched on and off nonadiabatically in
the presence of dissipation. The Lindblad equation for the sys-
tem interacting with a dissipative environment is numerically
solved. The results obtained from the analytical and numerical
calculations are shown in Figs. 1–4.

A. Dynamical Lamb effect without dissipation:
Perturbative analytical and numerical calculations

As described in Sec. III, for a system with no dissipation
and constant qubit-cavity coupling after being switched on at
t = 0, one can solve the time-dependent Schrödinger equation
(22) perturbatively order by order like it was done in Ref. [18].
By doing so, one finds a set of differential equations for
the time-dependent coefficients α(t ) of the wave function.
Solving the system of equations yields the time evolution of
the wave function for a fixed order of the perturbation. We
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FIG. 1. Comparison of the time evolution of different entanglement measures of two qubits between the perturbative calculations
(“Perturbation”) and the numerical calculations (“Averaged”) for the case of averaged qubit-cavity coupling and the numerical calculations
(“Switching”) for the case of high-frequency switching of the coupling. (a),(c),(e) The time evolution of the concurrence, the mutual
information, and the negativity, respectively, for the case of averaged coupling. (b),(d),(f) The comparison of the time evolution of the same
quantities including the case of fast switching of the coupling.

emphasize that the purpose of the analytical derivation is to
provide a frame of reference for the numerical solutions of
the Schrödinger equation. A comparison of the agreement
between the perturbative calculations and the numerical ones
gives an indication of the correctness of the numerical calcu-
lations. For the case of two qubits, it follows from Eq. (23)

that the wave function takes the form

|ψ (t )〉 =
n∑

i=0

αgg,i (t )|gg, i〉 + αge,i (t )|ge, i〉

+αeg,i (t )|eg, i〉 + αee,i (t )|ee, i〉. (32)
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FIG. 2. Time evolution of different measures of entanglement for frequencies of switching of the coupling �s in the range �s ∈ [ω0, 4ω0].
(a) Concurrence and (b) negativity.

If the interaction Hamiltonian ĤI can be considered
a small correction to the noninteracting Hamiltonian Ĥ0,
one can expand the wave function and the Hamiltonian as
shown in Eqs. (24) and (25), respectively, with the noninter-
acting Hamiltonian Ĥ0 = ωcâ

†â + ω0σ̂
+
1 σ̂−

1 + ω0σ̂
+
2 σ̂−

2 and
〈ĤI (t )〉t = g0

2 (â† + â)(σ̂+
1 + σ̂−

1 + σ̂+
2 + σ̂−

2 ).
One can then solve the Schrödinger equation order by

order in the parameter δ, as shown in the previous sec-

tion. In Appendix A, the wave function (32) is perturba-
tively expanded up to second order in terms of δ, ob-
taining the set of differential equations (29) for the time-
dependent coefficients α(t ). Then, truncating the perturba-
tive expansion (24) of the wave function (32) at second
order and considering only one photon in the cavity, we
obtain the following approximate solution of the Schrödinger
equation:

|ψ (t )〉 = |gg, 0〉(0) +
{

g0

2

δ

ωc + ω0
(e−i(ωc+ω0 )t − 1)[|ge, 1〉(1) + |eg, 1〉(1)]

}

+
{

g2
0

2

δ2

(ωc + ω0)2
[i(ωc + ω0)t + e−i(ωc+ω0 )t − 1]|gg, 0〉(2)

+ g2
0

4

δ2

ω0(ωc + ω0)(ω0 − ωc )
[2ω0 − 2ω0e

−i(ωc+ω0 )t + (ωc + ω0)(e−i(2ω0 )t − 1)]|ee, 0〉(2)

}
, (33)

where we consider the system to initially be in its ground state
by imposing the initial condition |ψ (0)〉(0) = |gg, 0〉(0).

