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We suggest an improved version of the Robertson–Schrödinger uncertainty relation for canonically conjugate
variables by taking into account a pair of characteristics of states: non-Gaussianity and mixedness quantified by
using fidelity and entropy, respectively. This relation is saturated by both Gaussian and Fock states and provides a
strictly improved bound for any non-Gaussian states or mixed states. For the case of Gaussian states, it is reduced
to the entropy-bounded uncertainty relation derived by Dodonov. Furthermore, we consider readily computable
measures of both characteristics and find a weaker but more readily accessible bound. With its generalization to
the case of two-mode states, we show applicability of the relation to detect entanglement of non-Gaussian states.
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I. INTRODUCTION

Ever since the birth of quantum mechanics, the Heisenberg
uncertainty principle [1] has played a key role to understand
and explore the fundamental nature of quantum mechanics.
The first rigorously proven uncertainty relation for the case
of canonically conjugate variables like the position and mo-
mentum satisfying [x̂, p̂] = i is due to Kennard [2] and Weyl
[3] and implies a fundamental limitation on preparing quan-
tum states well-localized in both position x and momentum
p space. As its generalization, the Robertson–Schrödinger
(RS) uncertainty relation was derived for a pair of Hermitian
operators [4,5].

For the case of canonically conjugate variables, it is
well known that the RS relation provides an inequal-
ity invariant under symplectic transformations and satu-
rated for pure Gaussian states. To improve its bound, on
the one hand, additional information on mixedness was
considered in the form of generalized purities [6,7] or
von Neumann entropy [7,8]. More recently, on the other
hand, with a better understanding of the notion of non-
Gaussianity [9,10] the RS relation was rederived under con-
straints on the degree of Gaussianity [11] that was sub-
sequently generalized to involve purity [12]. Additionally,
in the context of entropic uncertainty relations [13–15]
providing a stronger uncertainty bound than the Kennard–
Weyl uncertainty relation, the role of non-Gaussianity was
explicitly examined [16] and applied to generalize it in terms
of entropy power [17].

Beyond the fundamental interest with the improvement of
uncertainty relations for non-Gaussian states, another impor-
tant motivation is that improved uncertainty relations can be
used to derive entanglement criteria for continuous-variable
systems [18–25]. However, in spite of these efforts, the veri-
fication of entanglement for non-Gaussian states, which play
an important role in quantum information processing [26–30],
has not been completely resolved partly due to the nonopti-
mality of uncertainty relations for non-Gaussian states, while
it has been done for Gaussian states.

In this work, our main goal is to present an improved
version of RS uncertainty relation by taking into account
additional characteristics of states: mixedness and non-
Gaussianity together. For this purpose, we consider von Neu-
mann entropy as a measure of the mixedness and suggest a
non-Gaussianity measure based on fidelity between a state and
its reference Gaussian state with the same covariance matrix.
We show that this non-Gaussianity measure obeys required
properties as a legitimate measure of non-Gaussianity. By
using this measure, we find an improved RS relation with an
uncertainty bound monotonically increasing with respect to
both quantities and generalize it to two-mode states. Addi-
tionally, we present a less improved but readily computable
version of the RS uncertainty relation by using more easily
computable measures of both entropy and non-Gaussianity.
Finally, we show its applicability to detect entanglement of
non-Gaussian states in combination with partial transposition.

II. VARIANCE-BASED UNCERTAINTY RELATIONS

For the case of the canonically conjugate variables, the RS
uncertainty relation can be written in terms of a covariance
matrix,

√
det V � 1

2 . (1)

Here, V is a covariance matrix of ρ̂ whose matrix ele-
ments are given by Vij = 1

2 〈{r̂i , r̂j }〉 − 〈r̂i〉〈r̂j 〉 for a vector
of quadrature operators �̂r = (x̂, p̂) with the expectation value
〈Ô〉 = Tr[Ôρ̂] and the anticommutator {·, ·}. This form of
uncertainty relation allows one to straightforwardly identify
the invariance of the RS relation under linear canonical
transformations that transform the covariance matrix into
SV ST under the symplectic transformation S ∈ Sp2,R with
det S = 1 [31].

