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We introduce entanglement purification protocols for d-level systems (qudits) with improved efficiency
as compared to previous protocols. While we focus on protocols for bipartite systems, we also propose
generalizations to multipartite qudit systems. The schemes we introduce include recurrence protocols that
operate on two copies, as well as hashing protocols that operate on large ensembles. We analyze properties
of the protocols with respect to minimal required fidelity and yield, and study their performance in the presence
of noise and imperfections. We determine error thresholds and study the dependence on local dimension. We
find that our schemes do not only outperform previous approaches, but also show an improved robustness and
better efficiency with increasing dimension. While error thresholds for different system sizes are not directly
comparable, our results nevertheless suggest that quantum information processing using qudits, in particular for
long-distance quantum communication, may offer an advantage over approaches based on qubit systems.
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I. INTRODUCTION

Entanglement purification is one of the key ingredients of
long-distance quantum communication schemes and quantum
networks [1], but has also been discussed in the context
of distributed quantum computation [2,3]. Entanglement has
been identified as a valuable resource for numerous quantum
communication tasks, including quantum key distribution [4],
secret sharing [5], secret voting or teleportation [6], but has
also applications in (distributed) quantum sensing and metrol-
ogy [7], as well as in atomic clock synchronization [8]. How-
ever, entanglement is susceptible to noise and imperfections,
and usually any attempt to distribute entangled states over
some distance, or store them for a certain amount of time,
reduces the fidelity of the states in question, thereby limiting
or jeopardizing possible applications.

Several ways to protect and distribute quantum information
or entanglement have been put forward, which include, e.g.,
schemes based on quantum error correction where quantum
information is encoded in a larger system. Entanglement
purification is a viable alternative that offers advantages over
such generally applicable schemes [9]. As the desired target
state is known and the task is limited to produce high-fidelity
entangled states, one can design schemes that offer a better
protection and better error tolerance. Such methods typically
involve two (or more) copies of noisy entangled states that are
manipulated locally. Out of several copies of noisy entangled
states, fewer states with an increased fidelity are generated.
Typically, this process only succeeds probabilistically, and
has to be repeated several times in order to eventually obtain
maximally entangled states (recurrence protocols). There are
also so-called hashing protocols that operate directly on a
large ensemble, and produce deterministically high fidelity or
even maximally entangled pairs on a subset of the ensemble
by measuring the other states [9,10]. This process can also be
understood in such a way that entanglement of some of the
states is used to learn nonlocal information of the remaining
ensemble, thereby purifying it.

Entanglement purification protocols have been developed
and studied for qubits, both in a bipartite [9–13] and a mul-
tipartite [14–17] setting. Entanglement purification protocols
play a key role in quantum repeater schemes [18–22]. In
particular, they determine the efficiency and communication
rates of quantum communication protocols, and are hence of
central importance in the context of long-distance communi-
cation and quantum networks [18]. Some of these protocols
have been generalized to d-dimensional systems [23–27],
where entangled states of qudits are purified. Quantum in-
formation processing with qudits has been discussed in sev-
eral contexts, most notable in quantum key distribution and
quantum communication [28–36], but also for fault-tolerant
quantum computation [37,38], e.g., using magic states [39].
In these works it was argued that the usage of d-dimensional
systems rather than qubits might offer an advantage in terms
of achievable security levels, flexibility, efficiency, or error
tolerance. It should also be noted that in several proposed
physical realizations, e.g., when using atoms or ions, d-level
systems are naturally available [40–45].

Here, we introduce entanglement purification protocols
that allow one to purify d-level systems. We generalize re-
currence protocols for bipartite entangled states, and compare
their performance with previous protocols. We also analyze
these protocols in the presence of noise and imperfections,
and determine error thresholds for local control operations,
as well as minimal required and maximal achievable fidelity.
Among other things, we find that the robustness against noise,
as well as achievable yield, increases with the system dimen-
sion. Even though systems with different dimension are not
directly comparable, these results nevertheless suggest that it
might be of advantage to consider d-level system for quantum
information processing rather than qubits. We also treat with
the generalization of the so-called hashing and breeding pro-
tocols [10] to d-level systems, where an (asymptotically) large
ensemble of states is jointly manipulated using only local op-
erations and one-way classical communication. Note that, in
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contrast to recurrence protocols, these protocols only work for
d being a (power of) prime [25]. We analyze the performance
of such schemes in an asymptotic and finite-size setting, and
investigate the influence of noise and imperfections. Simi-
lar to in the qubit case, we consider a measurement-based
implementation [46–48], where locally generated entangled
states are used to perform the required local manipulation of
the ensemble by coupling the states from the ensemble to
the resource state via Bell-type measurements. Only such a
measurement-based implementation makes hashing practical,
as a gate-based approach using noisy gates is not applicable
[49]. To this aim, we discuss how the protocols can be
implemented in a measurement-based way. Again, we find
that such schemes perform better when the local dimension
of the systems is higher. Finally, we also propose protocols
to purify multipartite multidimensional systems, most notable
states of Greenberger-Horne-Zeilinger (GHZ) type.

This paper is organized as follows. In Sec. II we provide
background information on entanglement purification proto-
cols and their measurement-based implementation, and fix
the notation for maximally entangled states and operations
for d-level systems. In Sec. III we introduce a recurrence
protocol for qudit purification, and compare its performance
and efficiency to previous protocols. In this section we also
study the influence of noise and imperfections for the dif-
ferent protocols, and determine error thresholds, minimal
required and maximal achievable fidelity for systems with
different local dimension. In Sec. IV we introduce hashing
and breeding protocols for bipartite d-level systems, and study
their performance in finite-size and noisy settings. There,
we also generalize some of our results to multipartite mul-
tidimensional systems. Finally, in Sec. V we briefly discuss
the universal and optimal error thresholds for entanglement
purification protocols implemented in a measurement-based
way. We summarize and conclude in Sec. VI.

II. BACKGROUND

We start by providing the required background information
and introduce the notation we use throughout the article.

A. Maximally entangled states of d-level systems

We focus on the study of d-dimensional quantum systems
(qudits), for which the maximally entangled bipartite states
are given by

|ψmn〉AB = 1√
d

d−1∑
r=0

e
2πi
d

mr |r〉A⊗|r � n〉B, (1)

where the subindex m is called phase index and the subindex
n is called amplitude index, r � n = (r − n) mod(d ) denotes
subtraction modulus d. In the following, we will omit the
tensor product ⊗ between parties A and B. This set of
maximally entangled states (1) forms an orthogonal basis of
HAB = Cd ⊗ Cd . For the d = 2 case (qubits), these states (1)
correspond to the Bell states. Hence, one can write any general
mixed state as

ρAB =
d−1∑

k,k′,j,j ′=0

αkk′jj ′ |ψkk′ 〉〈ψjj ′ |, (2)

where |ψkk′ 〉 are states defined above (1).
For these qudit systems, the generalized Pauli operators are

defined via their action on basis states,

X|j 〉 = |j � 1〉 ; Z|j 〉 = wj |j 〉, (3)

Λkj = XjZk =
d−1∑
r=0

wkr |r � j 〉〈r|, (4)

with w = e
2πi
d . These operators correspond to a shift (X) or

a phase (Z), and are unitary but not Hermitian for d > 2.
One can also characterize states of the form Eq. (1) in terms
of the correlation operators K1 = XAXB, K2 = ZAZ∗

B , with
eigenvalue equations

K1|ψmn〉AB = wm|ψmn〉AB, (5)

K2|ψmn〉AB = wn|ψmn〉AB. (6)

Besides, if we take the state |Ψ 00〉AB as the reference state,
one can easily check that all the other states |ψmn〉 are simply
generated by the local application of the family of d2 Pauli
operators Λmn onto |ψ00〉AB , i.e.,

|ψmn〉(AB ) = I
(A)
d ⊗ Λ(B )

mn |ψ00〉(AB ). (7)

An important operation which exchanges the role of the X and
Z operators is the quantum Fourier transform (FQ), which is
defined as

FQ|m〉 = 1√
d

d−1∑
n=0

e
2πimn

d |n〉. (8)

The action of the bilateral local application of the FQ on
basis states (1) is an exchange of the phase and the amplitude
indices of the states, i.e.,

FQA ⊗ FQ
∗
B
|ψmn〉 = |ψnm〉. (9)

Regarding two-qudit operations, we consider the general-
ized XOR gate (GXOR) given by [24]

GXORij |m〉i |n〉j = |m〉i |m � n〉j , (10)

which is unitary and Hermitian. This definition of the
GXOR gate is motivated in order to generalize the proper-
ties GXORij = GXOR−1

ij and GXOR2
ij = I . Note also that

m � n = 0 ⇔ m = n. This operation allows one to exchange
some information on the indices between the two states when
it is applied bilaterally (both parties apply the GXOR gate
locally), i.e.,

bGXOR1→2

∣∣ψk1j1

〉
1

∣∣ψk2j2

〉
2 = ∣∣ψk1⊕k2,j1

〉
1

∣∣ψd�k2,j1�j2

〉
2,

(11)

where

bGXOR1→2

∣∣ψk1j1

〉
A1B1

∣∣ψk2j2

〉
A2B2

= GXORA1A2 ⊗ GXORB1B2

∣∣ψk1j1

〉
A1B1

∣∣ψk2j2

〉
A2B2

. (12)

B. Noise and decoherence

A typical communication scenario consists of the genera-
tion of an entangled state, where each particle is sent to two
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spatially separated parties and affected by some decoherence
procedures. This decoherence is in general modeled by a noise
channel. Any noise channel can be brought to depolarizing
form by additional actions before and after the action of the
channel [50], where this additional depolarization process
typically introduces more noise. A depolarizing channel is
described by a process where the state remains unaltered with
some probability α, and is completely depolarized with prob-
ability (1 − α). That is, errors of the form of the generalized
Pauli operators act with equal probability

Eη(α)ρ = αρ + (1 − α)

d2

d−1∑
k,j=0

Λ
η

kjρΛ
η
†

kj , (13)

where Λkj are the elements of the generalized Pauli group
(4), and the superindex η means that the operators are locally
applied to the ηth particle. The action of the depolarizing
channel on a single qudit in state |χ〉 is given by E (α)|χ〉〈χ | =
α|χ〉〈χ | + (1−α)

d
Id .

