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Pulse sequences for controlled two- and three-qubit gates in a hybrid quantum register
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We propose and demonstrate a quantum control scheme for hybrid quantum registers that can reduce the
operation time, and therefore the effects of relaxation, compared to existing implementations. It combines
resonant excitation pulses with periods of free precession under the internal Hamiltonian of the qubit system.
We use this scheme to implement quantum gates like controlled-NOT operations on electronic and nuclear spins
of the nitrogen-vacancy center in diamond. As a specific application, we transfer population between electronic
and nuclear spin qubits and use it to measure the Rabi oscillations of a nuclear spin in a system with multiple
coupled spins.
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I. INTRODUCTION

High-precision quantum control is required in various
fields, such as quantum computing [1–3]. The gate operations
used for quantum control often rely on resonant electromag-
netic fields that drive the targeted qubits near a resonant transi-
tion. While this drive operation should be strong, to dominate
over unwanted effects and to allow short gate operations,
the strength of the control field is often also limited by the
requirement that it must not affect qubits that are not targeted
in the specific operation.

Meeting these requirements becomes progressively more
challenging as the number of qubits increases, as larger sys-
tems have more resonant transitions that must be considered.
In many systems, the strengths of the couplings between the
qubits, which are essential for multiqubit gates, cover a signif-
icant range of values. Examples include hybrid quantum reg-
isters for quantum computing, such as the nitrogen-vacancy
(NV) center in diamond, where the couplings between the
electron and 13C spins can be in a range from less than
0.1 MHz to 130 MHz [4–6]. If the couplings are weak, the
duration of the gate operations that rely on these interactions
increases correspondingly. Implementations of multiqubit op-
erations often rely on transition selective (also called line se-
lective or soft) pulses [6–10], which are designed to drive only
a single transition with a resonant field. As a result, however,
this method is limited by the spectral resolution, because the
driving field must be weak compared to the separations of this
transition from the others, which are usually determined by
strength of the coupling constants. Under this condition, the
effective fields acting on the off-resonant transitions are nearly
perpendicular to the control field, and therefore they remain
virtually unaffected [11–14]. However, this condition may be
in conflict with the requirement that the gate operation should
be fast compared to the relaxation time.

To avoid this conflict, we propose and demonstrate here
an alternative approach, which is often used in liquid-state
magnetic resonance but less frequently in solid-state systems
like the diamond NV center [4]. It is based on combining
hard pulses, i.e., driving fields that are strong compared to the

couplings, with periods of free precession, where the coupling
differentiates between the different qubit states. The gate
durations are mainly determined by the coupling strengths
between the qubits, and we can obtain the minimum possible
duration for the given system, which can be much shorter than
with transition-selective pulses. Moreover, our technique also
offers the possibility to combine the pulses with techniques for
reducing decoherence [15], such as dynamical decoupling. In
particular, dynamical decoupling pulses can be combined with
gate operations for designing gates that are protected against
environmental noise [8,16].

In the following sections, we first discuss the implementa-
tion of these controlled gates for the electron and 14N system
in Sec. II. In Sec. III, we consider a three-spin system and
describe some experiments based on controlled gates, for
measuring the Rabi frequencies of 14N. In Sect. IV, we discuss
the implementation of a controlled-controlled NOT (CCNOT)
gate in the three spin system consisting of the electron 14N
and 13C. In Sect. V, we investigate the dependence of the
controlled gates on the offsets of the MW frequency. The
experiments were performed at room temperature, using two
diamond samples: one has natural abundance, with ∼1.1%
13C, and the other is 12C enriched to 99.995%.