With this solution at hand, one can calculate the measures
of entanglement presented in Sec. II. In particular, we use the
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FIG. 3. Time evolution of different measures of entanglement for frequencies of cavity photons ωc in the range ωc ∈ [ ω0
2 , 3ω0

2 ].
(a) Concurrence and (b) negativity.

wave function (33) derived with a perturbative analytical ap-
proach and substitute it into Eqs. (2), (3), and (5) to calculate
the concurrence, the mutual information, and the negativity,
respectively. The time evolution of the system is also found by
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FIG. 4. Time evolution of different measures of entanglement for the decay rate κ of the cavity photons in the range κ ∈ [0, 2π × 1.6 GHz].
(a) Concurrence and (b) negativity.

numerically solving the time-dependent Schrödinger equation
(22) using the same initial wave function for the two cases
of the Hamiltonian with averaged coupling and with fast
switching of the coupling. The values of parameters used in
the calculations for the qubit and cavity frequencies and the
qubit-cavity coupling strength are taken from Ref. [12] and are
typical values for an experimental setup. Namely, ωc = 2π ×
4.343 GHz, ω0 = 2π × 5.439 GHz, δg0 = 2π × 100 MHz,
and �s = 20 × ω0 	 ωc + ω0.

The comparison between the results obtained from the
analytical and the numerical approaches is presented in Fig. 1.
Three different curves are plotted, the first, termed “Pertur-
bation,” and the second one, termed “Averaged,” correspond
to the perturbative analytical approach and the numerical
approach in the case of averaged qubit-cavity coupling, and
the third one, named “Switching,” to the numerical approach
in the case of the fast periodic switching of the qubit-cavity
coupling �s 	 ωc + ω0. Our results show that there is ex-
cellent agreement between all calculations. Figures 1(a), 1(c),
and 1(e) show the perturbative analytical calculations and
numerical ones in the case of averaged qubit-cavity coupling,
while Figs. 1(b), 1(d), and 1(f) present the comparison of the

previous two with the one obtained for fast switching of the
qubit-cavity coupling. We believe that the analytical method
in the case of averaged coupling can be adopted to give
an approximate description that qualitatively describes the
time evolution of a system where the coupling is periodically
modulated at a high frequency of switching. In the case
considered, the approximation is valid for high frequency of
switching of the coupling, �s 	 ωc + ω0.

B. Dynamical Lamb effect with dissipation:
Numerical calculations

Let us now consider the case where the qubit-cavity cou-
pling is periodically switched on and off nonadiabatically
in the presence of dissipation. The sudden switching of the
coupling reproduces the conditions required for the dynamical
Lamb effect to arise, leading to the excitation of the qubits and
the creation of photons. Furthermore, the two qubits can be
parametrically entangled using the DLE. To study the time
evolution of the quantum entanglement between the qubits
under the driving of the coupling, we numerically integrate
Lindblad’s master equation (30), which takes the form

dρs (t )

dt
= −i[Ĥ (t ), ρs (t )] + κ

2
{2âρs (t )â† − ρs (t )â†â − â†âρs (t )}

+
2∑

i=1

γj

2
{2σ̂−

j ρs (t )σ̂+
j − ρs (t )σ̂+

j σ̂−
j − σ̂+

j σ̂−
j ρs (t )} + γφj

{
σ̂

(3)
j ρs (t )σ̂ (3)

j − ρs (t )
}
, (34)

where Ĥ (t ) is the system’s Hamiltonian (31), σ̂±
j are the

creation and destruction operators for excitation of the j th
qubit, σ̂

(3)
j is the Pauli matrix for the j th qubit, and κ, γj , γφj

take into account possible channels of dissipation of the cavity
and the qubit in the form of qubit and cavity relaxation
and qubit dephasing. In the numerical calculations, we use
realistic values of the parameters of the system taken from the
experiment done in [12]. Namely, ω

(1)
0 = ω

(2)
0 ≡ ω0 = 2π ×

5.439 GHz for the transition frequencies of the qubits, ωc =
2π × 4.343 GHz for the frequency of the cavity photons,
g1(t ) = g2(t ) = g0θ (cos �st ) and δg0 = 2π × 300 MHz for

the qubit-cavity coupling strength, κ = 2π × 1.6 MHz for the
relaxation rate of the cavity, γ1 = γ2 = 2π × 7.6 MHz for the
relaxation rate of the qubits, and γφ1 = γφ2 = 2π × 3 MHz for
the dephasing rate of the qubits.

