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Secret key rate of a continuous-variable quantum-key-distribution scheme when the detection
process is inaccessible to eavesdroppers
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We have developed a method to calculate a secret key rate of a continuous-variable quantum-key-distribution
scheme using four coherent states and postselection for a general model of Gaussian attacks. We assume that the
transmission line and detection process are described by a pair of Gaussian channels. In our analysis, while the
loss and noise on the transmission line are induced by an eavesdropper, Eve, who can replace the transmission
line with a lossless and noiseless optical fiber, she is assumed inaccessible to the detection process. By separating
the transmission noise and detection noise, we can always extract a larger key compared with the case that all loss
and noises are induced by an eavesdropper’s interference. An asymptotic key rate against collective Gaussian
attacks can be determined numerically for the given channels’ parameters. The improvement of the key rates
turns out to be more significant for the reverse-reconciliation scheme.
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I. INTRODUCTION

Quantum-key-distribution (QKD) protocols enable two re-
mote parties, usually called Alice and Bob, to share a random
bit sequence called the secret key [1–3]. Based on the laws
of physics, the secret key can be proven information theoret-
ically secure from an eavesdropper, Eve, who can access the
transmission channels between Alice and Bob with possibly
unlimited technology and computational power. There have
been wide activities to demonstrate QKD beyond the proof-
of-principle experiments, and several field tests have been
reported [4–15].

In contrast to several no-go theorems in Gaussian
continuous-variable (CV) quantum information protocols
[16–19], CV-QKD protocols enjoy quantum optical homo-
dyne measurements and the properties of coherent states to
offer a possible solution in quantum safety [20]. In addition
to the study of quantum optical methods, CV-QKD schemes
potentially have an advantage in practical implementation.
They could be operated with commercially available detectors
and deployed in lit fiber networks possibly with the presence
of classical channels [21–23]. An important theoretical chal-
lenge is to establish mathematical proof of its general safety
[24]. It would be crucial to address how to generate secure
local oscillator signals [25–29].

Physically, an essential point in QKD protocols is that
quantum mechanical states are employed so that Eve’s effort
to read the transmission signal unavoidably induces errors on
Bob’s observation of the transmitted states. The amount of
the secret key is usually calculated conservatively assuming
that any observed signal loss and noises are induced by Eve.
In practice, a portion of the loss and noises is induced at
Bob’s detector. Since the detector is inside Bob’s station, it is
feasible to assume that the detection process is inaccessible
to Eve [1]. Therefore, if one can know how much of the

decoherence is given at the detector, a better key rate will be
estimated by using the fact that Eve cannot extract correlation
from the noise added inside Bob’s station. Such scenario has
been investigated in discrete-variable QKD schemes [30,31].
In CV-QKD schemes, a Gaussian description of state evolu-
tion is a basic approach to model the system performance.
In the Gaussian modulated CV-QKD scheme, Eve’s inac-
cessibility to the detector noise has been readily taken into
account assuming the action of Gaussian channels [14,32–35].
However, these effects have not been extensively studied in
the types of CV-QKD schemes which use discrete modulation
and postselection [36–41].

For the postselection protocols of Refs. [36,38,39], an
asymptotic key rate against collective Gaussian attacks was
determined both in the direct-reconciliation (DR) and reverse-
reconciliation (RR) scenarios [42,43]. For these discrete-
modulation CV-QKD protocols, it has been unknown that a
Gaussian attack could be the optimal attack, and the key rate
against general attacks could be much lower than the key
rate against Gaussian attacks [44]. Note that another type
of discrete-modulation CV-QKD protocols which does not
employ postselection has been investigated in Refs. [45–47].

In this paper, we investigate the security of the four-state
CV-QKD protocol [38] when the loss and noises in the detec-
tion process are inaccessible to Eve. We derive a formula to
determine Eve’s density operator when the system describing
the detector’s loss and noises is simply traced out. Using
this density operator, the key rate against collective Gaussian
attacks can be calculated.