We use such a depolarizing noise to model the action of
channel noise when transmitting qubits (parameter α), but
also to describe imperfect operations. An imperfect operation
is modeled by depolarizing noise channels with parameter
Q acting on all involved particles, followed by the perfect
operation. Notice that noise acts only on particles that are
nontrivially affected by an operation, i.e., a noisy two-qudit
operation only affects the two qudit it acts on, while the
remaining system is unaltered.

C. Depolarization of states

In order to analyze entanglement purification protocols, it
is convenient to restrict the input states to a specific standard
form, e.g., mixtures of the desired target state with the identity,
or states that are diagonal in the basis of maximally entangled
states. Here, we show that it is well justified to do so, as there
exist depolarization procedures that allow one to bring the
state to the considered standard form by means of (random)
local operations in such a way that some properties of the
state, such as the fidelity, or diagonal elements of the density
matrix in the basis of maximally entangled states, are not
altered.

We start by considering a general two-qudit density opera-
tor written in the basis of maximally entangled states [Eq. (1)]:

ρAB =
d−1∑

k,k′,j,j ′=0

αkk′jj ′ |ψkj 〉〈ψk′j ′ |. (14)

This state may result from the creation of a maximally entan-
gled state in some location, and the transmission of the par-
ticles through a general noisy channel (13). One can always
bring these states (in general with entanglement losses) to a
diagonal form

ρAB =
d−1∑

k,j=0

αkj |ψkj 〉〈ψkj | (15)

by depolarization procedures, such that the diagonal elements
remain unchanged, αkj = αkk′jj ′ . Consider the elements of the

commutative group

Δ = {
gμν = Λ

(A)

μν ⊗ Λ∗(B )

μν ; μ, ν ∈ Zd

}
, (16)

with Λμν members of the generalized Pauli operators (4).
These elements fulfill the following property (see U ⊗ U ∗
invariance in [23]):

gμν |ψmn〉 = e
2πi
d

(μn+νm)|ψmn〉. (17)

The depolarization process consists in randomly selecting one
of the elements gμν , and applying it to the mixed state (14)
with probability 1

d2 . Then, due to the random choice of an
unknown element gμν , the remaining state is a mixture of all
the possibilities, i.e.,

ξ (ρ) = 1

d2

d−1∑
μ,ν=0

gμνρg†
μν =

∑
k,j

αkj |ψkj 〉〈ψkj |. (18)

This results in a state that is diagonal in the maximally
entangled basis (1), and is described by d2 − 1 real parameters
αkj . The protocols we consider in this paper typically work
with such diagonal states.

However, a further depolarization is possible and in fact
some protocols require such fully depolarized states as inputs.
By suitable twirling techniques (see [23]), a state that is
described by a single parameter, its fidelity, can be obtained.
The twirling is done in such a way that the fidelity of the state,
i.e., its overlap with the maximally entangled state |ψ00〉, is not
altered. The twirling depolarization makes use of the whole
set of unitaries, such that

ξ (ρ) =
∫

(U ⊗ U ∗)ρ(U ⊗ U ∗)†dU

= α(F )|ψ00〉〈ψ00| + [1 − α(F )]
1

d2
Id2 , (19)

where α(F ) = d2F−1
d2−1 and we integrate over the entire group

of unitaries acting on the d-dimensional Hilbert space, and
where dU is the Haar measure. Physically, such a twirling
can be achieved by randomly selecting one unitary operation
U according to the Haar measure, and applying U ⊗ U ∗. The
resulting states, invariant under U ⊗ U ∗ transformations, are
called isotropic states [23],

ρ = α|ψ00〉〈ψ00| + 1 − α

d2
Id2 , (20)

which are equivalent (up to local change of bases) to the so-
called Werner states (invariant under U ⊗ U transformations
[23]) for d = 2 systems. While any twirling leads to loss of
entanglement, the advantage of using isotropic states is that
they are described by a single parameter α [or equivalently
the fidelity of the state F = α + (1 − α)/d2]. This allows
for an analytic treatment and analysis of the corresponding
entanglement purification protocols, where, e.g., in the case of
a two-copy recurrence protocol the fidelity F ′ of the resulting
state can be expressed as a function of the initial fidelity F .
Notice that an isotropic state can be purified if F > 1/d, or
equivalently if α > (d − 1)/(d2 − 1).

Also in the case of imperfect local control operations,
minimal required fidelity, maximal reachable fidelity, as well
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as error thresholds for imperfect local operations can be deter-
mined analytically for systems of arbitrary local dimension. In
turn, the analysis of protocols operating with arbitrary states
or states that are diagonal in the basis of maximally entangled
states can only be done numerically.

D. Measurement-based implementation of quantum operations

There exist several models for quantum computation. The
measurement-based model [46,47] substitutes the application
of quantum gates as done in the circuit model by suitable
measurements performed on a specific resource state.

Cluster states are universal resource states (see [51]), i.e.,
any operation can be performed by doing measurements on a
sufficiently large two-dimensional (2D) cluster state. In turn
there exist resources that allow one to perform a particular
task, e.g., one (or several) rounds of entanglement purification
[20]. In many relevant cases the resource states are stabilizers
or graph states, and are of minimal size. In particular, this is
the case for Clifford circuits, which include resource states
for entanglement purification we consider here. For n → m

entanglement purification protocols, the size of the resource
state is n + m, i.e., only input and output systems are needed.
This is the case as Pauli measurements, which are part of
the protocol, can be done beforehand. This implies that the
corresponding qudits are actually not required, but a state
of reduced size suffices. The initial states of a particular
computation, in our case, the noisy states to be purified, are
coupled to the resource state via local Bell measurements,
and the protocol is subsequently implemented [20]. The re-
sult of the Pauli measurements can be determined from the
results of the incoupling Bell measurements. These concepts
were generalized for higher-dimensional systems in [48]. In
analogy to the qubit case, one only needs generalized Bell
measurements to implement the desired operation up to local
unitary correction operations from the (generalized) Pauli
group.

An important advantage of the measurement-based imple-
mentation is high robustness of the protocols in the pres-
ence of local noise and imperfections (see [20,52]), where
sources of noise are imperfect resource states and noisy Bell
measurements. In particular, we apply this approach to the
implementation of breeding and hashing purification routines
(see Sec. IV). Our noise model consists in the introduction
of local depolarizing noise in the resource state and the Bell
measurements that can be subsequently virtually moved to the
initial states and can be translated into a decrease of the initial
fidelity of the states (see Sec. IV C for further information).
In the case of qubits, local noise per particle of about 24%
is tolerable for entanglement purification [52], and a similar
robustness is found for error correction or general (hybrid)
quantum computation [20].

III. MULTIDIMENSIONAL EXTENSION OF
RECURRENCE PURIFICATION PROTOCOLS

The goal of entanglement purification is to establish few
copies of high-fidelity entangled states from an ensemble of
many noisy copies [9].

In this section we consider recurrence protocols that op-
erate on two (or sometimes three) copies of a state, and are
iteratively applied. The BBPSSW [10,11] and the DEJMPS
[12] purification protocols for qubits were the first recurrence
purification protocols that were proposed in the literature.
These protocols are based on the acquisition of information
about states, which is accomplished by an iterative and prob-
abilistic procedure that increases the entanglement of one
of the copies after each iteration by sacrificing the other
copy. Concretely, a single iteration consists of a local control
operation acting on two identical copies of the mixed state,
followed by a measurement of the second copy in order to
collect information about the first copy. The measurement
results are distributed to both parties, i.e., the scheme involves
two-way classical communication. Depending on the outcome
of the measurements, either both copies are discarded, or the
first copy is kept. In this way, the degree of mixedness of the
remaining copy is eventually decreased and the fidelity of
the state is increased. The procedure is iterated, taking always
two identical output copies of a successful purification step
as an input for the next step. The fidelity approaches one
in this way. While the BBPSSW protocol [10,11] operates
on isotropic states, the DEJMPS protocol [12] works with
Bell-diagonal states and converges faster to unit fidelity.