The results of our calculations are presented in
Figs. 2–4. To measure the entanglement of the system,
we rely on the concurrence and the negativity only since the
mutual information cannot be used for mixed states [32].
The change in time dependence of the quantum entanglement
between the qubits when the frequency of switching of
the coupling �s is tuned over the range �s ∈ [ω0, 4ω0] is
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depicted in Figs. 2(a) and 2(b). It is evident from Figs. 2(a)
and 2(b) that there are two particular frequencies of switching
of the coupling that maximize the entanglement between
the qubits. The first set of sharp bright peaks appears at
the sum frequency of the transition frequencies of the qubit
�s = ω

(1)
0 + ω

(2)
0 = 2ω0 in both measures of entanglement.

One can also see another set of peaks around the sum of
the qubit and cavity frequencies, �s = ωc + ω0. We believe
that for these values of the frequency of switching, the
entanglement between the qubits is caused by the absorption
of photons created through the DLE. This would explain
the asymmetric nature of the fringes which appear only
around the qubit-cavity sum frequency. It is interesting to
note that the different measures of entanglement show a
similar level of detail: both the concurrence and the negativity
are markedly different from zero only at the values of the
switching frequency that approach specific frequencies
characteristic of the system, as the sum frequency of the
cavity photons and the transition frequency of the qubit
ωc + ω0 or the sum of the transition frequencies of two qubits
2ω0. The results in Fig. 2 show that it is possible to realize
an entangling gate between two qubits by turning off the
nonadiabatic modulation of the coupling after a short time,
t0 ≈ 7 ns.

In Figs. 3(a) and 3(b), the time evolution of the quantum
entanglement is studied when the frequency of the cavity pho-
tons is changed over the range ωc ∈ [ω0

2 , 3ω0
2 ]. The frequency

of switching of the coupling is set at the sum frequency
of the transition frequencies of the qubits, �s = 2ω0. All
the fixed parameters take the same values specified earlier.
One can see that the entanglement is degraded when the
frequency of the cavity photons approaches the transition
frequency of the qubits. In fact, when the qubit and the
cavity are in resonance, the interaction between the qubits
and the cavity photons destroys the entanglement between the
qubits.

The dependence of the quantum entanglement on the cavity
dissipation rate κ is studied and the results are presented in
Figs. 4(a) and 4(b) in the range κ ∈ [0, 2π × 1.6 GHz]. The
results show that for a cavity with high losses κ/ωc ≈ 0.1, one
can generate steady-state entanglement between the qubits,
although the measures of entanglement do not reach their
maximum. For lower cavity losses, the measures of entan-
glement between the qubits show features periodic in time,
alternating between their maximal value and zero. Thus, one
can engineer its system to achieve the desired characteristics.
High cavity losses allow for steady-state entanglement, while
low cavity losses allow for fast, effective entangling gates.
One can notice that dissipation and dephasing have a mild
effect on the entanglement in the system if the qubit-cavity
coupling is under modulation. The entanglement between the
qubits due to the DLE is slowly damped due to the relaxation
and dephasing of the qubit, while the entanglement between
the qubit due to the Casimir photons is quickly damped. Thus,
to preserve entanglement for longer times, one must consider
a qubit with low decay and dephasing rate and a cavity with
higher losses. The latter helps improve the lifetime of the
entanglement between the qubits by decreasing the qubit-
photon interaction. Our findings support the results obtained

in [18], where a more detailed analysis of the effect of photons
in the cavity was carried out.

V. THREE QUBITS AND A CAVITY MODE

Let us now consider the case of three qubits coupled to
a common cavity. The Hamiltonian can be obtained from
Eq. (11), specifying N = 3,

Ĥ = ωcâ
†â + ω

(1)
0 σ̂+

1 σ̂−
1 + ω

(2)
0 σ̂+

2 σ̂−
2 + ω

(3)
0 σ̂+

3 σ̂−
3

+ g1(t )(â + â†)(σ̂−
1 + σ̂+

1 ) + g2(t )(â + â†)

× (σ̂−
2 + σ̂+

2 ) + g3(t )(â + â†)(σ̂−
3 + σ̂+

3 ). (35)

Following what was done in the previous section, we first
develop an analytical perturbative treatment for the case of
three qubits coupled to a cavity with constant coupling and in
the absence of losses. This is used to compare the numerical
solutions of the Schrödinger equation with the analytical ones.
Then, we numerically solve the Lindblad equation describing
three qubits coupled to a cavity where the qubit-cavity cou-
pling is periodically switched on and off nonadiabatically in
the presence of dissipation. The results of the calculations are
presented in Figs. 5–7.