This paper is organized as follows. In Sec. II, we introduce
basic notions on our protocol. In Sec. III, we describe the
model of Eve’s attack and how to determine her density
operator. In Sec. IV, we show numerically calculated key rates
for a couple of noise parameters. We conclude this paper in
Sec. V.
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II. PROTOCOL AND NOTATION

We consider the four coherent-state protocol [38]. We
basically use the same notation as in Ref. [43]. Alice randomly
sends one of four coherent states |S〉 ∈ {|±α〉, |±iα〉} with
α > 0 to Bob. Bob performs quadrature measurement in either
x basis or p basis:

x = a + a†

2
, p = a − a†

2i
, (1)

where the commutation relation [a, a†] = 1 is assumed to
hold. For notation convention, we may refer to the optical
mode transmitted from Alice to Bob as the mode B. From
the sequence that Alice sent |±α〉 and Bob measured the x

quadrature, a sifted key is generated by assigning bit value
“0” for Bob’s measurement outcome m > 0 and bit value “1”
for m < 0. The same procedure is executed for the sequence
that Alice sent |±iα〉 and Bob measured the p quadrature.
Bob may announce the absolute values of his measurement
outcomes |m|, and a further classical key agreement proce-
dure will be carried out by using the index |m|. Due to the
phase-space symmetry with π/2 rotation, it is sufficient to
consider the case that Alice sends |S〉 = |±α〉 and Bob obtains
an outcome m associated with his measurement of the x

quadrature. We assume linear loss and symmetric Gaussian
excess noise through the transmission and detection of the
signal. This implies that Bob’s quadrature distribution when
Alice’s signal is S can be written as

P (m|S) =
√

2

π (1 + ξ )
e
−2 (m−√

ηS)2

1+ξ , (2)

where η is the total transmission and ξ is the total excess
noise. Note that this distribution reduces to the quadrature
distribution of the coherent state |α〉 when there is no loss and
no excess noise, namely, we have P (x|α) = |〈x|α〉|2 when
(η, ξ ) = (1, 0).

Conditioned on the absolute value of Bob’s outcome |m|,
the transmission is considered to be a binary symmetric
channel with the bit error rate

ε|m| := P (−|m||α)

P (m|α) + P (−m|α)

= P (|m||−α)

P (m|−α) + P (−m|−α)

= [1 + e
8

√
η

1+ξ
|m|α]−1

. (3)

From the bit error rate ε, the mutual information between
Alice and Bob can be calculated as

IAB = 1 − f h(ε), (4)

where h(ε) = −ε log2 ε − (1 − ε) log2(1 − ε) is the binary
entropy function and f � 1 represents an efficiency of error
correction. In what follows, we assume an ideal error correc-
tion and set f = 1.

III. INTERACTION MODEL AND EVE’S KNOWLEDGE

We consider the physical model of the signal transmission
in Fig. 1. Let us assume the signal is transmitted from Alice

Alice

Alice (

Noisy detector 

Ideal detector 

Transmission 
channel

(

(c)

(a)

(b)

Eve

Alice

Trace out 

Ideal detector 

FIG. 1. (a) Alice sends a coherent state |α〉 through a lossy and
noisy channel. Bob observes quadrature with the total transmission
η and the total excess noise ξ . (b) The transmission channel is
modeled by a lossy and noisy Gaussian channel with the transmission
η1 and the excess noise ξ1. Bob’s detector is modeled by another
lossy and noisy Gaussian channel with the transmission η2 and the
excess noise ξ2 followed by an ideal homodyne detector. (c) The
action of Gaussian channels (ηi, ξi ) with i = 1, 2 can be described
by beam-splitter unitaries UBE2 and UBD2 coupling to two-mode
squeezed states |�1〉E and |�2〉D .

to Bob through a lossy and noisy Gaussian channel with the
transmission η1 and excess noise ξ1. The channel action is
virtually described as follows: The signal is mixed with an
ancillary mode E2 of a two-mode squeezed state |�1〉E1E2

at a beam splitter. Then, the extra modes E1E2 are traced
out. We assume that Eve can access any signal information
leaking out at the transmission line. This condition can be
described by assuming that Eve holds the extra modes E1E2.
The interaction model with a two-mode squeezed state and a
beam splitter is often called the entangling cloner [48]. Due to
the properties of the two-mode squeezed state, an entangling
cloner induces linear loss and symmetric Gaussian noise on
the signal mode in such a way that Eve holds correlation
on the signal noise. There is another interaction model to
simulate this effect with a two-mode squeezer and two beam
splitters [49].