The set of states saturating the RS uncertainty relation
consists of pure Gaussian states. That means any mixed or
non-Gaussian state has a nontrivial covariance matrix whose√

det V is bigger than 1/2. For mixed states, it was shown that
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the RS relation has a larger bound with a fixed von Neumann
entropy,

S(ρ) = −Tr[ρ̂ ln ρ̂], (2)

in the form of
√

det V � h−1(S(ρ)), (3)

where the bound is given by the inverse of the mono-
tonically increasing function h(x) = −(x − 1

2 ) ln(x − 1
2 ) +

(x + 1
2 ) ln(x + 1

2 ), for x > 1/2. This relation is the so-called
entropy-bounded uncertainty relation, and it is well known
that it is saturated by all Gaussian states [7].

Also, generalized purities [6] can be considered as mea-
sures of the mixedness, and the so-called purity-bounded
uncertainty relation was derived with a fixed purity in Ref. [7].
However, only a specific set of non-Gaussian states is included
in the states saturating the uncertainty relations. Therefore, we
show here that one can appropriately improve the uncertainty
relations by incorporating the entropy as a measure of mixed-
ness together with a measure of non-Gaussianity to deal with
a broad class of non-Gaussian states.

III. QUANTIFICATION OF NON-GAUSSIANITY

For an N -mode system described by mode operators
âk = (x̂k + ip̂k )/

√
2, a quantum state ρ̂ is referred to as a

Gaussian state if its quasiprobability functions such as the
Wigner function are written in a Gaussian form, which in
turn is fully determined by its first and second moments of
x and p. From an operational point of view, we can also
refer to the Gaussian states as states generated by acting the
linear canonical transformations on vacuum or thermal states,
⊗N

k=1τ̂ (n̄k ), where τ̂ (n̄k ) = (1 + n̄k )−1[n̄k/(1 + n̄k )]â
†
k âk is a

thermal state of the kth mode with average photon number
n̄k . This transformation can be described by the symplectic
transformation with the translation in the phase space of x

and p. For a single-mode system, a Gaussian state can be
generally expressed in the form

ρ̂G = D̂(α)Ŝ(ξ )τ̂ (n̄)Ŝ†(ξ )D̂†(α), (4)

where D̂(α) = exp[αâ† − α∗â] is the displacement operator
and Ŝ(ξ ) = exp{[ξ (â†)2 − ξ ∗â2]/2} is the single-mode
squeezing operator with α, ξ ∈ C.

The quantification of non-Gaussianity was proposed as
measuring distance between a given state ρ̂ and its reference
Gaussian state ρ̂G with the same first and second moments of
ρ̂ in terms of relative entropy [9,10] and Hilbert–Schmidt dis-
tance [32]. In a similar manner, we propose a non-Gaussianity
measure by using Uhlmann fidelity as a measure of distance:

N (ρ) = −2 ln F (ρ, ρG) = −2 ln Tr[
√√

ρ̂ρ̂G

√
ρ̂], (5)

where the fidelity F (ρ, ρG) characterizes a distance between
a state ρ̂ and its reference Gaussian state ρ̂G. In accordance
with previous work [9], appropriate properties as a measure
of non-Gaussianity are examined as follows:

(N1) N (ρ) = 0 if and only if ρ̂ is a Gaussian state;
otherwise, it gives rise to a nonzero positive value.

Proof. Uhlmann fidelity between arbitrary states ρ̂ and
σ̂ becomes unity if and only if they are equal; that is,

F (ρ, σ ) = 1 if and only if ρ̂ = σ̂ . Thus, N (ρ) = 0 if and only
if ρ̂ = ρG, i.e., ρ̂ is a Gaussian state.

(N2) N (ρ) is invariant under Gaussian unitary transfor-
mations. Namely, if Û is a unitary operator corresponding
to a symplectic transformation in the phase space, i.e., Û =
e−iĤ with a Hamiltonian that is at most bilinear in the field
operators, then N (UρU †) = N (ρ).