A. Dynamical Lamb effect without dissipation: Perturbative
analytical and numerical calculations

For a nondissipative system where the qubit-cavity cou-
pling is turned on at t = 0, giving rise to the DLE, and
then is fixed to a constant value, it is possible to find
a simple perturbative solution of Eq. (22) following the
same procedure as in the previous section. For the case
of three qubits, from Eq. (23) we get the following wave
function:

|ψ (t )〉 =
n∑

i=0

αggg,i (t )|ggg, i〉 + αgge,i (t )|gge, i〉

+αgeg,i (t )|geg, i〉 + αgge,i (t )|gge, i〉
+αgee,i (t )|gee, i〉 + αege,i (t )|ege, i〉
+αeeg,i (t )|eeg, i〉 + αeee,i (t )|eee, i〉. (36)

We take the system to be initially in the ground
state |ψ (0)〉(0) = |ggg, 0〉(0). Taking the interaction Hamilto-
nian 〈g(t )ĤI 〉t = g0

2 (â† + â)(σ̂+
1 + σ̂−

1 + σ̂+
2 + σ̂−

2 + σ̂+
3 +

σ̂−
3 ) as a small correction of the noninteracting Hamilto-

nian Ĥ0 = ωcâ
†â + ω0σ̂

+
1 σ̂−

1 + ω0σ̂
+
2 σ̂−

2 + +ω0σ̂
+
3 σ̂−

3 , one
can expand the wave function (36) and the Hamiltonian as
shown in Eqs. (24) and (25), respectively. Solving the set
of differential equations (29) obtained from the perturbative
expansion of the Schrödinger equation, one can find the time-
dependent coefficients α(t ). The details of the derivation are
presented in Appendix B. Substituting the expression of the
coefficients α(t ) into the perturbative expansion up to second
order in terms of δ of the wave function (36) and consi-
dering n = 0, 1 photons in the cavity, we obtain the following
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FIG. 5. Comparison of the time evolution of (a),(b) negativity and (c),(d) three-π between the analytical (“Perturbation”) and the numerical
(“Averaged”) calculations for the case of averaged qubit-cavity coupling, and the numerical calculations (“Switching”) for the case of fast
oscillatory coupling. (a),(c) The comparison for the case of average decoupling only; (b),(d) the results obtained for the case of fast switching
coupling.

approximate solution of the Schrödinger equation:

|ψ (t〉 = |ggg, 0〉(0) +
{

g0

2

δ

ωc + ω0
(e−i(ωc+ω0 )t − 1)[|gge, 1〉(1) + |geg, 1〉(1) + |egg, 1〉(1)]

}

+
{

3
g2

0

4

δ2

(ωc + ω0)2
[i(ωc + ω0)t + e−i(ωc+ω0 )t − 1]|ggg, 0〉(2) + g2

0

4

δ2

ω0(ωc + ω0)(ω0 − ωc )

× [2ω0 − 2ω0e
−i(ωc+ω0 )t + (ωc + ω0)(e−i(2ω0 )t − 1)](|eeg, 0〉(2) + |ege, 0〉(2) + |gee, 0〉(2) )

}
. (37)