Let us also assume the signal is transmitted through another
Gaussian channel with the transmission η2 and excess noise
ξ2 at Bob’s detection process in Bob’s station. We assume
that Eve is unable to access any signal information leaking
out at the detection process inside Bob’s station. The signal
is mixed with an ancillary mode D2 of a two-mode squeezed
state |�2〉D1D2

at a beam splitter. Then, the extra modes D1D2

are traced out, and Eve has no chance to hold the purifying
modes D1D2. To this end, our model contains two entangling
cloners associated with the pair of Gaussian channels. One is
used to describe Eve’s access. The other one, associated with
the extra modes D1D2, is used to describe a realistic detection
process.
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Let us write Eve’s initial two-mode squeezed state as

|�1〉E =
√

2

π

∫ ∞

−∞

∫ ∞

−∞
dx1dx2 e−V1x

2
1 −x2

2 /V1

×
∣∣∣∣x1 + x2√

2

〉
E1

∣∣∣∣x1 − x2√
2

〉
E2

, (5)

where |x〉Ei
is the eigenket of a quadrature operator x of the

mode Ei with eigenvalue x. The parameter V1 is associated
with the channel’s parameters as [50]

1

2

(
V1 + 1

V 1

)
= 1 − η1 + ξ1

1 − η1
. (6)

Since the coherent state |S〉 can be written as

|S〉 =
(

2

π

) 1
4
∫ ∞

−∞
dx e−(x−S)2 |x〉 (7)

and the beam splitter of transmission η leads to the transfor-
mation

|x〉|x2〉E2 → |√ηx −
√

1 − ηx2〉|
√

1 − ηx + √
ηx2〉E2 , (8)

the state after the beam-splitter interaction U (BS) takes the
form of [43]

U
(BS)
BE2 |S〉B |�1〉E =

∫ ∞

−∞
dm|m〉B |ψ (S,m)〉E, (9)

where

|ψ (S,m)〉 =
(

8

π3η2
1

) 1
4
∫ ∞

−∞

∫ ∞

−∞
dx1dx2 ψ (S,m)

∣∣∣∣x1 + x2√
2

〉
E1

∣∣∣∣∣
√

1 − η1

η1
m + x1 − x2√

2η1

〉
E2

, (10)

with

ψ (S,m) = e
−[
√

1−η1
2η1

(x1−x2 )+ m√
η1

−S]2−V1x
2
1 −x2

2 /V1
. (11)

Let us write the initial state of the detector’s environment for the second entangling cloner as

|�2〉D =
√

2

π

∫ ∞

−∞

∫ ∞

−∞
dy1dy2 e−V2y

2
1 −y2

2 /V2

∣∣∣∣y1 + y2√
2

〉
D1

∣∣∣∣y1 − y2√
2

〉
D2

, (12)

where the parameter V2 is associated with detector’s parameters as

1

2

(
V2 + 1

V2

)
= 1 − η2 + ξ2

1 − η2
. (13)

Using the transformation given by Eq. (8), we can write the state before the ideal quadrature measurement device as

U
(BS)
BD2 U

(BS)
BE2 |S〉B |�1〉E|�2〉D =

∫ ∞

−∞
dm|m〉B

∣∣ψ ′(S,m)
〉
ED

, (14)

where

|ψ ′(S,m)〉 =
√

2

π

∫ ∞

−∞

∫ ∞

−∞

dY1dY2√
η2

∣∣∣∣∣ψ
(

S,
m√
η2

+
√

1 − η2

η2
Y2

)〉
E

|Y1〉D1

∣∣∣∣∣
√

1 − η2

η2
m + Y2√

η2

〉
D2

e
− V2

2 (Y1+Y2 )2− (Y1−Y2 )2

2V2 . (15)

Since Eve cannot access the information leakage coming from detector’s environment system D, we trace out the system D in
what follows.