The BBPSSW and the DEJMPS protocols were general-
ized to qudit systems in [23] and [24], respectively. Similarly
as in the qubit case, they operate on isotropic states described
by a single parameter, or on states that are diagonal in a
maximally entangled basis of two-qudit systems. Essentially,
the protocols are based on an the application of a bilateral
GXOR operation [Eq. (11)], followed by a measurement in
the Z basis. The generalized BBPSSW protocol [23] uses
depolarization of states after each step, while the generalized
DEJMPS protocol [24] exchanges coefficients by means of an
intermediate bilateral quantum fourier transform [Eq. (9)].

In the following, we introduce a variant of such a d-
level system entanglement purification protocol, inspired by
improved qubit protocols [9]. This protocol is based by the
alternative application of two possible subroutines, P1 and
P2. We analyze and compare this protocol with the previously
suggested protocols, in particular we compare their yield and
their performance for different initial states. We also analyze
the performance in the presence of noise, and determine min-
imal required fidelity, maximal reachable fidelity, and error
threshold. Such an error analysis was not done previously for
qudit protocols. We find that our protocol is more efficient and
robust against noise and imperfections.

Before we describe the protocol, we specify key features
of entanglement purification protocols. An entanglement pu-
rification protocol is only capable to purify states if the initial
states are sufficiently entangled. That is, for states of the form
(20), the protocols we treat here require a minimal fidelity
Fmin to work. In case of isotropic states, it is sufficient to
consider only the fidelity. For general states, also the value
of other coefficients may determine if the state can be purified
or not. In general [53], if one operates only on a finite number
of noisy copies, or when local control operations (or resource
states in a measurement-based implementation) are noisy, no
maximally entangled states can be generated. We denote the
maximum reachable fidelity by Fmax. Finally, the efficiency of
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FIG. 1. (a) Represents the subroutine P1. Each line represents a
bipartite state, while the operation acting on both states represents
the bilateral GXOR operation, which is locally applied by each party
from one state (control) into the other (target). The target state is
finally locally measured. (b) Represents the evolution of the diagonal
entries αkj of the density matrix in the maximally entangled basis for
d = 4 under the application of the subroutine P1. The initial state is
defined by ρ1 [Eq. (23)] (only X errors) with initial fidelity F = 0.40.

a protocol is measured by the yield. For a fixed target fidelity
Ft , the yield is defined as the fraction of the target states M

with fidelity larger than Ft that can be generated from N initial
noisy copies Y = M/N .

A. P1-or-P2 protocol

Here, we propose an alternative protocol based on an iter-
ative and selective application of two subroutines, P1 and P2.
The subroutines intend to correct X and Z errors, respectively,
and by a selective and alternating application both kind of
errors are corrected.

1. P1 subroutine

We assume an initial subensemble of diagonal states (15).
The subprotocol P1 (see Fig. 1) consists of taking the states
in pairs, where one copy acts as control state and the other
as target, i.e., ρcontrol = ∑d−1

k1,j1=0 αk1j1 |ψk1j1〉〈ψk1j1 |, ρtarget =∑d−1
k2,j2=0 αk2j2 |ψk2j2〉〈ψk2j2 |. Then, Alice and Bob locally

apply the bilateral GXOR operation (11) between each

pair, so that the target state is transformed into ρtarget =∑d−1
k2,j1,j2=0 αk2,j2 |ψd�k2,j1�j2〉〈ψd�k2,j1�j2 |. Finally, they per-

form a local measurement of every target state. This means
that Alice and Bob measure in the Z eigenbasis on the target
state, and each of them obtains a particular outcome. The
results of this measurement are wζ and wξ for Alice and
Bob, respectively, and different pair of results (At, Bt ) can be
obtained. The possible measurement outcomes are

(wr (1�k2 ), wr (1�k2 )⊕j2�j1 ), (21)

with r = (0, . . . , d − 1). Independently of the value of r , the
outcome (exponents) difference (At � Bt ) always coincides
with the value of the amplitude index of the target state,
i.e., ζ � ξ = j1 � j2. This result is equivalent to the effect
of the measurement of the observable K2 (6). The control
state is kept only if the difference of the outcomes is equal
to 0, ζ � ξ = m � p = 0, i.e., the control state is kept if the
outcomes of Alice and Bob measurements coincide. Note that
here is where the probabilistic nature of recurrence protocols
arises [54].

After a successful P1 iteration, the remaining state is

ρcontrol =
d−1∑

k,j1=0

α̃kj1

∣∣ψkj1

〉〈
ψkj1

∣∣, (22)

with α̃kj1 = ∑d−1
{(k1,k2 )/k1⊕k2=k}

αk1j1 αk2j1
N

, and N =∑d−1
k1,k2,j1=0 αk1j1αk2j1 is a normalization constant which

coincides with the success probability of the iteration. The
effect of this routine is the iterative elimination of X errors.
This can be seen from Fig. 1, where initial states of the form

ρ1 = F |ψ00〉〈ψ00| + (1 − F )

(d − 1)

d−1∑
k=1

Xk|ψ00〉〈ψ00|(Xk )
†

(23)

are considered. The effect of P1 for such input states is simply
to square each of the coefficients. After properly renormaliz-
ing, the largest coefficient is amplified. For general states, X

errors are reduced, but Z errors are to some extent amplified.

2. P2 subroutine

The subprotocol P2 acts in a similar way, however, it aims
to eliminate Z errors rather than X errors. In fact, the P2
subroutine involves an application of the bilateral quantum
Fourier transform (9) at the beginning and at the end of
each iteration that exchanges the role of phase and amplitude
indices, and an intermediate application of the P1 protocol
(see Fig. 2). So, the effect of the P2 routine is exactly the same
as for P1, except that the role of phase and amplitude indices
are exchanged due to the application of the bilateral quantum
Fourier transform.

Consider again a general initial state that is diagonal in
the basis of maximally entangled states. After a successful
application of P2, the resulting state is given by

ρcontrol =
d−1∑

k1,j=0

α̃k1j

∣∣ψk1j

〉〈
ψk1j

∣∣, (24)

with α̃k1j = ∑d−1
{(j1,j2 )/j1⊕j2=j}

αk1j1 αk1j2
N

. The effect of this rou-
tine is the iterative elimination of Z errors. This can be seen
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FIG. 2. (a) Represents the subroutine P2. Each line represents
a bipartite state, while the boxes with operation bFQ represent the
application of the bilateral FQ (9). The operation acting on both states
represents the bilateral GXOR operation, which is locally applied by
each party from one state (control) into the other (target). The target
state is finally locally measured. (b) Represents the evolution of the
diagonal entries αkj of the density matrix in the maximally entangled
basis for d = 4 under the application of the subroutine P2. The initial
state is defined by ρ2 [Eq. (25)] (only Z errors) with initial fidelity
F = 0.40.

from Fig. 2, where states of the form

ρ2 = F |ψ00〉〈ψ00| + (1 − F )

(d − 1)

d−1∑
k=1

Zk|ψ00〉〈ψ00|(Zk )
†

(25)

are considered. Similarly as before, for states with only Z

errors the coefficients are simply squared.

3. P1-or-P2 protocol

The P1-or-P2 protocol consists in the following steps. First,
one needs to decide which of the subroutines P1 or P2 to
apply. This requires knowledge of the initial states. If we
know the characteristics of the noisy channels through which
particles have been transmitted, this step is trivial. If this is
not the case, we can determine the states by performing state
tomography (see [55]). The steps of the routine are then as
follows:
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FIG. 3. Efficiency of the P1-or-P2 protocol for two different
initial states. We consider initial states of the form ρ1 [Eq. (23)] for
the diagonal case, and the corresponding depolarized isotropic states
[Eq. (20)] in the other case, with systems of d = 5 and a final fidelity
of F = 1–10−4.

(1) Subroutine decision. We need to decide which error
is predominant. This decision is carried out by comparing∑d−1

k=0 αk,0 and
∑d−1

j=0 α0,j , i.e., pure Z or pure X errors,
respectively. Here, αi,j represents the coefficients of the corre-
sponding diagonal elements of the density matrix (14). Note
that coefficients of the form {αk,j | k, j 
= 0} involve both X

and Z errors and contribute equally to each quantity in the
comparison. The subroutine P1 is applied if

d−1∑
k=0

αk,0 �
d−1∑
j=0

α0,j , (26)

and the subroutine P2 is applied otherwise.
(2) Iteration. The step 1 is repeated until a desired final

fidelity F = 1 − ε is reached. The output states of each iter-
ation are taken as input states for the next iteration. Note that
state tomography is only required before the first iteration of
the protocol (the evolution of the coefficients can be followed
from the initial ones).