Using this analytical solution of Eq. (22), one can calculate
the measures of entanglement introduced in Sec. II. In partic-
ular, we substitute the wave function (37) into Eqs. (5) and
(9) to calculate the negativity and the three-π , respectively.
Equation (22) is also solved numerically with the same initial
wave function for the cases of averaged and fast periodic
switching of the qubit-cavity coupling. The values of the
parameters used for the qubit and cavity frequencies and the
qubit-cavity coupling strength are the same as the ones used in
Sec. IV A. The comparison between the different approaches
used for calculating the time evolution of the negativity and

the three-π is presented in Fig. 5. As for the case of two
qubits, the analytical calculations made with the perturbative
method and the numerical ones for the case of averaged qubit-
cavity coupling are termed “Perturbation” and “Averaged,”
respectively, and the ones made with a numerical approach
in the case of fast switching of the qubit-cavity coupling are
named “Switching.” Again, we find excellent agreement be-
tween all results. The perturbative and numerical calculations
in the case of averaged coupling for both of the entangle-
ment measures used are depicted in Figs. 5(a) and 5(c). The
comparison between all calculations is shown in Figs. 5(b)
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FIG. 6. Time evolution of different measures of entanglement for frequencies of switching of the coupling �s in the range �s ∈ [ω0, 4ω0]
for three qubits with equal transition frequency ω0. (a) Negativity and (b) three-π .

and 5(d). Overall, there is very good agreement between the
calculations in the case of averaged and fast switching of the
qubit-cavity coupling. Therefore, as mentioned in the previous
section, the system with averaged coupling represents a good
approximation to the system where the coupling is periodi-
cally switched on and off at high frequencies of switching,
�s 	 ωc + ω0.

B. Dynamical Lamb effect with dissipation:
Numerical calculations

Let us now consider the case where the qubit-cavity
coupling is periodically switched-on and off nonadiabati-
cally when dissipative effects are present. The instantaneous
switching of the coupling leads to the excitation of the qubits
and the creation of photons due to the dynamical Lamb effect.
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FIG. 7. Time evolution of (a) negativity of the first qubit, (b) negativity of the second qubit, (c) negativity of the third qubit, and (d) three-π
when the frequency of switching of the coupling is tuned over the range �s ∈ [ω0, 4ω0] for qubits with different transition frequencies.
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To study the time evolution of the quantum entanglement
between the qubits under the driving of the coupling, we

numerically solve Lindblad’s master equation (30) for the sys-
tem of three qubits coupled to a cavity that can be written as

dρs (t )

dt
= − i[Ĥ (t ), ρs (t )] + κ

2
{2âρs (t )â† − ρs (t )â†â − â†âρs (t )}

+
3∑

i=1

γj

2
{2σ̂−

j ρs (t )σ̂+
j − ρs (t )σ̂+

j σ̂−
j − σ̂+

j σ̂−
j ρs (t )} + γφj

{
σ̂

(3)
j ρs (t )σ̂ (3)

j − ρs (t )
}
, (38)

where Ĥ (t ) is the Hamiltonian (35). In the numerical
calculations, we use realistic values of the parameters of
the system taken from the experiment done in Ref. [12] and
specified in the previous section.

The results of the calculations are shown in Figs. 6
and 7. In Figs. 6(a) and 6(b), the frequency of switching of
the qubit-cavity coupling �s is tuned over a certain range
�s ∈ [ω0, 4ω0] to find the best value of this parameter which
maximizes the entanglement between the qubits. It is clear
that there are two particular frequencies of switching of the
coupling that maximize the entanglement between the qubits.
These are indicated by the sharp bright peaks that appear in
both measures of entanglement at the sum frequency of the
transition frequencies of two qubits, �s = ω

(1)
0 + ω

(2)
0 = 2ω0,

and at the sum of the qubit and cavity frequencies, �s =
ωc + ω0. The three-π in Fig. 6(b) displays the entanglement
between all three qubits; it is different from zero only at
the values of the switching frequency that approach the sum
frequency of the cavity photons and the transition frequency
of the qubit ωc + ω0 or the sum of the transition frequencies of
two qubits, 2ω0. Furthermore, since the three-π measures the
simultaneous entanglement of all the qubits, its value being
close to one is an indication that GHZ states are produced
when the system is driven at the qubits’ sum frequency.
The negativity in Fig. 6(a) shows other peaks and fringes
along with the features seen in the three-π . A high value of
the negativity appears around the qubit’s sum frequency and
the qubit-cavity sum frequency. The fringed pattern here is
much more visible; a more intricate structure appears also
at frequencies different from the resonances of the system,
but it seems to quickly disappear. When the three qubits
have the same transition frequency, as seen by the maximal
value of the three-π in Fig. 6(b), it is possible to produce
a maximally entangled GHZ state. From the GHZ theorem
[10,11], it follows that a system of three entangled bodies
can be used as a test of the validity of quantum mechanics.
Thus, the proposed setup can be used to generate an entangled
three-qubit state and carry out such test. GHZ states can
also be used as a way to implement the simplest quantum-
error-correcting codes [29], therefore providing a useful tool
towards fault-tolerant quantum computation.