Supposing Bob’s homodyne outcome is m, we obtain Eve’s density operator,

ρS,m := trD1D2 |ψ ′(S,m)〉〈ψ ′(S,m)| =
√

4

π

1

V2 + 1
V2

∫
dY |ϕS,m〉〈ϕS,m|e

− 4Y2

V2+ 1
V2 , (16)

where

|ϕS,m〉 =
(

8

π3η2
1η2

)1/4 ∫∫
dX1dX2e

−[
√

1−η1
η1

X2+ 1√
η1η2

(m+√
1−η2Y )−S]2

e
− V1

2 (X1+X2 )2− (X1−X2 )2

2V1 |X1〉E1

⊗
∣∣∣∣ X2√

η1
+

√
1 − η1√
η1η2

(m +
√

1 − η2Y )

〉
E2

=
∫∫

dx1dx2ϕY (x1, x2)|x1〉E1
|x2〉E2

. (17)

Here, in the final expression, we defined

ϕY (x1, x2) :=
(

8

π3η2

) 1
4

e
−
[√

1−η1x2+
√

η1
η2

(m+√
1−η2Y )−S

]2

e
− V1

2

[
x1+√

η1x2−
√

1−η1
η2

(m+√
1−η2Y )

]2

e
− 1

2V1

[
x1−√

η1x2+
√

1−η1
η2

(m+√
1−η2Y )

]2

. (18)

042319-3



RYO NAMIKI, AKIRA KITAGAWA, AND TAKUYA HIRANO PHYSICAL REVIEW A 98, 042319 (2018)

Further tracing out ρS,m in Eq. (16), we obtain the probability
that Bob gets m when Alice sends |S〉:

trρS,m =
√

2

π

√
1

1 + ξ1η2 + ξ2
e
−2

(m−√
η1η2S)2

1+ξ1η2+ξ2 . (19)

Comparing this relation with Eq. (2), we find

η =η1η2,

ξ =ξ1η2 + ξ2. (20)

This is the central relation to associate the total channel
parameters (η, ξ ) with the parameters of the transmission
line (η1, ξ1) and the parameters of the detection process in
Figs. 1(a) and 1(b). From the expression of ρS,m in Eq. (16),
we define normalized states,

ωi,j = ρ(−1)i |S|,(−1)j |m|
trρ(−1)i |S|,(−1)j |m|

, (21)

where i, j ∈ {0, 1} can be associated with Alice’s bit and
Bob’s bit, respectively. As we can see from Eq. (16), Eve’s
state ρS,m is susceptible to both Alice’s state preparation S and
Bob’s measurement outcome m. In fact, Eve’s information can
be bounded by the difference of her states due to the change of
the signs of S and m, and the normalized state ωi,j in Eq. (21)
helps us to express the relevant information quantities [42,43].

Let us recall the bit error rate ε is given in Eq. (3). In the
case of the DR scheme, Eve tries to know Alice’s preparation
of the bit. Eve’s knowledge is determined from the difference
of her states with Alice’s choice i = {0, 1},

ρ0
A = (1 − ε)ω00 + εω01,

ρ1
A = (1 − ε)ω11 + εω10. (22)

In the case of the RR scheme, Eve tries to know Bob’s bit.
Eve’s knowledge is thus determined from the difference of
her states with the sign of Bob’s outcome j = {0, 1},

ρ0
B = (1 − ε)ω00 + εω10,

ρ1
B = (1 − ε)ω11 + εω01. (23)

Therefore, the information potentially accessible to Eve is
bounded from above by the Holevo quantity,

χ =
{

S(ρ) − S
(
ρ0

A

)
/2 − S

(
ρ1

A

)
/2 for DR,

S(ρ) − S
(
ρ0

B

)
/2 − S

(
ρ1

B

)
/2 for RR,

(24)

where we define ρ := (ρ0
A + ρ1

A)/2 = (ρ0
B + ρ1

B )/2 and the
von Neumann entropy is given by S(ρ) = −Tr(ρ log2 ρ).