The most important advantage of this protocol, as com-
pared to the generalized BBPSSW [23] and the generalized
DEJMPS [24] protocols, is an improved efficiency. All the
entangled states with initial fidelity F > 1

d
that we have

considered are distillable with the protocol, so that we can
avoid depolarization into an isotropic form (20). Figure 3
shows the improvement in efficiency (yield) when we avoid
depolarization. This efficiency improvement is more pro-
nounced if we compare the performance of the generalized
DEJMPS [24] and the P1-or-P2 protocol for an initial state
with only X errors (Fig. 4). Regarding the improvement
against the generalized BBPSSW protocol [23], we see better
performance even when we consider initial isotropic states
(Fig. 4), where P1-or-P2 and generalized DEJMPS coincide.
We have performed numerical studies to compare the different
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FIG. 4. Efficiency comparison of the P1-or-P2 protocol, the gen-
eralized BBPSSW (a), and the generalized DEJMPS (b) routines.
Initial states are of the form ρ [Eq. (20)] and ρ1 [Eq. (23)]. re-
spectively, with systems of d = 5 (7) and a final fidelity of F =
1–10−4 (1–10−5) for (a) [(b)]. In the case (a), the generalized DE-
JMPS and the P1-or-P2 protocols coincide. The small jumps are due
to the fixed final fidelity F = 1 − ε, which causes that, at certain
points, the protocol requires one additional iteration in order to reach
the desired target fidelity.

protocols, and found that the difference between protocols is
more significant if the required final fidelity is larger.

4. Three-copy protocol

We have also investigated alternative protocols that do not
operate on two but more copies. In particular, we consider
a 3 → 1 protocol where information about the first copy is
transferred to the second and third copies, which are mea-
sured. The control state is only kept if both measurements on

t
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t
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t
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t
3
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FIG. 5. (a) Illustrates the P1 subroutine of the three-copy proto-
col. Each line represents a bipartite state, while the operation acting
on the states represents the bilateral GXOR operation, which is
locally applied by each party from one state (control) into the others
(target). The target states are finally measured locally. In analogy to
the two-copy case, the P2 subroutine introduces local applications
of the FQ before and after each GXOR operation. (b) Shows the
efficiency of the two-copy and the three-copy (P1-or-P2) protocol
as a function of the initial fidelity of the states. Initial states with X

errors only [Eq. (23)] and d = 4 are considered, and we require a
final fidelity of F = 1–10−4.

the target copies give a value 0 of the amplitude indices. This
provides a more restrictive condition, and is translated into a
higher fidelity after each iteration, but with a lower success
probability. However, we measure now two out of three states
in each iteration, thereby destroying 2

3 instead of 1
2 elements

(2 → 1 protocol).
We have studied the performance of the protocol numer-

ically (see Fig. 5). One finds that the three-copy protocol
performs better than the two-copy routine in some regimes,
in particular when there is a large asymmetry between X and
Z errors. One obtains the best performance if one allows for
a selective application of the 2 → 1 and 3 → 1 protocols,
depending on the input state.

B. Imperfect operations

So far, we have assumed that all operations and measure-
ments are perfect. This is not a realistic scenario since the
introduction of noise when performing operations or mea-
surement is practically unavoidable. We consider a model
for noisy operations where local depolarizing noise acts on
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each of the involved qudits, followed by the application of the
operations in an ideal way [9]. We assume that measurements
do not introduce additional errors (or that the corresponding
errors are included in the noisy gates). The noise is character-
ized by a depolarizing channel E (Q) (13), and hence a noise
two-qudit gate corresponding to U acting on systems AiAj is
modeled by

U
(
EAi

(Q)EAj
(Q)ρ

)
U†. (27)

It can be easily checked that for a maximally entangled
state of two qudits, the independent application of depolariz-
ing local noise E ·E with noise parameter Q on two different
qudits is equivalent to a single application of depolarizing
noise on one qudit with error parameter Q2:

EA(Q)EB (Q)|ψkj 〉〈ψkj | = EA(Q2)|ψkj 〉〈ψkj |. (28)

Hence, for bipartite purification protocols, the action of
noise is translated into a lower fidelity of the state, which has
two consequences. First, the minimal required fidelity of the
protocol is higher than for the ideal case. Second, in presence
of imperfect operations, a complete purification is impossible,

i.e., one is not able to obtain maximally entangled states with
F = 1, but rather finds some maximum reachable fidelity. In
total, the purification regime is shrinked as compared to the
noiseless case.

In analogy to [19], we start with an analytic analysis
of the generalized BBPSSW protocol [23] in presence of
imperfect operations. We consider isotropic states (20) with
initial fidelity F . The effect of the local depolarizing noise due
to imperfect local control operations maps the initial state to
an isotropic state with reduced fidelity F̃ ′ = [FQ2 + (1−Q2 )

d2 ]
before the noiseless protocol is applied. Then, the fidelity after
one application of the generalized BBPSSW protocol [23] is

F ′ = a2
1 + a2

2 (d − 1)

a2
1 + 2a1a2(d − 1) + a2

2 (d3 − 2d + 1)
, (29)

with a1 = FQ2 + (1−Q2 )
d2 and a2 = (1−F )Q2

d2−1 + (1−Q2 )
d2 . The

map (29) has two fixed points, F+ and F−, which correspond
to the minimum required and the maximum reachable fidelity
of the protocol, i.e.,

F± = Q2d(d + 1)

2d2Q2
±

√
d − 1

√
8Q2(d + 1) − 4(d + 1)2 + Q4(d − 1)(d + 2)2

2d2Q2
. (30)

The threshold value of Q corresponds to F+ = F−, i.e., the
point from which we can achieve purification (F+ > F−):

Qth =
√

2

√
−2 − 2d +

√
d2(d + 1)2(d + 3)

−4 + 3d2 + d3
. (31)

For instance, we obtain a value of Qth = 0.8622 for d = 5,
which means that an error around 14% per particle is tolerable
by the protocol. The threshold error parameter decreases with
the dimension, scaling as

Qth ≈
√

2d−1/4 (32)

for large values of d (d → ∞) (see Fig. 6).
Analytical results for the generalized DEJMPS protocol

are more difficult to obtain, as the action of the protocol is
described by a d2 → d2 map. We analyze the performance
of the generalized DEJMPS protocol numerically here. Fig-
ure 7 shows a numerical analysis for the maximum achiev-
able fidelity (upper line) and the minimal required fidelity
for purification (lower line) as a function of the gate error
parameter Q. We consider isotropic states as initial states,
and the operational noise is modeled as described above. This
analysis is done for different dimensions d with the P1-or-P2
protocol, and compared to the analytic values obtained for the
generalized BBPSSW protocol [Eq. (30)]. We observe that the
amount of gate noise that the protocol can tolerate in order
to work grows substantially with the dimension. For d = 2,
the protocol tolerates around 6% (Q ≈ 0.94) of gate noise,
whereas for d = 6 it tolerates around 17%. Furthermore, if
one focuses on a particular value of the gate error parameter
Q, one clearly sees that the initial required fidelity gets lower
with the dimension, and the maximum reachable fidelity gets

higher. In addition, the purification regime for the P1-or-P2
protocol is significantly larger as for the generalized BBPSSW
protocol. For the case of initial isotropic states, the purification
regime of the DEJMPS protocol coincides with the P1-or-P2
protocol. This situation changes when considering different
kinds of initial states, when the regime of DEJMPS is also
smaller (see Appendix).
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FIG. 6. Error threshold Q for noisy control operation as a func-
tion of local dimension d for the generalized BBPSSW protocol for
isotropic states.
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FIG. 7. Maximum achievable and minimum required fidelity as
a function of the gate error parameter Q for systems of different
dimension. P1-or-P2 protocol is applied (solid lines) and initial
isotropic states are considered. Dashed lines are the corresponding
analytic results of the generalized BBPSSW protocol.

IV. BREEDING AND HASHING PROTOCOLS

Alternative purification routines called breeding and hash-
ing were initially proposed in [10,11] for qubits, and gen-
eralized in [25] to qudit systems (of prime or power of
prime dimension). These protocols operate on a large ensem-
ble, and in contrast to recurrence schemes, work determin-
istically using only one-way classical communication, and
in a single step. The accumulation of noise makes these
protocols useless in a real setting with standard quantum
circuits. However, measurement-based quantum computation
(MBQC) techniques [46,47] have opened an alternative for a
practical implementation of these purification routines [49]. In
this section, we study the measurement-based implementation
of breeding and hashing protocols for qudits [25], in analogy
to the analysis performed for qubits [21,49].

We, however, go beyond Ref. [25] and consider finite-size
versions of the corresponding hashing and breeding protocols
that operate on a finite number of copies, similar as done for
qubit systems in Ref. [21]. In contrast to the asymptotic case,
this implies that the fidelity is not approaching unity, and the
number of output copies can be varied. That is, there are n →
m protocols, where the final global fidelity F (n,m) depends
on the number of input pairs n and the number of output pairs
m. The global fidelity of the target pairs F approaches one for
n → ∞, while the yield of the protocol goes to a constant.
One reaches the maximum fidelity for m = 1, i.e., a single
output pair. Typically, this is not what one desires, as one is
interested in a large yield.

Notice that one can utilize such hashing and breeding
protocols in a long-range quantum communication scenario
[21], where an efficient repeater scheme for long-distance
communication with constant overhead per transmitted qubit
was put forward [21]. The entanglement purification protocols
for qudits we analyze here allow one to obtain a similar

scheme for the transmission of qudits, where better yields
of the protocol directly translate into higher rates for long-
distance quantum communication. Similarly, these protocols
can be used to show security and privacy of the obtained
channel [56], and again this analysis can be extended to qudits.