Proof. After unitary transformation corresponding to a
symplectic transformation, ρ̂ is changed to Û ρ̂Û † and its
reference Gaussian state ρ̂G is also changed to Û ρ̂GÛ †. Since
the fidelity is invariant under the unitary transformation, i.e.,
F (ρ, ρG) = F (UρU †, UρGU †), N is invariant under Gaus-
sian unitary transformations.

(N3) N is additive for tensor products ρ̂A ⊗ ρ̂B , i.e.,
N (ρA ⊗ ρB ) = N (ρA) + N (ρB ).

Proof. Reference Gaussian state of ρ̂A ⊗ ρ̂B is given
by ρ̂A

G ⊗ ρ̂B
G. Thus, due to the multiplicavity of the fi-

delity, i.e., F (ρA ⊗ ρB, σA ⊗ σB ) = F (ρA, σA)F (ρB, σB ),
we have N (ρA ⊗ ρB ) = N (ρA) + N (ρB ).

(N4) N is nonincreasing with respect to a partial trace,
N (ρAB ) � N (ρA).

Proof. For a bipartite state ρ̂AB , its reduced state is defined
as TrB[ρ̂AB] = ρ̂A. The covariance matrix of ρ̂A is given by
the same elements of the covariance matrix of ρ̂AB , only
determined by the expectation values of the A system. Thus,
the reduced state of the reference Gaussian state of ρ̂AB is
equal to the reference Gaussian state of the reduced state
ρ̂A; that is, TrB[ρ̂AB

G ] = ρ̂A
G. Then, applying the monotonicity

of the fidelity under partial trace; that is, F (ρAB, ρAB
G ) �

F (ρA, ρA
G), one can prove (N − 4).

(N5) N monotonically decreases under Gaussian quantum
channels, N (ρ) � N (EG(ρ)), where EG is a Gaussian quan-
tum channel.

Proof. Any Gaussian channel EG can be written as EG(ρ̂) =
TrE[Û (ρ̂ ⊗ ρ̂E

G )Û †], where Û corresponds to a symplectic
transformation in phase space after including an ancillary
system E with its state ρ̂E

G . Then, according to (N − 4), we
have N (U (ρ ⊗ ρE

G )U †) = N (ρ ⊗ ρE
G ) and, by taking par-

tial trace over E and using (N − 2) and (N − 3), we have
N (ρ) � N (EG(ρ)).

It is worth noting that our non-Gaussianity measure N is a
special case of the quantum Rényi relative entropy [33] of ρ̂

with respect to σ̂ , which is given by

Sα (ρ‖σ ) = 1

α − 1
ln

(
Tr

[(
σ̂

1−α
2α ρ̂σ̂

1−α
2α

)α])
, (6)

for the order α � 1/2 and α 
= 1. More specifically, N
corresponds to the quantum Rényi relative entropy for α =
1/2 such that S1/2(ρ‖σ ) = −2 ln F (ρ, σ ). For α = 1 as an-
other special case, it becomes the quantum relative entropy
S(ρ‖σ ) = Tr[ρ̂ ln ρ̂ − ρ̂ ln σ̂ ], which has been employed as a
non-Gaussianity measure in Ref. [9].

In general, the quantum Rényi relative entropy for any
order α can be employed as a measure of non-Gaussianity
since Sα (ρ‖ρG) satisfies the required properties of the non-
Gaussianity measure that can be shown by using its own
properties addressed in Ref. [33]. However, as pointed out
in Ref. [34], these measures may not be readily computable
because of the difficulty of solving the eigenvalue problem
in the infinite-dimensional Hilbert space. To deal with the
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difficulty, we consider the fidelity-based non-Gaussianity as
one can alternatively adopt superfidelity [35,36],

G(ρ, σ )2 ≡ Tr[ρ̂σ̂ ] +
√

1 − Tr[ρ̂2]
√

1 − Tr[σ̂ 2], (7)

which allows one to use the phase-space description for
calculation. This quantity becomes unity if and only if ρ̂ = σ̂ ,
providing an upper bound of the usual fidelity, i.e.,

F (ρ, σ ) � G(ρ, σ ).