Although we have proceeded our calculation based on the
notation convention of Refs. [42,43], it may be instructive to
restate the connection to an entanglement based picture. In
such a picture, Alice prepares a qubit-mode entangled state
|φ〉AB = (|0〉A|α〉B + |1〉A| − α〉B )/

√
2, and sends the mode

B to Bob. Note that the whole system consists of Alice, Bob,
Eve, and the detector’s environment, which are, respectively,
denoted by the subscripts A, B, E, and D. Using the two-
mode squeezed states |�1〉, |�2〉, and the unitary operators in
Eq. (14), the whole system can be written as a pure state on
the four modes,

|�〉ABDE = U
(BS)
BD2 U

(BS)
BE2 |φ〉AB |�1〉E|�2〉D. (25)

Then, the tripartite state between Alice, Bob, and Eve is given
by tracing out detector’s environment,

ρABE = trD (|�〉〈�|). (26)

Associated with the absolute value of Bob’s measurement
outcome m, this state is filtered as

ρ
|m|
ABE = P̂mρABEP̂m

tr(P̂mρABEP̂m)
, (27)

where we defined the projector as

P̂m = |m〉〈m|B + |−m〉〈−m|B. (28)

Recall that Alice’s bit value i ∈ {0, 1} can be determined
by projecting her qubit into |i〉A and Bob’s bit value j ∈
{0, 1} is determined by projecting his mode into |(−1)j |m|〉B .
Therefore, Eve’s states in Eq. (22) can be written as

ρi
A = trB〈i|ρ|m|

ABE|i〉A
tr〈i|ρ|m|

ABE |i〉A
, (29)

as well as Eve’s states in Eq. (23),

ρ
j

B = trA〈(−1)j |m||ρ|m|
ABE|(−1)j |m|〉B

tr〈(−1)j |m||ρ|m|
ABE|(−1)j |m|〉B

. (30)

Since we have traced out the system D, it seems difficult
to analytically find all eigenvalues of the relevant density
operators in the Holevo quantity of Eq. (24), in sharp contrast
to the previous approaches [42,43] where the rank of the
density operators was a few and analytic expressions of all
eigenvalues were found. In this paper, we expand the density
operator in a photon-number basis (see the Appendix) and
determine the Holevo quantity by numerically finding eigen-
values.

IV. KEY RATES

The secure key against collective Gaussian attacks can be
calculated from the difference between the information of
Alice and Bob in Eq. (4) and Eve’s potential knowledge in
Eq. (24) [43], ∫

P (m|α) max[IAB − χ, 0]dm, (31)

where P (m|α) is given by Eq. (2), and we carry out a
postselection process that integrates measurement outcomes
satisfying

max[IAB − χ, 0] � 0. (32)

In our previous work [43], an analytic expression of the
Holevo quantity χ was obtained and a set of the key rates
was shown as a function of transmission distance with the
total excess noise ξ = {0.005, 0.01, 0.02} where the photon
number |S|2 = α2 was selected to maximize the key rate and
the detector was assumed to be an ideal homodyne detector
[In the present notation, this corresponds to (η, ξ ) = (η1, ξ1)
and (η2, ξ2) = (1, 0)]. Here we can calculate the key rate for
the detector described by a Gaussian channel. We address the
key rate with ξ2 > 0 and η2 = 1 based on the eavesdropping
model described in the previous section.
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FIG. 2. Key rates for the direct-reconciliation (DR) scheme and the reverse-reconciliation (RR) scheme with the photon number α2 = 0.5
and the total excess noise ξ = 0.01. The amount of detector’s excess noise ξ2 is set to 0, 30%, 50%, and 80% of the total excess noise ξ = 0.01.
The circles on the curve of ξ2 = 0 are calculated from the analytic result in Ref. [43].