A. Protocol overview

The initial scheme consists in Alice and Bob sharing n

identical states, diagonal in the maximally entangled basis,

ρ⊗n
AB =

∑
αi1j1 . . . αinjn

Pi1j1 ⊗ · · · ⊗ Pinjn
, (33)

where Pi1j1 = |ψi1j1〉〈ψi1j1 | is the projector onto the state
|ψi1j1〉. Due to the linearity of quantum mechanics, we can
interpret such a situation as if the parties share maximally
entangled pure states

Pi1j1 ⊗ · · · ⊗ Pinjn
(34)

with probability αi1j1 . . . αinjn
, but they have a lack of knowl-

edge about which state they share. This initial state (34) can be
represented by a 2n-index string x0 = (i1, j1, . . . in, jn). The
objective of the breeding and hashing protocols is to identify
the index string x0, in order to be able to correct each state
into a maximally entangled form. To this aim, Alice and Bob
need to collect the parity of enough number of random index
subsets of x0. This parity is collected (see [25]) by using the
GXOR (11) and the FQ (9) operations introduced before. The
difference between breeding and hashing routines lies in the
availability of maximally entangled auxiliary pairs during this
process (see [10]). In breeding, one assumes that maximally
entangled pairs are available to read out the required parity
information. These pairs are later returned. Hashing operates
solely on states from the initial ensemble. In the hashing
routine there exists a back action which has to be taken
into account with the random application of a generalized π

2
rotation v(g) (see [25]). The parity of an arbitrary subset s of
a bit string x can be seen as the inner product s·x, defined as

s·x = ⊕n
k=1s(k)x(k) =

∑
k

s(k)x(k) mod d, (35)

where s just indicates which indices are part of a particular
subset of x (s is not a state representation as x). The mo-
tivation to randomly select the subset s is provided by the
following lemma [25]:

Lemma 1. Given two distinct index strings x, y ∈ Z2n
d

such that x 
=y, and given the inner product defined above
(35), then, the probability that they agree on the parity of a
uniformly distributed random subset s of their index positions,
i.e., 〈x, s〉 = 〈y, s〉, is equal to 1

d
.

Lemma 1 implies that, with each parity measurement of
the protocol, we can discard 1 − 1

d
candidates of the initial

possible sequences x0. Due to the weak law of large numbers,
r = n[S(ρ) + 2δ] parity measurements are required in order
to identify x0 with probability → 1 when the number of
initial states n → ∞, where δ is a parameter which depends
on the initial number of copies and S(ρ) is the von Neumann
entropy

S(ρ) = −Tr(ρ logd ρ). (36)
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Specifically, after r parity measurements, the failure probabil-
ity of the breeding protocol is at most

Pfailure � dn[S(W )+δ]−r + O(exp(−δ2n)), (37)

where the last term indicates the probability of a initial string
to fall outside the subspace of likely sequences (with probabil-
ity at most p1 = O(exp(−δ2n))), whereas p2 = dn[S(W )+δ]−r

gives the probability that two (or more) strings are compatible
with the measured subset parities, and hence the string can
not be uniquely identified. This failure probability should
not be understood in the sense that the protocol does not
achieve purification with some probability. Instead of that,
since breeding routines are deterministic, the failure proba-
bility is translated into a decrease of the global fidelity of the
output states. The yield of the protocol, i.e., the ratio between
purified and initial copies, is

Y = 1 − S(W ) − 2δ. (38)

The same results in terms of efficiency are obtained for
both breeding and hashing protocols (see [25] for further
information).

B. Performance analysis

We start by analyzing an ideal situation, i.e., the protocol is
carried out by perfect, noiseless operations. In the asymptotic
case (n → ∞), we find that one obtains a higher efficiency
(yield) for higher-dimensional states, as can be seen in Fig. 8.
In contrast to the recurrence case, where the minimum re-
quired fidelity for isotropic states scales as Fmin = 1

d
, in the

hashing case the minimal required fidelity tends to a constant
value of

Fmin → 1
2 (39)

for large dimension d (d → ∞).
In the following, we study the protocol in a finite setting.

The global fidelity of the output states is bounded from below
by 1 − p1 − p2 (see [21]), where p1 and p2 are defined above.
After r = n[S(W ) + 2δ] parity measurements, the probability
p2 is simply reduced to d−nδ , while we can derive a bound
for the probability of a string to fall outside the set of likely
sequences (p1). This bound can be obtained by using the
Bennett concentration inequality, in analogy to [21]. If we
follow the derivation of the qubit case ([21]), and find that
for an arbitrary prime (or power of prime) dimension d (see
[25]), p1 is bounded by

p1 � 2e
{ −n

a(F ) [[g(F )+δ] log(1+ δ
g(F ) )−δ]}

, (40)

where

a(F ) =
∣∣∣∣logd

(
1 − F

d2 − 1

)∣∣∣∣ + S(W ), (41)

g(F ) = F log2
d F + (1 − F ) log2

d

(
1−F
d2−1

) − S2(W )

a(F )
, (42)

and S(W ) is the generalized von Neumann entropy defined in
Eq. (36).
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FIG. 8. (a) Shows the yield or efficiency of the hashing proto-
col as a function of the initial fidelity of the states for different
dimensions d . The initial states are isotropic states. The protocol
achieves purification for positive values of the yield. (b) Represents
the minimum required fidelity for isotropic states as a function of the
dimension of the systems, assuming large number of copies n → ∞.

Hence, the bound for the global fidelity of the final states
is given by

Fout � 1 − 2e
{ −n

a(F ) [[g(F )+δ] log(1+ δ
g(F ) )−δ]} − d−nδ, (43)

which depends on the fidelity of the initial states F and the
number of initial copies n. Via the choice of δ, the global
output fidelity also depends on the number of final copies m.
Figure 9 shows the yield and the lower bound of the global
output fidelity as a function of the number of initial states for
different values of the parameter δ. We can clearly observe
that the yield increases for smaller values of δ, while the
output global fidelity decreases when δ decreases. Note that
for δ = n−1/5, the yield is zero below n ≈ 40. There is a
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FIG. 9. Analysis of the performance of the hashing protocol for
finite number of copies. (a) Represents the yield of the hashing
protocol as a function of the number of initial states, while (b) shows
the global output fidelity. We consider isotropic states with d = 5
systems and a fixed initial fidelity of F = 0.99 for different values
of δ. This parameter defines the width of the subspace of likely
sequences, and in turn the number of output pairs.

conflict of interest in the choice of δ since we are interested
in obtaining high-yield and high-output global fidelity. This
is the reason why we consider δ ≈ n−1/4 as an appropriate
intermediate choice.

The maximum global output fidelity is achieved by mea-
suring all the states except one. One can study this case by
setting the parameter δ = 1

2 [ n−1
n

− S(W )], where we have
substituted r = n − 1 in the expression of the number of
parity measurements, i.e., r = n[S(W ) + 2δ]. We call this
routine n → 1 hashing (see [21]). We present an analysis of
the behavior of the n → m and the n → 1 hashing protocols
for different dimensions d in Fig. 10. We remark that we
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FIG. 10. Global output fidelity of the states as a function of
the initial fidelity for different dimensions of the systems. Isotropic
states with n = 200 initial copies are considered. Lines correspond
to system dimensions of d = 2, 3, 7 from right to left.

use a parameter δ = 1
2 [ n−1

n
− S(W )] for the n → 1 routine,

and δ = n− 1
4 for the n → m routine. Note that the n → m

protocol implies a value of m which depends on the choice
of the parameter δ, as well as on the initial number of states
(n) and the initial fidelity, as follows from the expression
of the yield m

n
= 1 − S(W ) − 2δ. One can see that the final

global output fidelity significantly increases and the initial
required fidelity significantly decreases with the dimension.
These improvements are more evident in the case of n → 1
hashing. Note, however, that for the n → 1 case, the yield of
the protocol is always lower than for the n → m case.

C. Noisy case

Hashing purification protocols are impractical when deal-
ing with standard quantum gates [49]. During the collection of
the subset parities, many GXOR gates are applied from some
states onto the same target copy. This implies that errors are
accumulated in the target state, and the information is washed
out in the limit of large n. However, this accumulated error
can be avoided when using measurement-based techniques
(see Sec. II D). We introduce now the noise model considered
in the context of MBQC based on Refs. [14,20,21,49,52]
for qubit systems. We extend this error analysis to arbitrary
(prime) dimensions d. In a measurement-based implementa-
tion, the initial states are coupled to the resource state by Bell
measurements, i.e., measurements in the basis of maximally
entangled states (1). Then, one has to consider two sources of
noise: imperfect resource states and noisy measurements. We
can interpret the initial isotropic states as maximally entangled
states affected by local depolarizing noise (LDN) described
by the map E (p) [Eq. (13)] with transmission error parameter
p. Analogously, we assume that each particle of the resource
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state is affected by LDN with parameter q:

EU (q )ρ =
∏
α

Eα (q )|ψU 〉〈ψU |. (44)

The local application of LDN by Alice and Bob on a
maximally entangled (or isotropic) state is equivalent to a
single-party application of LDN with parameter q2, i.e.,
EA(q )EB (q )ρ = EA(q2)ρ as pointed out in Sec. III B. Regard-
ing measurements, we follow a similar reasoning, i.e., we
assume the introduction of LDN followed by perfect measure-
ments. However, the LDN from imperfect (generalized) Bell
measurements can be included into the noise of the resource
states (see [52]). At the same time, the LDN acting on particles
of the resource state can be virtually moved to the initial states
that are coupled via Bell measurements. As one operates on
pairs from both sides (at A and B), the input states becomes
E (q2)E (p)ρ = E (q2p)ρ (see [52]), leading to an effective
lower value of the parameter p (lower initial fidelity). We have
not (yet) considered noise on the output particles, which is
done at the end of the protocol. This allows us to view the
situation such that the ideal protocol acts on slightly noisier
input states. The noise on the output particles then decreases
the fidelity of the resulting output states. However, this does
not affect the private fidelity [56,57]. This reasoning was
applied in the qubit case in Refs. [20,52], but is also applicable
for d-level systems here.