We also consider the case where the qubits’ transition
frequencies are all different from each other. In particular, we
choose ω

(1)
0 = 2π × 5 GHz, ω

(2)
0 = 2π × 6 GHz, and ω

(3)
0 =

2π × 7 GHz. All other parameters are left unchanged. By
tuning the frequency �s over the range �s ∈ [ 7

4ω
(2)
0 , 9

4ω
(2)
0 ],

centered around twice the transition frequency of the second
qubit, we find interesting features of the entanglement be-
tween the qubits.

The results in Fig. 7(c) show the possibility of realizing
two qubit gates if the transition frequencies of the qubits are
different from each other. This can be seen in Figs. 7(a)–7(c),
where the negativity reaches its maximum value when the
qubit-cavity coupling is driven at a frequency equal to the
sum frequency of two qubits of the system. From Fig. 7(d),
one can see that the three-π never reaches its maximum
value, indicating that the simultaneous entanglement of all
three qubits is not the main channel of entanglement between
them. Therefore, the dynamical Lamb effect can be used to
selectively entangle two qubits connected through a shared
bath by driving their coupling at the sum frequency of their
transition frequencies. The high speed and degree of entan-
glement that can be achieved in this way suggests that this
could be a promising entangling gate, i.e., a fundamental
building block to realize a two-qubit gate such as the CNOT

gate.

VI. CONCLUSIONS

We study the time evolution of the quantum entanglement
generated by the dynamical Lamb effect between two and
three qubits coupled to a common resonator where dissipation
is present. Following Refs. [6,7,18], we propose a physical
realization of DLE driven quantum entanglement of two and
three superconducting qubits, whose coupling to a common
resonator can be modulated through the use of auxiliary
SQUIDs. The use of SQUIDs to turn on and off the coupling
allows one to enter the nonadiabatic regime, where quantum
phenomena as the DLE and the DCE start to play an important
role. However, all the physical realizations of superconduct-
ing systems with tunable coupling implemented up to now
[12–16] cause a shift of the qubit and cavity frequencies. Only
recently, this issue was overcome by designing the qubit as a
different arrangement of Josephson junctions [17].

We give a quantitative analysis under the assumptions of
absence of dissipation and single switching of the coupling,
which is then maintained constant over time. The time evolu-
tion of different measures of entanglement is calculated using
a perturbative approach, which allows one to find analytical
solutions of Eq. (22) and compare them with the purely
numerical calculations. In the two-qubit case, we use the
concurrence, the mutual information, and the negativity to
measure the quantum entanglement in the system. In the
three-qubit case, we adopt the concurrence and the three-
π . Excellent agreement between the perturbative analytical
calculations and the numerical ones is found in all cases.
Therefore, in the absence of dissipation, the system with
averaged qubit-cavity coupling after a single switch is a good
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approximation to the system with high-frequency switching
of the coupling, �s 	 ωc + ω0.

To overcome the limitations imposed by the approxima-
tion, we then consider a dissipative system of two and three
qubits coupled to a common resonator, where the qubit-cavity
coupling is suddenly switched on and off periodically at
lower frequencies. We investigate the dependence of several
measures of quantum entanglement between the qubits on the
parameters of the system to find the values which maximize
the quantum entanglement between the qubits. For the case
of two qubits, we use the concurrence and the negativity as
measures of entanglement of the mixed states of the system,
while we use the negativity and the three-π for the three-qubit
case. Our numerical calculations indicate that the entangle-
ment between the qubits is maximum when the following
conditions are met: (i) the frequency of the switching of the
coupling �s equals the sum frequency of the frequencies of
the two qubits which are entangled; (ii) the frequency of the
cavity photons ωc and the transition frequency of the qubits
ω0 are not in resonance with each other; (iii) the dissipation
rate of the cavity photons is low.