Figure 2 shows a set of numerically calculated key
rates with the fixed photon number α2 = 0.5 and the to-
tal excess noise ξ = 0.01 for the detector noise ξ2 =
{0, 0.3ξ, 0.5ξ, 0.8ξ} and detection efficiency η2 = 1. Note
that the relations of the channel parameters (η1, ξ1), the de-
tector parameters (η2, ξ2), and the total observed transmission
η and the total excess noise ξ are given in Eqs. (20). Note
also that the value of the photon number α2 = 0.5 was close
to the optimal photon number that maximizes the key rates in
the case of 0.005 � ξ � 0.02 when the distance d is located
somewhere between 5 and 40 km both in the RR and DR
schemes [43].

As expected, the decay of the key rate is to some extent
delayed as the ratio of the detection noise to the excess noise
ξ2/ξ becomes larger. Notably, this effect is more significant
in the case of the RR scheme. For instance, if we compare
the solid curve of ξ2 = 0 and the dot-dash-dotted curve of
ξ2 = 0.8ξ , we can observe that for a given key rate G > 10−6,
the difference of distance is less than 5 km for the DR scheme,

whereas the difference of distance can be more than 15 km
for the RR scheme. In both cases, our result suggests that
one can improve the key rate by separately specifying the
channel parameters and the detector parameters. An intuitive
reason that the RR scheme has more advantage in specifying
the detection noise is that it becomes harder for Eve to infer
Bob’s outcome as the detection noise inside Bob’s station
becomes larger. The fact that the RR scheme maintains its flat
decay for a longer distance suggests that CV-QKD schemes
could be incorporated with a long-distance network beyond
the metropolitan networks.

Since initially there is no specific constraint on the av-
erage photon number α2 of four coherent states, we can
choose this parameter so as to extract a higher key rate.
The upper panels of Fig. 3 show the maximum key rates of
the DR scheme for the excess noise ξ = {0.005, 0.01, 0.02}
when the photon number α2 is optimized. The key rate is
basically calculated in each 5-km-distance step and photon
number step of 0.05 from d = 5 km. The lower panels of

FIG. 3. Key rates for the direct-reconciliation (DR) scheme as functions of distance with the total excess noise ξ = {0.005, 0.01, 0.02}.
The photon number α2 is chosen to maximize the key rate with 0.05 steps. The amount of the detector’s excess noise ξ2 is set to 0, 30%, 50%,
and 80% of the total excess noise ξ .
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FIG. 4. Key rate for the reverse-reconciliation (RR) scheme as functions of distance with the total excess noise ξ = {0.005, 0.01, 0.02}.
The photon number α2 is chosen to maximize the key rate with 0.05 steps. The amount of the detector’s excess noise ξ2 is set to 0, 30%, 50%,
and 80% of the total excess noise ξ .

Fig. 3 show the corresponding optimized values of the photon
number α2.

The upper panels of Fig. 4 show the maximum key rates of
the RR scheme for the excess noise ξ = {0.005, 0.01, 0.02}.
The key rate is basically calculated in each 5-km-distance
steps and photon number steps of 0.05 from d = 5 km. The
lower panels of Fig. 4 show the corresponding optimized
values of the photon number. For a fixed total excess noise
ξ , one can see that the shallow decay of the key rates sustains
longer as the potion of the detection noise becomes larger.
Thereby, depending on the distance, we can obtain a much
better key rate by carefully calibrating the detection noise and
the channel noise separately.

In optimizing the photon number α2, it could be helpful to
consider that there are three typical regions on the distance
as follows: (i) For very short distances with smaller loss,
Eve’s information could be small. We thus can use a relatively
higher value of the photon number for such as d ∼ 10 km.
(ii) For middle distances, the optimal photon number becomes
smaller and its value is almost flat as a function of distance.
The flatness suggests that the key rates are insensitive to the
difference of the photon number with regard to the scale of
such as the 0.5 photon number. This could be favorable for
a practical implementation when a fine control of the photon
number is difficult. (iii) Finally, for long distances, an increase
of the optimal photon number is observed. In this regime, the
key rate would drop more rapidly when one deviates the value
of the photon number from the optimal value. Thereby, our
numerical search of the optimal point could take a relatively
long time, and the key rate itself is typically very low.