That means alternatively one can employ it to quantify the
readily computable non-Gaussianity measure

Ng (ρ) = −2 ln G(ρ, ρG) � N (ρ), (8)

which gives strictly nonzero values for non-Gaussian states
and also provides a lower bound for fidelity-based non-
Gaussianity.

IV. NON-GAUSSIANITY AND ENTROPY-BOUNDED
UNCERTAINTY RELATION

In this section, we present an improved version of the RS
relation by taking into account two characteristics of quantum
states together: the non-Gaussianity and the mixedness quan-
tified by the non-Gaussianity measure N (ρ) and the entropy
S(ρ), respectively. This inequality is referred to as the non-
Gaussianity and entropy-bounded (NE) uncertainty relation.

A. Non-Gaussianity and entropy-bounded uncertainty
relation for single-mode system

For a single mode system, we obtain the NE uncertainty
relation by incorporating the non-Gaussianity measure N (ρ)
and the entropy S(ρ) as follows:

Theorem 1. For a single system ρ̂ with the non-Gaussianity
N (ρ) and the entropy S(ρ), we have

√
det V � h−1(S(ρ) + N (ρ)), (9)

where V is the covariance matrix of ρ̂ and h(x) = −(x − 1
2 )

ln(x − 1
2 ) + (x + 1

2 ) ln(x + 1
2 ) is a monotonically increasing

function of x > 1/2.
Proof. According to the monotonicity of the quantum

Rényi relative entropy with respect to the order α, we have

S(ρ‖ρG) � S1/2(ρ‖ρG). (10)

The left-hand side can be rewritten as S(ρ‖ρG) = Tr[ρ̂ ln ρ̂ −
ρ̂ ln ρ̂G] = S(ρG) − S(ρ), since ln ρ̂G is determined by at
most bilinear in the field operators. Furthermore, the entropy
of the reference Gaussian state is explicitly expressed in
terms of the covariance matrix, S(ρG) = h(

√
det V ). Thus, by

adding the entropy and taking the inverse of h(x) on both sides
we have the NE uncertainty relation (9). �

As desired, the NE uncertainty relation is invariant under
Gaussian unitary transformations, since S(ρ), N (ρ), and
det V are all invariant. Furthermore, the NE uncertainty re-
lation is saturated by all Gaussian states and a set of states
provided by performing Gaussian unitary transformations on
a number states. More specifically, for the case of Gaussian
states, the NE uncertainty relation reduces to the entropy-
bounded uncertainty relation which is saturated for all Gaus-
sian states. On the other hand, for the case of pure states where

the entropy vanishes, the inequality (9) is also saturated by |n〉.
Due to the invariance under Gaussian unitary transformation,
we see that all states obtained by acting them on number states
thus saturate the NE uncertainty relation.

Additionally, we can introduce a weaker but readily com-
putable NE uncertainty relation,

√
det V � h−1[− ln μ + Ng (ρ)], (11)

where μ = Tr[ρ̂2] is the purity. This relation is straightfor-
wardly obtained by directly applying the inequalities S(ρ) �
− ln μ and N (ρ) � Ng (ρ) defined in Eq. (8). All quantities
in the bound can be readily calculated by using phase-space
distributions, and for mixed and non-Gaussian states, both
quantities give us nontrivial positive values. For the case of
pure states, moreover, we note that the weaker inequality (11)
becomes identical with the original one (9) due to S(ρ) =
− ln μ = 0 and N (ρ) = Ng (ρ).