We adopt different measures to quantify the quantum en-
tanglement between the qubits in the various cases because
each of them captures a different level of detail. In particular,
the concurrence is able to distinctly detect the maximum
of the entanglement, while the negativity shows in detail
where the entanglement can be nonzero, although not maxi-
mum.
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APPENDIX A: TWO-QUBIT PERTURBATIVE
ANALYTICAL CALCULATIONS

For the case of two qubits, we have the wave function (32).
At the zeroth order in terms of δ, for n = 0, 1 photons in the
cavity, the set of differential equations (27) becomes

i
dα

(0)
gg,0

dt
= 0,

i
dα

(0)
ge,0

dt
= ω0α

(0)
ge,0,

(A1)

i
dα

(0)
eg,0

dt
= ω0α

(0)
eg,0,

i
dα

(0)
ee,0

dt
= 2ω0α

(0)
ee,0,

i
dα

(0)
gg,1

dt
= ωcα

(0)
gg,1,

i
dα

(0)
ge,1

dt
= (ωc + ω0)α(0)

ge,1,

i
dα

(0)
eg,1

dt
= (ωc + ω0)α(0)

eg,1,

i
dα

(0)
ee,1

dt
= (ωc + 2ω0)α(0)

ee,1. (A2)

For the given initial condition, one finds that the only nonzero
coefficient at zeroth order is α

(0)
gg,0 = 1.

At first order, in terms of δ, one finds

i
dα

(1)
gg,0

dt
= g0

2

(
α

(0)
ge,1 + α

(0)
eg,1

)
,

i
dα

(1)
ge,0

dt
= ω0α

(1)
ge,0 + g0

2

(
α

(0)
gg,1 + α

(0)
ee,1

)
,

i
dα

(1)
eg,0

dt
= ω0α

(1)
eg,0 + g0

2

(
α

(0)
gg,1 + α

(0)
ee,1

)
,

i
dα

(1)
ee,0

dt
= 2ω0α

(1)
ee,0 + g0

2

(
α

(0)
ge,1 + α

(0)
eg,1

)
, (A3)

i
dα

(1)
gg,1

dt
= ωcα

(1)
gg,1 + g0

2

(
α

(0)
ge,0 + α

(0)
eg,0

)
,

i
dα

(1)
ge,1

dt
= (ωc + ω0)α(1)

ge,1 + g0

2

(
α

(0)
gg,0 + α

(0)
ee,0

)
,

i
dα

(1)
eg,1

dt
= (ωc + ω0)α(1)

eg,1 + g0

2

(
α

(0)
gg,0 + α

(0)
ee,0

)
,

i
dα

(1)
ee,1

dt
= (ωc + 2ω0)α(1)

ee,1 + g0

2

(
α

(0)
ge,0 + α

(0)
eg,0

)
. (A4)

Substituting the value for the zeroth-order coefficients α(0),
one can solve for the first-order coefficients. The only nonzero
coefficients at first order are

α
(1)
ge,1(t ) = α

(1)
eg,1(t ) = g0

2

1

ωc + ω0
(e−i(ωc+ω0 )t − 1). (A5)

At second order, in terms of δ, the set of differential
equations (29) reduces to

i
dα

(2)
gg,0

dt
= g0

2

(
α

(1)
ge,1 + α

(1)
eg,1

)
,

i
dα

(2)
ge,0

dt
= ω0α

(2)
ge,0 + g0

2

(
α

(1)
gg,1 + α

(1)
ee,1

)
,

(A6)

i
dα

(2)
eg,0

dt
= ω0α

(2)
eg,0 + g0

2

(
α

(1)
gg,1 + α

(1)
ee,1

)
,

i
dα

(2)
ee,0

dt
= 2ω0α

(2)
ee,0 + g0

2

(
α

(1)
ge,1 + α

(1)
eg,1

)
,
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i
dα

(2)
gg,1

dt
= ωcα

(2)
gg,1 + g0

2

(
α

(1)
ge,0 + α

(1)
eg,0

)
,

i
dα

(2)
ge,1

dt
= (ωc + ω0)α(2)

ge,1 + g0

2

(
α

(1)
gg,0 + α

(1)
ee,0

)
,

i
dα

(2)
eg,1

dt
= (ωc + ω0)α(2)

eg,1 + g0

2

(
α

(1)
gg,0 + α

(1)
ee,0

)
,

i
dα

(2)
ee,1

dt
= (ωc + 2ω0)α(2)

ee,1 + g0

2

(
α

(1)
ge,0 + α

(1)
eg,0

)
. (A7)