II. ELECTRON SPIN + 14N NUCLEAR SPIN

A. Hamiltonian

The system that we consider consists of the electron spin
and the 14N nuclear spin system of a single NV center. If the
magnetic field is oriented along the NV symmetry axis, the
relevant Hamiltonian can be written as [4,17]

1

2π
HE,N = DS2

z − γeBSz + PI 2
z − γnBIz + ASzIz. (1)

Here Sz and Iz are z-components of the spin-1 operators
for the electronic and nuclear spins, respectively. The zero-
field splitting is D = 2.87 GHz, the nuclear quadrupolar
splitting is P = −4.95 MHz, and the hyperfine coupling
A = −2.16 MHz [17–19]. The electronic gyromagnetic ra-
tio is γe = −28 GHz/T and the nuclear gyromagnetic ratio
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FIG. 1. Energy-level system and spectra of the ESR transitions
between the states with mS = 0 and ∓1, obtained as Fourier-
transforms of time-domain signals. The origins of the frequency
axes are set to D ± γeB. The vertical arrows indicate the carrier
frequencies ν1,2 for the MW pulses to implement the conditional
operations U1 and U2, respectively.

γn = 3.1 MHz/T. In the experiments, the static field strength
is about 1.8 mT, which results in a separation of the two
electron spin resonance (ESR) transitions by about 100 MHz.
Figure 1 shows the spectra of the ESR transitions between
the states with mS = 0 and ∓1, obtained in Ramsey-type
free-induction decay (FID) time-resolved experiments, using
resonant MW pulses with Rabi frequencies of about 10 MHz
for excitation and detection.

Since the experimental Rabi frequency is small compared
to the separation of the two ESR transitions, the individual ex-
periments are confined to a subspace of the full Hilbert space.
We consider here the six-dimensional subspace spanned by
the states

{|0〉e, |−1〉e} ⊗ {|1〉n, |0〉n, |−1〉n}, (2)

which is associated to the ESR transition between |0〉e and
|−1〉e, with a transition frequency D + γeB ∼ 2820 MHz. It
thus contains one qubit (electron spin; target qubit) and one
qutrit (14N spin; control qutrit). The relevant Hamiltonian
is then

1

2π
Heff

E,N = ν

2
σz ⊗ E3 + A

2
σz ⊗ Iz, (3)

written in the frame rotating at the MW frequency νc. σz de-
notes the z component of the Pauli matrix for the pseudospin
1/2 of the electron spin in the space {|0〉e, | − 1〉e}, E3 the
identity operator in three dimensions, and

ν = (D + γeB ) − νc (4)

is the effective transition frequency of the electron spin qubit
in the rotating frame. In addition, the interaction representa-
tion also eliminates the quadrupole and Zeeman interactions
of the 14N nuclear spin, which are irrelevant for the purpose
of this work.

B. Unitary gate operations

The basic MW pulse sequence for a controlled opera-
tion is illustrated in Fig. 2. It consists of two π/2 pulses
with a π/2 relative phase shift, separated by a period τ

of free precession, during which the hyperfine interaction
causes differential precession, depending on the state of the

MW

U FID measure

t

Laser

FIG. 2. Pulse sequence for demonstrating the controlled opera-
tion U in the electron-14N system. The standard FID measurement
is used to monitor the effects of the gate. The phase φ = 2πνdt of
the detection pulse is incremented linearly in time to generate an
effective offset νd . The carrier frequencies of the pulses in U and
FID are νc and D + γeB, respectively.

nuclear spin. It is closely analogous to sequences used in
nuclear magnetic resonance (NMR) quantum computing for
implementing controlled-NOT (CNOT) gates [20] and in
ENDOR for polarizing the nuclear spin [19]. In the chosen
reference frame, the unitary operation generated by the pulse
sequence is

U = − i

2
√

2
[(c−(σz − iE2) + c+(σx + σy )] ⊗ [sin(πAτ )]Iz

+ i

2
√

2
[c+(σz − iE2) − c−(σx + σy )]

⊗ {
[cos(πAτ ) − 1]I 2

z + E3
}
, (5)

with c± = cos(πντ ± π
4 ). To obtain Eq. (5), we used

e−iθσzIz = −i sin θσzIz + [cos θ − 1]E2 ⊗ I 2
z + E2 ⊗ E3

(6)

and assumed that the MW pulses are ideal, with duration zero.
If the free precession period is τ = 1/(2|A|), the resulting

operation U is a conditional qubit-qutrit operation. Examples
include the operations U1 and U2, which are obtained if the
carrier frequency νc of the MW pulses is ν1 = D + γeB −
A/2 and ν2 = D + γeB + A/2, respectively. In Fig. 1, these
frequencies are indicated by arrows. Table I summarizes the
effects of U1 and U2 on the basis states of the system. Up
to some phase factors, they represent CNOT gates, with the
nuclear spin as the control qutrit and the electronic spin as the
target qubit.