In what follows, let us investigate the tightness of inequal-
ity (9) comparing with the so-called “purity-and Gaussianity-
bounded (PG) uncertainty relation” [11,12] to show its valid-
ity as a refined inequality. In the derivation of the PG uncer-
tainty relation, the degree of non-Gaussianity is characterized
by

g(ρ) = Tr[ρ̂ρ̂G]

Tr
[
ρ̂2

G

] , (12)

which is called Gaussianity. We note that g holds the in-
variance under Gaussian unitary transformations and that it
becomes unity, i.e., g(ρ) = 1, for Gaussian states. However,
g(ρ) = 1 does not imply that ρ̂ is Gaussian; namely, g(ρ) = 1
is a necessary but not sufficient condition for Gaussian states.
To focus on the behavior of NE and PG uncertainty relations
with respect to the degree of non-Gaussianity, we consider
non-Gaussian pure states in what follows. For this purpose,
we specify the exact form of the PG uncertainty relation for
the case of pure states [11], i.e., μ = 1:

det V �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g

2(2 − g)
for g > 1

2 + 2
√

1 − g − g

2g
for

2

e
< g � 1.

Now, as an example, let us consider even and odd cat states
[37] defined by

|ψ±〉 = 1√
2(1 ± e−2|α|2 )

(|α〉 ± | − α〉), (13)

respectively, where |α〉 = D̂(α)|0〉 is a coherent state with
α = |α|eiθ . Here, the angle θ represents the rotation angle
so that it does not affect the degree of non-Gaussianity
due to invariance under the rotation operation. On the
other hand, |α| represents the distance between two co-
herent states, |α〉 and | − α〉. To illustrate our NE un-
certainty relation as a refined one, we plot the NE and
PG uncertainty relations for even and odd cat states ac-
cording to the amplitude |α| in Figs. 1(a) and 1(b),
respectively.

For the case of even cat states, they reduce to the vacuum
state as |α| goes to zero. Thus, when |α| is close to zero, all
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FIG. 1. Plots of
√

det V and the bounds of the NE, PG, and RS
uncertainty relations for (a) even and (b) odd cat states against the
amplitude |α|.

uncertainty relations provides an optimal bound, as observed
in Fig. 1(a), since they are all saturated for vacuum states.
However, as |α| increases, the uncertainty characterized by√

det V also increases. The bound of the NE uncertainty
relation shows the same behavior by taking into account the
non-Gaussianity effect, while the bound of the PG uncertainty
relation does not. While the PG uncertainty relation gives a
stronger bound when |α| < 1.1, the NE uncertainty relation
provides a tighter uncertainty bound in a larger region. In
addition, the behavior in which the bound of PG uncertainty
relation approaches 1/2 at |α| ∼ 1.57 is observed because the
Gaussianity g can have the value of unity for non-Gaussian
states. On the other hand, for the case of odd cat states, they
reduce to a single-photon state as |α| goes to zero. In this limit,
both bounds of NE and PG relations are saturated, since they
are optimized for number states. However, as |α| increases,√

det V and the NE relation show similar behavior, while the
PG relation does not.

As another example of a non-Gaussian pure state, let us
consider photon-added coherent states provided by adding a
single photon to a coherent state [38] described by

|ψpacs〉 = 1√
1 + |α|2

â†|α〉. (14)

In the limit α → 0, |ψpacs〉 reduces to |1〉, while in the another
extreme, α → ∞, it tends to |α〉. Thus, as |α| increases from
zero, the effect of non-Gaussianity decreases. This trend is
clearly observed in Fig. 2. When |α| is close to zero, Fig. 2
shows that both the NE and PG uncertainty relations give
the optimal bound, since both are saturated for number states.
However, as |α| increases, distinct behavior is observed. Par-

FIG. 2. Plot of
√

det V and the bounds of the NE, PG, and
RS uncertainty relations for photon-added coherent states |ψpacs〉
against |α|.

ticularly, when α ∼ 0.56, G(|ψpacs) becomes unity but |ψpacs〉
is not Gaussian at this point. Furthermore, in |α| → ∞, as
|ψpacs〉 reduces to |α〉, both relations are saturated again.

B. Generalization for two-mode system

The NE uncertainty relation can be straightforwardly gen-
eralized to the case of two-mode system in the same manner
as with the case of a single-mode system.

Theorem 2. For the two-mode system ρ̂AB with the non-
Gaussianity measure N (ρAB ) and the entropy S(ρAB ), we
have

h(ν+) + h(ν−) � S(ρAB ) + N (ρAB ), (15)

where ν+ � ν− are symplectic eigenvalues of the covariance
matrix for canonical operators of the two-mode system.