We can derive two conditions [14,49] which have to be
fulfilled such that the purification protocol works. First, the
initial error parameter including the noise due to imperfect
resource states should be larger than the minimal parameter
required to have purification:

pq2 > pmin. (45)

This ensures that the initial fidelity, which is decreased by the
action of the noise, is still larger than the threshold value pmin

of the hashing protocol. The relation between the parameter
p and the initial fidelity is F = p2 + 1−p2

d2 . For qubits we find
that the minimum required fidelity is Fmin ≈ 0.81.

Furthermore, the error parameter of the resource states has
to be larger than the transmission error parameter, in order to
guarantee that the fidelity of the output states is larger than the
fidelity of the input states, i.e.,

q2 > p. (46)

With these conditions, which are applicable for arbitrary
dimensions, we can easily derive the error threshold for
hashing, i.e., the maximum local error per particle qmin that
the protocol can tolerate in order to achieve purification. This
value corresponds to qmin = √

pmin.
We analyze the protocol performance under imperfect op-

erations. Figure 11 shows the yield as a function of the error
parameter per qudit. We find that the protocol tolerates only
around a 7% of noise per particle for the qubit case, while an
error of around 11% is tolerable for d = 11. The efficiency
improvement is also seen by fixing a value for the error
parameter, so that we observe that the protocol behaves better
for larger dimensions. However, the tolerable error threshold
value tends to a constant value of qth → 0.8409 in the limit
of d → ∞. This is in contrast to recurrence protocols, where
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FIG. 11. (a) Shows the yield (efficiency) of the hashing protocol
as a function of the error parameter q, i.e., local depolarizing noise
per particle, for different dimensions of the systems. We consider
an initial number of n → ∞ isotropic states. (b) Shows the error
threshold as a function of the local dimension d .

in fact the tolerable noise per gate (or also in a measurement-
based implementation the noise per qudit of the resource state)
increases with dimension d.

D. Extension to multipartite multidimensional systems

In this section we present generalization of entangle-
ment purification protocols for multipartite systems, where
we focus on the generalization of hashing and breeding
protocols. Several generalizations have been proposed for
multipartite recurrence protocols (see, e.g., [14,15] for qubit
systems, and [26] for qudits). Here, we propose a generaliza-
tion of the breeding purification protocol to multipartite and
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multidimensional systems of GHZ type, based on the works of
[16] and [14] which deal with multipartite hashing for qubits.

Consider three parties (Alice, Bob, and Charlie) who share
a maximally entangled state, one of the d3 generalized GHZ
states,

|ψmlp〉ABC = 1√
d

d−1∑
r=0

e
2πi
d

mr |r〉A⊗|r � l〉B⊗|r � p〉C, (47)

where we denote by m the phase index, while l, p are the
amplitude indices. These GHZ states (47) are a straight-
forward generalization of the bipartite maximally entangled
states (1) and form a basis of Hd ⊗ Hd ⊗ Hd . One can create
a maximally entangled state |Ψ000〉ABC in some particular
location. When the particles are sent to the different parties,
the states are in general affected by transmission noise. One
obtains a mixed state which can be represented as a statistical
mixture of the states defined by (47), in an analogous way to
the bipartite case. Note that all the states of the basis (47) can
be obtained from the state |Ψ000〉:

|ψmlp〉ABC = Zm
A ⊗ Xl

B ⊗ X
p

C |ψ000〉ABC, (48)

where X and Z are elements of the generalized Pauli
group (4).

In order to purify a large ensemble of mixed states, one
may try to achieve purification by applying similar techniques
as in the bipartite case. However, when we deal with multi-
partite states, there are some properties which are not fulfilled
and which prevent the direct extension of the bipartite routine
to work. First, there is no multipartite analog to the U ⊗ U ∗
invariance [23] which is used in the bipartite case to obtain full
depolarization. Second, there is no known way to exchange
information between the phase and amplitude indices. Hence,
we cannot measure the parity of a random subset of indices
in a single step. Instead, we have to collect the information
of the phase indices and of the amplitude indices separately.
We give an overview of the steps of the multipartite hashing
protocol for arbitrary prime dimensions (see previous sections
for details of each step).

1. Initialization

Assume that Alice, Bob, and Charlie share an ensemble of
n mixed states that are diagonal in the generalized GHZ basis:

ρABC =
d−1∑

m,l,p=0

αmlp|ψmlp〉〈ψmlp|. (49)

We can interpret this state as if the parties share maximally
entangled pure states (47):

ρ⊗n
ABC =

∑
αm1l1p1 . . . αmnlnpn

Pm1l1p1 ⊗ · · · ⊗ Pmnlnpn
, (50)

with probability αm1l1p1 . . . αmnlnpn
. The objective of the hash-

ing protocol is to identify for each copy the correspond-
ing index values, in order to correct the states into |ψ000〉.
We can represent the state (50) with an index string x =
(m1, l1, p1, . . . , mn, ln, pn), where we can make a distinc-
tion between the phase index string x0 = (m1, . . . , mn) and
the amplitude index strings xi (with i > 0), such that x1 =
(l1, . . . , ln) and x2 = (p1, . . . , pn).

2. Subset parity measurement

We follow the same reasoning as in the bipartite case, and
thus we have to collect the parity of enough random subsets
of indices in order to identify the string x with certainty.

To this aim, we need an operation that transfers informa-
tion about certain indices from one copy to another. Using
modified multilateral GXOR operations (ŨmGXOR), we can
measure enough subset parities in order to identify all the
amplitude index strings xi (i > 0) in parallel. Note that we
slightly modify the existing GXOR operation making use of a
shift operator Xα,t , in order to obtain sums in the amplitude
indices of the target state (and subsequently to be able to
collect the parity). The effect of the modified multipartite
GXOR operation is

Ũc→t
mGXOR|ψmlp〉c|ψkij〉t = |ψm⊕k,l,p〉c|ψd�k,l⊕i,p⊕j〉t, (51)

where

ŨmGXOR|ψmlp〉c|ψkij〉t

=
(∏

α>1

Xα,t

)
UmGXOR

(∏
α>1

Xα,t

)
|ψmlp〉c|ψkij〉t (52)

and

U
A1A2
GXOR ⊗ U

B1B2
GXOR ⊗ U

C1C2
GXOR|ψmlp〉A1B1C1 |ψkij 〉A2B2C2

= U 1→2
mGXOR|ψmlp〉A1B1C1 |ψkij 〉A2B2C2. (53)

Xα,t is a shift operator [see Eq. (4)], e.g., Xα=2,t |ψkij 〉t =
|ψk,d�i,j 〉t , applied to the target state and the α particle,
and mGXOR is the straightforward extension of the bilateral
GXOR gate used before (11). Once the amplitude index
strings xi (i > 0) are identified, we proceed analogously with
the phase indices. This is done by using multilateral GXOR
operations where source and target pairs are exchanged, i.e.,
with the states of the subset acting as targets, and one mea-
sures the auxiliary state in the X basis [16], in order to
identify x0.

3. Yield

The same probabilistic properties as in the bipartite case
(see [11,25]) hold for each of the index strings xk . Hence,
in the limit of large number of copies n, we need to collect
the parity of nH (xk ) subsets in order to identify the string xk ,
where H (xk ) is the generalized Shannon entropy for a given
index of the string xk , i.e., H (A) = −∑

a p(a) logd p(a),
where p(a) is the probability that the value a forms part of
the string of indices of a message A. Since we can measure the
parity of the subsets of the amplitude strings xi (with i > 0) in
parallel, we have to perform n[maxi>0H (xi )] parity measure-
ments in order to ensure the identification of all the amplitude
index strings. Moreover, we need to perform nH (x0) subset
parity measurements (with the GXOR operations in the other
direction) in order to identify the phase index string x0. The
yield of the multipartite breeding (and hashing) purification
protocol for an arbitrary prime dimension and in the limit of
large number of copies is

Y = 1 − H (x0) − maxi>0H (xi ). (54)

These concepts can be directly generalized to an arbitrary
number of parties, so that we obtain a basis of dN generalized
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GHZ states, where N is the number of parties. Assume the
parties share a large ensemble of identical copies. We have
to deal with only one phase index string (independently of
the number of parties), whereas the number of amplitude
index strings grows with the number of parties. Since all the
amplitude strings can be identified in parallel (see above), the
expression (54) for the yield is also valid.