In summary, both in the DR and RR schemes, the typical
behavior of the key rates with optimized photon number is
not much different from the behavior of the key rate with
the case of the fixed photon number α2 = 0.5 in Fig. 2 for
all cases of the excess noise ξ = {0.005, 0.01, 0.02}. As far
as our described model, the critical point in experiments is

to suppress the excess noise as low as possible both in the
transmission process and the detection process. An essential
observation is that for given total excess noise ξ , the optimal
photon number becomes smaller as the portion of detection
noise becomes larger. There is a trade-off relation that a
smaller photon number implies lower information for Alice
and Bob, and larger information leakage for Eve. Hence, one
could not simply suggest that a better choice of the value of
the initial photon number is high or low when the parameters
change. In the present case of the numerically simulated
regime, it turn out that a smaller photon number such as
α2 ∈ (0.3, 0.5) was widely feasible. In this respect, systematic
numerical study would be more important to find out efficient
settings in operating our QKD schemes.

V. CONCLUSION

We have developed a method to calculate the key rate of
a CV-QKD scheme using four coherent states for a model of
Gaussian attacks. We assume that the transmission channel
and detection process are described by a pair of symmetric
Gaussian channels. The key rate against collective Gaussian
attacks can be essentially calculated for any set of the channel
parameters. We use two entangling cloners to describe the
two noise sources. One entangling cloner is assumed to be
controlled by Eve as usual and represents the information
leakage for her. The other entangling cloner represents the de-
tection noise and is located inside Bob’s station. Thereby, the
signal outgoing to the detector’s environment is simply traced
out and gives no information leakage to Eve. We showed
numerically determined key rates as functions of distance for
a couple of possible combinations of excess noise parameters.
By separating the channel noise and detection noise, we can
always extract a larger key compared with the case that all loss
and noises are induced by Eve’s interference. The improve-
ment of the key rates turns out to be more significant for the
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RR schemes where the increase of inaccessible noises at the
detector is thought to make Eve more difficult to infer Bob’s
outcomes. Note that our study is for an asymptotic key rate
and limited to the case of eavesdropping models that induce
symmetric Gaussian noise and linear loss. Since there is no
proof that the Gaussian attack is the optimal attack for CV-
QKD schemes with discrete modulation, achievable key rates
in a general eavesdropping scenario could be significantly
lower than the present key rates [44]. It may be worth noting
that our method developed here would be applicable to the
protocols proposed in Ref. [40], which include an efficient
four-state protocol based on diagonally modulated coherent
states, i.e., the coherent states in the form of |±α ± iα〉.
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APPENDIX: NUMBER-BASIS REPRESENTATION
OF ρS,m IN EQ. (16)

Given a matrix representation of the density operator ρS,m

in Eq. (16), we can determine its eigenvalues numerically.
From the set of eigenvalues, we can determine the von Neu-
mann entropy and thus the Holevo quantity χ in Eq. (24).
In this Appendix, we present a basic calculation to expand
the relevant density operator in the number basis so as to
determine the matrix elements.

From the wave function of Eq. (17), we can carry out the
integration of Y in ρS,m of Eq. (16). For instance, we can write

〈x1, x2|ρS,m|x3, x4〉e−∑4
i=1 x2

i

=
√

4

π

1

V2 + 1
V2

∫
dYϕY (x1, x2)ϕY (x3, x4)e

− 4Y2

V2+ 1
V2

−∑4
i=1 x2

i

=
√

4

π

1

V2 + 1
V2

√
8

π2Pη2(1 − η2)
e−x tAx+2x t b+c, (A1)

where

P =
(

V1 + 1

V1

)
1 − η1

η2
+ 2η1

η2
+ 4

V2 + 1
V2

1

1 − η2
, (A2)

and we defined (A, b, c) so as to get the quadratic form of x =
(x1, x2, x3, x4)t . The elements of (A, b, c) are determined as