Proof. The covariance matrix for two-mode system is a real
4 × 4 symmetric positive block matrix,

V =
(

A C

CT B

)
, (16)

where A, B, and C are real 2 × 2 matrices. Its symplec-
tic eigenvalues are determined by two symplectic invariants
det V and �V = det A + det B + 2 det C as

ν± =
√

�V ±
√

(�V )2 − 4 det V

2
. (17)

Thus, we have entropy of the two-mode Gaussian state in the
form of

S
(
ρAB

G

) = h(ν+) + h(ν−), (18)

since one can always achieve symplectic diagonalization lead-
ing to thermal states without affecting the entropy. Hence,
with the monotonicity of quantum Rényi relative entropy
in α,

S
(
ρAB‖ρAB

G

) = S
(
ρAB

G

) − S(ρAB )

� S1/2
(
ρAB‖ρAB

G

) = N (ρAB ), (19)

we have desired inequality (15) by adding S(ρAB ) to both
sides,

S(ρAB
G ) � S(ρAB ) + N (ρAB ), (20)
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FIG. 3. Enhanced restrictions on symplectic eigenvalues ν+ �
ν− according to the bound in inequality (15) denoted by B =
S(ρAB ) + N (ρAB ). With the increase of B from 0 to 5 distinguished
by the contrast of blue, available regions of ν± become more
confined.

where ρAB
G is the reference Gaussian state with the same

covariance matrix of ρAB . �
The NE uncertainty relation (15) has the desired properties.

First, all quantities in inequality (15) are invariant under Gaus-
sian unitary transformations, thus it is possible to verify the
inequality regardless of principle axes. Second, the relation
(15) is saturated for Gaussian states and imposes enhanced
restrictions on ν± for non-Gaussian states. Generalized RS
uncertainty relations for a multimode system [31] indicate
that symplectic eigenvalues should be larger than 1/2, that is
ν± � 1/2. This is equivalent to the trivial case of inequality
(15), where both S and N vanish. It is because h(x) gives
us valid values only if x � 1/2. Furthermore, for nontrivial
cases, it may impose tighter restrictions on possible values of
ν±. This behavior is illustrated in Fig. 3, which shows regions
of possible values of ν± with respect to the overall bound
B = S(ρAB ) + N (ρAB ).

V. APPLICATION TO ENTANGLEMENT DETECTION OF
NON-GAUSSIAN STATES

Entanglement has played a crucial role in quantum infor-
mation science. However, even if a bipartite state is fully
known, it is an NP-hard problem to verify whether it is
entangled [39]. The entanglement criterion has been derived
in Ref. [40] by observing negativity of partial transposed
states, since any separable state remains as a physical state,
i.e., positive-semidefinite operator under partial transposition.
For continuous variable systems, it has been generalized by
Simon [19] and Duan [18] by addressing its physicality in
view of uncertainty relations as follows: Partial transposition
on the second mode of ρ̂AB corresponds to the mirror reflec-
tion, p̂B → −p̂B in phase space. Accordingly, the covariance

matrix is changed into

Ṽ = PBV PB =
(

A C̃

C̃T B̃

)
, (21)

with PB = diag(1, 1, 1,−1). If ρ̂AB is a separable state, its
partial transposed state should satisfy uncertainty relations,
ν̃± � 1/2, where ν̃± are the symplectic eigenvalues of Ṽ .
Thus, according to the Simon–Duan criterion, the violation
of the uncertainty relation, i.e., ν̃− � 1/2, implies the entan-
glement of bipartite states. It was shown that the Simon–Duan
criterion is a necessary and sufficient condition for entangle-
ment of Gaussian states. However, for non-Gaussian states,
the satisfaction of inequality does not necessarily guarantee
that the state is separable.