Substituting the value for the first-order coefficients α(1), one can find the second-order coefficients. The only nonzero coefficients
are the following:

α
(2)
gg,0(t ) = g2

0

2

1

(ωc + ω0)2
[i(ωc + ω0)t + e−i(ωc+ω0 )t − 1],

α
(2)
ee,0(t ) = g2

0

4

1

ω0(ωc + ω0)(ω0 − ωc )
[2ω0 − 2ω0e

−i(ωc+ω0 )t + (ωc + ω0)(e−i(2ω0 )t − 1)]. (A8)

Therefore, truncating the perturbative expansion of the wave function (32) at second order and substituting the value for α(t ),
we obtain the following approximate solution of the Schrödinger equation:

|ψ (t )〉 = |gg, 0〉(0) +
{

g0

2

δ

ωc + ω0
(e−i(ωc+ω0 )t − 1)[|ge, 1〉(1) + |eg, 1〉(1)]

}

+
{

g2
0

2

δ2

(ωc + ω0)2 [i(ωc + ω0)t + e−i(ωc+ω0 )t − 1]|gg, 0〉(2)

+ g2
0

4

δ2

ω0(ωc + ω0)(ω0 − ωc )
[2ω0 − 2ω0e

−i(ωc+ω0 )t + (ωc + ω0)(e−i(2ω0 )t − 1)]|ee, 0〉(2)

}
. (A9)

APPENDIX B: THREE-QUBIT PERTURBATIVE ANALYTICAL CALCULATIONS

The same steps done in the two-qubit case also apply for the case of three qubits. One starts with the wave function (36) and
solves the Schrödinger equation perturbatively, as highlighted in Sec. V. To avoid the presentation of too lengthy calculations,
below we give the final results.

At the zeroth order, in terms of δ, for the case of n = 0, 1 photons in the cavity, one finds that the only nonzero coefficient is
α

(0)
ggg,0 = 1.

At first order, in terms of δ, one obtains

α
(1)
gge,1(t ) = α

(1)
geg,1(t ) = α

(1)
egg,1(t ) = g0

2

1

ωc + ω0
(e−i(ωc+ω0 )t − 1). (B1)

At second order, in terms of δ, one gets

α
(2)
ggg,0(t ) = g2

0

4

3

(ωc + ω0)2
[i(ωc + ω0)t + e−i(ωc+ω0 )t − 1],

α
(2)
eeg,0(t ) = α

(2)
ege,0(t ) = α

(2)
gee,0(t ) = g2

0

4

1

ω0(ωc + ω0)(ω0 − ωc )
[2ω0 − 2ω0e

−i(ωc+ω0 )t + (ωc + ω0)(e−i(2ω0 )t − 1)].

(B2)

Thus, truncating the expansion at the second order, we obtain the following solution to the Schrödinger equation:

|ψ (t )〉 = |ggg, 0〉(0) +
{

g0

2

δ

ωc + ω0
(e−i(ωc+ω0 )t − 1)[|gge, 1〉(1) + |geg, 1〉(1) + |egg, 1〉(1)]

}

+
{

3
g2

0

4

δ2

(ωc + ω0)2
[i(ωc + ω0)t + e−i(ωc+ω0 )t − 1]|ggg, 0〉(2) + g2

0

4

δ2

ω0(ωc + ω0)(ω0 − ωc )

× [2ω0 − 2ω0e
−i(ωc+ω0 )t + (ωc + ω0)(e−i(2ω0 )t − 1)](|eeg, 0〉(2) + |ege, 0〉(2) + |gee, 0〉(2) )

}
. (B3)
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