We give now an example comparing the performance of
the protocol for different number of parties and different local
dimension d. Suppose N parties which share an ensemble of
n isotropic states, i.e.,

ρ = F ′|ψ0,0...0〉〈ψ0,0...0| + (1 − F ′)
dN

I, (55)

with fidelity F = F ′ + (1−F ′ )
dN . Then, we can write

ρ = F |ψ0,0...0〉〈ψ0,0...0| + (1 − F )

dN − 1

d−1∑
m,l1...lN−1 
=00,...,0

× |ψm,l1...lN−1〉〈ψm,l1...lN−1 |. (56)

In order to compute the Shannon entropy of each index of
the string xi , we have to take into account which values
each index can take, and with which probability. For in-
stance, for the phase string x0, each index can be found in a
value of the set (0, 1, . . . , d − 1) with probability pa = F +
(1−F )
dN −1 (dN−1 − 1) for the value 0 [see Eq. (56)], and probability

pb = (1−F )
dN −1 dN−1 for each of the other d − 1 values. The same

statistics are found for the amplitude indices. The yield for
isotropic states is then (note the factor 2)

Y = 1 + 2[pa logd pa + (d − 1)pb logd pb]. (57)

Figure 12(a) shows the yield of the hashing protocol presented
above as a function of the initial fidelity of the states. One ob-
serves that for a fixed dimension of the systems, one obtains an
efficiency improvement when the number of parties increases.
However, this improvement becomes almost unnoticeable for
higher dimensions. Note also that the increase of the fidelity is
more relevant when one deals with a small number of parties,
so that the yield tends to a fixed point for N → ∞. Similarly,
as we have seen in the bipartite case, the efficiency of the
protocol increases with the dimension of the systems.

Figure 12(b) shows the yield of the protocol for different
number of parties and different system dimensions. One can
see that the efficiency of the protocol increases with the
number of parties and increases more significantly with the
dimension.

We remark that this protocol does not achieve an optimal
performance. In [16], it was shown that for two parties and
d = 2, the hashing protocol presented above obtains a worse
performance than the bipartite breeding and hashing routines.
Note that during the process of information extraction of
the amplitude index strings, one obtains some information
about phase indices. However, this information is not taken
into account. Some authors [58,59] have proposed improved
routines for qubit systems which take that information gain
into account, and which can be also extended to more general
CSS states. Other authors [14] also extend the qubit hashing
protocol to more general two-colorable graph states. Similar
improvements might be applicable here.
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FIG. 12. (a) Shows the efficiency (yield) of the multipartite hash-
ing protocol as a function of the fidelity of initial isotropic states
(56). Note that the lines for d = 5 almost coincide. (b) Shows the
efficiency as a function of the fidelity of the initial isotropic states
(56). Note that lines for d = 11 almost coincide. The yield is shown
for different number of parties and for different dimensions of the
systems (both increasing from right to left).

V. UNIVERSAL ERROR THRESHOLDS FOR
ENTANGLEMENT PURIFICATION PROTOCOLS

One can compute universal and optimal error thresholds for
all entanglement purification protocols that are implemented
in a measurement-based way, similar as in [52] for qubits.
The key observation is that noise from the resource state that
is used to implement the entanglement purification protocol
may be virtually shifted to input states, thereby decreasing the
initial fidelity. As long as the resulting fidelity is such that
the state can still be purified, the (ideal) protocol is capable
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to produce maximally entangled pairs, i.e., pq2 � pmin. The
difference to hashing is that one can replace pmin by the
threshold for an optimal purification protocol to work. For
isotropic states, we have that Fmin = 1/d, which corresponds
to pmin = (d − 1)/(d2 − 1). The final fidelity is solely deter-
mined by the noise acting on output states of the resource
states. This gives us the second criterion: the final fidelity
needs to be larger than the initial one, i.e., q2 � p. This yields
the universal and optimal error threshold for isotropic initial
states

qth = 4

√
d − 1

d2 − 1
≈ d−1/4. (58)

It follows that the acceptable noise per particle becomes larger
with d, and in fact approaches 100% as qth → 0 for large d.

If one compares these results with the quantum gate imple-
mentation results [see Eqs. (31) and (32)], one can conclude
that the advantage obtained with the measurement-based im-
plementation techniques (in terms of tolerable noise) is more
relevant for small dimensions, and less significant for large
dimensional systems.

VI. CONCLUSIONS

Quantum entanglement purification protocols are proce-
dures of fundamental importance in quantum information
processing. They allow one to overcome noise processes and
to obtain or recover maximally entangled states, and are hence
a crucial tool for different quantum information tasks. In this
paper, we have given a brief review of existing entanglement
purification routines for d-level systems. We have proposed
several routines which improve the existing ones, completing
this analysis with performance and error studies.

First, we have proposed a generalization of a recurrence
protocol for arbitrary-dimensional systems (P1-or-P2 proto-
col), which is based on an iterative and selective application
of two subroutines depending on the characteristics of the
initial states. Our protocol obtains significant improvements
with respect of the existing protocols, specifically in terms of
the required initial fidelity, the efficiency of the protocol, and
the tolerable noise for imperfect operations. These improve-
ments are more pronounced for asymmetric X and Z noise.
Furthermore, we found that the performance of the protocol,
as well as the noise that it can tolerate, significantly increases
with the dimension of the systems. We have also investigated
further improvements such as the use of three-copy recurrence
routines.

In addition, we have presented a detailed performance and
error analysis for the hashing purification routines, where,
again, we obtain better performance when working with
higher-dimensional systems. Finally, we proposed a gener-
alization of breeding and hashing routines to multipartite
systems of arbitrary dimension.

There are still a number of open questions and possible
further generalizations which might be interesting to study.
This includes, e.g., the extension of the breeding and hashing
protocols to more general high-dimensional multipartite states
(such as general graph states of arbitrary dimension), as well
as the optimization of these protocols.

What is, however, of more immediate and practical rele-
vance is a further study of possible applications of d-level sys-
tems in quantum information processing. Our results suggest
that it may be of advantage to use d-level systems rather than
qubits from a practical perspective. While conceptually there
is no difference, as multiqubit and multi-d-level systems can
simulate each other with some fixed overhead, there might be
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FIG. 13. Generalized DEJMPS purification protocol [(a), (b), (e), (f)] compared to P1-or-P2 protocol [(c), (d), (g), (h)] for d = 6 systems
and different initial situations. Figures show the fidelity evolution as a function of the number of iterations for different initial states. Panels (a),
(c) and (b), (d) correspond to initial states with only X [Eq. (23)] or Z [Eq. (25)] errors, respectively, while (e), (g) correspond to a mixture of X

and Z error states, and panels (f), (h) represent isotropic states (20). Dashed red lines show the first value of the fidelity for which purification
is successful.
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FIG. 14. Evolution of the fidelity for systems of d = 7 and gate error parameter Q = 0.88, with diagonal states with different weight

of X and Z errors, i.e., ρ = F |ψ00〉〈ψ00| + 1
4(d−1) (1 − F )

∑d−1
k=1 Xk|ψ00〉〈ψ00|(Xk )

† + 3
4(d−1) (1 − F )

∑d−1
k=1 Zk|ψ00〉〈ψ00|(Zk )

†
. Left and right

figures represent the evolution under the generalized DEJMPS and the P1-or-P2 protocol, respectively. Dashed red lines represent the first
value of the initial fidelity for which purification is successful.

a practical advantage in terms of error tolerance and required
accuracy. Our results suggest an improved robustness against
noise and imperfections when using d-level system, though a
direct comparison is not straightforward.
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APPENDIX

We present some complementary results of the behavior
of the proposed P1-or-P2 protocol. We compare the fidelity
evolution of different initial states under the effect of the

generalized DEJMPS routine and the P1-or-P2 purification
protocol (see Fig. 13). One clearly sees that the P1-or-P2 pro-
tocol always achieves an increase of fidelity in any iteration,
independently of the initial situation, so that it outperforms the
generalized DEJMPS routine in terms of fidelity increment
and purification regime. Moreover, the fidelity improvement
(as well as the purification regime improvement) is more
relevant when the asymmetry between X and Z errors is large,
i.e., when we consider initial states with only X or Z errors.
If we consider imperfect operations (Fig. 14), maximally
entangled states (F = 1) are not achievable by purification,
and a larger minimal initial fidelity is required in order to
achieve purification. Again, one observes that the P1-or-P2
protocol outperforms the generalized DEJMPS routine in
terms of purification regime and fidelity improvement.
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67, 012311 (2003).

[35] N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, Phys.
Rev. Lett. 88, 127902 (2002).

[36] M. Bourennane, A. Karlsson, and G. Björk, Phys. Rev. A 64,
012306 (2001).

[37] F. H. E. Watson, H. Anwar, and D. E. Browne, Phys. Rev. A 92,
032309 (2015).

[38] R. S. Andrist, J. R. Wootton, and H. G. Katzgraber, Phys. Rev.
A 91, 042331 (2015).

[39] S. Bravyi and A. Kitaev, Phys. Rev. A 71, 022316 (2005).
[40] A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature (London)

412, 313 (2001).
[41] M. Piani, D. Pitkanen, R. Kaltenbaek, and N. Lütkenhaus, Phys.

Rev. A 84, 032304 (2011).
[42] B. E. Mischuck, S. T. Merkel, and I. H. Deutsch, Phys. Rev. A

85, 022302 (2012).
[43] E. A. Shapiro, I. Khavkine, M. Spanner, and M. Y. Ivanov, Phys.