To deal with the entanglement detection of non-Gaussian
states, improved entanglement criteria were suggested in
Refs. [22,23,25,41,42]. For the same purpose, we suggest an
entanglement criterion based on our NE uncertainty relation.
According to the Williamson theorem [43], one can always
find an appropriate symplectic transformation diagonalizing it
such that

Ṽ → Ṽd = SṼ ST =
(

ν̃+I 0

0 ν̃−I

)
, (22)

where I is a 2 × 2 identity matrix. Thus, the violation of
the uncertainty relation, ν̃− � 1/2, is equivalent to observing
that σ̂ B = TrA[ÛS (ρ̂AB )TB Û

†
S] violates the RS uncertainty

relation as pointed out in Ref. [25], where ÛS is the unitary
operator corresponding to S. By applying this method to our
NE uncertainty relation for single modes, one can obtain the
improved entanglement criterion for non-Gaussian states,

h(ν̃−) � S(σB ) + N (σB ) → entangled. (23)

In general, it is challenging to solve the eigenvalue problem
and we can instead use the weaker but readily computable NE
uncertainty relation (11) as

h(ν̃−) � − ln μ + Ng (σB ) → entangled. (24)

It is worth noting that one may encounter unphysical purity,
i.e., μ > 1, in the process of verifying the inequality under
partial transposition. In this case, one can conclude that the
state is entangled, since μ > 1 immediately indicates that σ̂B

is unphysical.
As an example, let us consider odd cat and thermal states

coupled via a two-mode squeezing operation,

ŜAB (ξ )(|ψ−〉A〈ψ−| ⊗ τ̂ B (n̄))ŜAB (ξ )†, (25)

where ŜAB (ξ ) = exp (ξ â†b̂† − ξ ∗âb̂) with the complex cou-
pling ξ = reiφ . For simplicity, we assume that they are
squeezed along the direction of α. In that case, we can put
α = |α| and ξ = r without loss of generality. Here, α and r

determine the degree of non-Gaussianity and entanglement,
respectively, while the mean photon number n̄ gives mixed-
ness of overall states by adding thermal noise on it.

We show entanglement conditions with respect to r and
n̄ detected via the non-Gaussianity–based entanglement cri-
terion (24) for α = 0, 1 in Fig. 4. In both cases, the graphs
show that our entanglement criterion (dashed blue and red)

042314-5



KYUNGHYUN BAEK AND HYUNCHUL NHA PHYSICAL REVIEW A 98, 042314 (2018)

FIG. 4. Plots of entanglement conditions for (a) α = 0 and
(b) α = 1 detected by the Simon–Duan (light blue) and the non-
Gaussianity–based criteria (dashed blue and red) (24) against the
squeezing parameter r and mean photon number n̄ of a thermal state
τ̂ B (n̄).

discovers an undetected region by the Simon–Duan criterion
(light blue). Additionally, we note that the region denoted by
dashed red in the right corner of Fig. 4(b) indicates entangle-
ment discovered by observing an unphysical purity larger than
unity.

VI. CONCLUSION

With the inequality (9) we have provided an improved
uncertainty relation by taking into account the degree of
non-Gaussianity and mixedness that are quantified based on

fidelity and von Neumann entropy, respectively. We have
shown that this inequality, so-called NE uncertainty relation,
includes the RS relation with invariance under linear canoni-
cal transformations, and further it is saturated by all Gaussian
and number states. To avoid challenging eigenvalue problems,
we have also presented a weaker but readily computable
inequality (11) by using attainable quantities in a phase-space
description. We have pointed out that our uncertainty relations
provide a strictly stronger bound for a non-Gaussian state
even when using the weaker version of the inequality. We
have generalized the NE uncertainty relations to the case of
a two-mode system and exhibited its enhanced restrictions
on symplectic eigenvalues according to the increase of non-
Gaussianity and mixedness.

As an application of our uncertainty relation, we have
considered entanglement detection of non-Gaussian states.
Due to the property that it gives a strictly stronger bound for
non-Gaussian states, we have obtained an improved version
of the Simon–Duan criterion (24) for non-Gaussian states.
To examine how it works, we have considered odd cat states
coupled to thermal states by a two-mode squeezing operation.
As a result, we have seen that ours can discover entangled
states undetected by the Simon–Duan criterion.
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