A =

⎛
⎜⎝

α1 α3 α4 α6

α3 α2 α6 α5

α4 α6 α1 α3

α6 α5 α3 α2

⎞
⎟⎠, b =

⎛
⎜⎝

β1

β2

β1

β2

⎞
⎟⎠, (A3)

c = − 4

V2 + 1
V2

m2

1 − η2
+ r2

P − 2S2, (A4)

with the help of the coefficients

α1 = 1 − p2

P + 1

2

(
V1 + 1

V1

)
, (A5)

α2 = 1 − q2

P + (1 − η1) + η1

2

(
V1 + 1

V1

)
, (A6)

α3 = −pq

P +
√

η1

2

(
V1 + 1

V1

)
, (A7)

α4 = −p2

P , α5 = −q2

P , α6 = −pq

P , (A8)

β1 = pr

P , β2 = qr

P +
√

1 − η1S, (A9)

and the constants independent of the elements of x,

p = −1

2

(
V1 − 1

V1

)√
1 − η1

η2
, (A10)

q =
[

1 − 1

2

(
V1 + 1

V1

)]√
η1(1 − η1)

η2
, (A11)

r = −2
√

η1

η2
S − 4

V2 + 1
V2

m

1 − η2
. (A12)

Note that (V1, V2) are defined in Eqs. (6) and (13). They are
equivalently written as

Vi = wi +
√

w2
i − 1,

wi = 1 − ηi + ξi

1 − ηi

, (A13)

for i = 1, 2.
In order to reach the number-state representation, let us

write the wave functions of number states as

|n〉 =
∫ ∞

−∞
un(x)|x〉dx,

un(x) :=
(

2

π

)1/4 1√
2nn!

Hn(
√

2x)e−x2
,

Hn(x) := (−1)nex2 dne−x2

dxn
. (A14)

With these expressions and Eq. (A1), we can obtain the matrix element of ρS,m as

〈n1, n2|ρS,m|n3, n4〉 = 2

π

∫∫∫∫
d4x

4∏
i=1

Hni
(
√

2xi )e−x2
i√

2ni ni!
〈x1, x2|ρS,m|x3, x4〉

= 2

π

√
4

π

1

V2 + 1
V2

√
8

π2Pη2(1 − η2)

∫∫∫∫ ∞

−∞

4∏
i=1

dxiHni
(
√

2xi )√
2ni ni!

e−x tAx+2x t b+c. (A15)
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Now, we can numerically determine the matrix elements. In our numerical approach, the matrix A is diagonalized. Then, we
have a simpler quadratic form as

xtAx − 2xt b − c = (A
1
2 x − A− 1

2 b)t (A
1
2 x − A− 1

2 b) − btA−1b − c = yt y − c′, (A16)

where

y = (y1, y2, y3, y4)t = A
1
2 x + A− 1

2 b, (A17)

c′ = c + btA−1b. (A18)

The volume element associated with this change of variables is given by d4x = | ∂xi

∂yj
|d4y = det(A−1/2)d4y. From the property

of the determinant det(a) det(b) = det(ab), we can write det(A1/2) = √
det(A). Using these relations, we have

〈n1, n2|ρS,m|n3, n4〉 = 2

π

√
4

π

1

V2 + 1
V2

√
8

π2Pη2(1 − η2)

e−c′

√
det(A)

∫∫∫∫ ∞

−∞

4∏
i=1

dyiHni
(
√

2xi )√
2ni ni!

e−y2
i , (A19)

where {xi} will be represented in terms of {yi} through the inverse of Eq. (A17), namely,

x = A− 1
2 y − A−1b. (A20)

Since the product
∏

i Hni
(
√

2xi ) is a polynomial of (y1, y2, y3, y4), we can carry out the integration by recursively using the
well-known formula for the Gaussian integral:∫ ∞

−∞
y2n

i e−y2
i dyi = √

π
(2n − 1)!!

2n
,

∫ ∞

−∞
y2n+1

i e−y2
i dyi = 0, (A21)

for n = 0, 1, 2, . . . .
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