Rev. A 67, 013406 (2003).

[44] S. D. Bartlett, H. de Guise, and B. C. Sanders, Phys. Rev. A 65,
052316 (2002).

[45] M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E.
Lucero, A. D. Connell, D. Sank, H. Wang, J. Wenner, A. N.
Cleland, M. R. Geller, and J. M. Martinis, Science 325, 722
(2009).

[46] R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188
(2001).

[47] R. Raussendorf, D. E. Browne, and H. J. Briegel, Phys. Rev. A
68, 022312 (2003).

[48] D. L. Zhou, B. Zeng, Z. Xu, and C. P. Sun, Phys. Rev. A 68,
062303 (2003).

[49] M. Zwerger, H. J. Briegel, and W. Dür, Phys. Rev. A 90, 012314
(2014).

[50] W. Dür, M. Hein, J. I. Cirac, and H.-J. Briegel, Phys. Rev. A 72,
052326 (2005).

[51] M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. V. den Nest, and
H. J. Briegel, Quantum Comput., Algorithms Chaos 162, 115
(2006).

[52] M. Zwerger, H. J. Briegel, and W. Dür, Phys. Rev. Lett. 110,
260503 (2013).

[53] This is valid for full-rank diagonal states because recurrence
protocols map full rank into full-rank states. However, for more
general states, e.g., a pair of states which are a mixture of a
maximally entangled state and an orthogonal product state, we
can probabilistically distill them into a maximally entangled
state [10].

[54] We remark that one can improve the performance of the
protocol by also considering some other outcomes. Unlike in
the qubit case, the remaining copy for other possible outcomes
might still entangled in some branches, and could be reused. We
have analyzed such an improved protocol and found a slightly
improved yield.

[55] R. T. Thew, K. Nemoto, A. G. White, and W. J. Munro, Phys.
Rev. A 66, 012303 (2002).

[56] A. Pirker, M. Zwerger, V. Dunjko, H. J. Briegel, and W. Dür,
arXiv:1711.08897.

[57] A. Pirker, V. Dunjko, W. Dür, and H. J. Briegel, New J. Phys.
19, 113012 (2017).

[58] K. Chen and H.-K. Lo, Quantum Inf. Computat. 7, 689 (2007).
[59] E. Hostens, J. Dehaene, and B. De Moor, Phys. Rev. A 73,

042316 (2006).

042309-17

https://doi.org/10.1103/PhysRevA.59.4206
https://doi.org/10.1103/PhysRevA.59.4206
https://doi.org/10.1103/PhysRevA.59.4206
https://doi.org/10.1103/PhysRevA.59.4206
https://doi.org/10.1088/0305-4470/34/42/307
https://doi.org/10.1088/0305-4470/34/42/307
https://doi.org/10.1088/0305-4470/34/42/307
https://doi.org/10.1088/0305-4470/34/42/307
https://doi.org/10.1103/PhysRevA.67.012303
https://doi.org/10.1103/PhysRevA.67.012303
https://doi.org/10.1103/PhysRevA.67.012303
https://doi.org/10.1103/PhysRevA.67.012303
https://doi.org/10.1103/PhysRevA.76.042314
https://doi.org/10.1103/PhysRevA.76.042314
https://doi.org/10.1103/PhysRevA.76.042314
https://doi.org/10.1103/PhysRevA.76.042314
https://doi.org/10.1103/PhysRevA.81.032307
https://doi.org/10.1103/PhysRevA.81.032307
https://doi.org/10.1103/PhysRevA.81.032307
https://doi.org/10.1103/PhysRevA.81.032307
http://arxiv.org/abs/arXiv:1802.05773
https://doi.org/10.1103/PhysRevA.78.042303
https://doi.org/10.1103/PhysRevA.78.042303
https://doi.org/10.1103/PhysRevA.78.042303
https://doi.org/10.1103/PhysRevA.78.042303
https://doi.org/10.1038/nphys1150
https://doi.org/10.1038/nphys1150
https://doi.org/10.1038/nphys1150
https://doi.org/10.1038/nphys1150
https://doi.org/10.1103/PhysRevA.75.022313
https://doi.org/10.1103/PhysRevA.75.022313
https://doi.org/10.1103/PhysRevA.75.022313
https://doi.org/10.1103/PhysRevA.75.022313
https://doi.org/10.1103/PhysRevLett.85.3313
https://doi.org/10.1103/PhysRevLett.85.3313
https://doi.org/10.1103/PhysRevLett.85.3313
https://doi.org/10.1103/PhysRevLett.85.3313
https://doi.org/10.1103/PhysRevA.61.062308
https://doi.org/10.1103/PhysRevA.61.062308
https://doi.org/10.1103/PhysRevA.61.062308
https://doi.org/10.1103/PhysRevA.61.062308
https://doi.org/10.1103/PhysRevA.67.012311
https://doi.org/10.1103/PhysRevA.67.012311
https://doi.org/10.1103/PhysRevA.67.012311
https://doi.org/10.1103/PhysRevA.67.012311
https://doi.org/10.1103/PhysRevLett.88.127902
https://doi.org/10.1103/PhysRevLett.88.127902
https://doi.org/10.1103/PhysRevLett.88.127902
https://doi.org/10.1103/PhysRevLett.88.127902
https://doi.org/10.1103/PhysRevA.64.012306
https://doi.org/10.1103/PhysRevA.64.012306
https://doi.org/10.1103/PhysRevA.64.012306
https://doi.org/10.1103/PhysRevA.64.012306
https://doi.org/10.1103/PhysRevA.92.032309
https://doi.org/10.1103/PhysRevA.92.032309
https://doi.org/10.1103/PhysRevA.92.032309
https://doi.org/10.1103/PhysRevA.92.032309
https://doi.org/10.1103/PhysRevA.91.042331
https://doi.org/10.1103/PhysRevA.91.042331
https://doi.org/10.1103/PhysRevA.91.042331
https://doi.org/10.1103/PhysRevA.91.042331
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1038/35085529
https://doi.org/10.1038/35085529
https://doi.org/10.1038/35085529
https://doi.org/10.1038/35085529
https://doi.org/10.1103/PhysRevA.84.032304
https://doi.org/10.1103/PhysRevA.84.032304
https://doi.org/10.1103/PhysRevA.84.032304
https://doi.org/10.1103/PhysRevA.84.032304
https://doi.org/10.1103/PhysRevA.85.022302
https://doi.org/10.1103/PhysRevA.85.022302
https://doi.org/10.1103/PhysRevA.85.022302
https://doi.org/10.1103/PhysRevA.85.022302
https://doi.org/10.1103/PhysRevA.67.013406
https://doi.org/10.1103/PhysRevA.67.013406
https://doi.org/10.1103/PhysRevA.67.013406
https://doi.org/10.1103/PhysRevA.67.013406
https://doi.org/10.1103/PhysRevA.65.052316
https://doi.org/10.1103/PhysRevA.65.052316
https://doi.org/10.1103/PhysRevA.65.052316
https://doi.org/10.1103/PhysRevA.65.052316
https://doi.org/10.1126/science.1173440
https://doi.org/10.1126/science.1173440
https://doi.org/10.1126/science.1173440
https://doi.org/10.1126/science.1173440
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1103/PhysRevA.68.022312
https://doi.org/10.1103/PhysRevA.68.022312
https://doi.org/10.1103/PhysRevA.68.022312
https://doi.org/10.1103/PhysRevA.68.022312
https://doi.org/10.1103/PhysRevA.68.062303
https://doi.org/10.1103/PhysRevA.68.062303
https://doi.org/10.1103/PhysRevA.68.062303
https://doi.org/10.1103/PhysRevA.68.062303
https://doi.org/10.1103/PhysRevA.90.012314
https://doi.org/10.1103/PhysRevA.90.012314
https://doi.org/10.1103/PhysRevA.90.012314
https://doi.org/10.1103/PhysRevA.90.012314
https://doi.org/10.1103/PhysRevA.72.052326
https://doi.org/10.1103/PhysRevA.72.052326
https://doi.org/10.1103/PhysRevA.72.052326
https://doi.org/10.1103/PhysRevA.72.052326
https://doi.org/10.1103/PhysRevLett.110.260503
https://doi.org/10.1103/PhysRevLett.110.260503
https://doi.org/10.1103/PhysRevLett.110.260503
https://doi.org/10.1103/PhysRevLett.110.260503
https://doi.org/10.1103/PhysRevA.66.012303
https://doi.org/10.1103/PhysRevA.66.012303
https://doi.org/10.1103/PhysRevA.66.012303
https://doi.org/10.1103/PhysRevA.66.012303
http://arxiv.org/abs/arXiv:1711.08897
https://doi.org/10.1088/1367-2630/aa8086
https://doi.org/10.1088/1367-2630/aa8086
https://doi.org/10.1088/1367-2630/aa8086
https://doi.org/10.1088/1367-2630/aa8086
https://doi.org/10.1103/PhysRevA.73.042316
https://doi.org/10.1103/PhysRevA.73.042316
https://doi.org/10.1103/PhysRevA.73.042316
https://doi.org/10.1103/PhysRevA.73.042316