TABLE I. Output states mS and mI of U1 and U2 for the system
consisting of one qubit (electron S; target) and one qutrit (nuclear
spin I ; control). Global phase factors have been ignored.

Input Output of U1 Output of U2

0 1 −1 1 0 1
0 0 0 0 −1 0
0 −1 −1 −1 0 −1
−1 1 0 1 −1 1
−1 0 −1 0 0 0
−1 −1 0 −1 −1 −1
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FIG. 3. Experimental ESR spectra obtained as Fourier-
transforms of the FIDs, after applying the identity 1 (top), U1

(middle), and U2 (bottom) gate operations. The quantum numbers
above the spectra indicate the states of 14N corresponding to the
peaks.

C. Experimental implementation

The experiments were performed in a type-IIa diamond
single crystal with a nitrogen concentration less than 5
ppb [21,22], and natural abundance, i.e., 13C concentration
∼1.1%. The NV center can be optically addressed by a green
solid-state laser and a home-built confocal microscope [8]. We
chose a NV center without resolved 13C hyperfine interaction,
as illustrated by the spectra in Fig. 1. The more remote 13C
spins cause loss of coherence of the electron spin [23,24],
resulting in a transverse relaxation time T ∗

2 of ≈2.5μs, mea-
sured in a Ramsey-type FID experiment. Figure 2 shows the
pulse sequence of the complete experiment.

We first initialized the electron spin into the mS = 0 state
by a laser pulse. To a first approximation, the nuclear spin
is not affected by the laser pulse but remains unpolarized.
Therefore, the state of the two spins after the laser pulse is

ρini = |0〉〈0| ⊗ E3

3
, (7)

where E3 denotes the 3 × 3 unit operator. To this state, we ap-
plied the gate operations U , followed by an FID experiment to
determine the resulting state of the system. Figure 3 shows the
experimental ESR spectra obtained as the Fourier-transforms
of the FID. The uppermost trace shows the normal spectrum,
i.e., without any gate operation; the second and third trace
were obtained after applying the gates U1 and U2. Compared
with the first trace, which serves as the reference spectrum,
the signs of the peaks show that the electron spin states were
reversed if the 14N nuclear spin was in the mI = ±1 state (for
U1) or in the mI = 0 state (for U2), as expected from Table I.
Minor changes in the shapes of the peaks appear to be due
to environmental noise and small shifts can be attributed to
magnetic field changes due to thermal drift [25].

A14N = 2.16 MHz

A13Czz = 152 kHz; A13Czx = 110 kHz  

FIG. 4. Spectra of the electron spin coupled to one 14N and
one 13C nucleus, obtained from an FID experiment (a) and the
corresponding simulation (b). The origin of the frequency axis
is D + γeB, corresponding the ESR transition frequency between
states mS = 0 and mS = −1. Due to the hyperfine coupling with
the 13C nucleus, each peak of the electron-14N system is split into
four, as shown by the schematic diagram at the top. Spectrum (c)
was obtained from a different electron spin, which is only coupled
to a 14N.

III. ELECTRON, 14N AND 13C

As one example of the conditional gate operation U2, we
use it for selective population transfer in a three-spin system
consisting of the electron, the 14N, and one 13C nuclear spin:
We swap the mS = 0 and mS = −1 states of the electron spin,
conditional on the 14N spin being in the mI = 0 state, but
independent of the 13C spin. Figure 4(a) shows the spectrum
of the electron spin, obtained from an FID experiment. The
interaction with the 13C nuclear spin splits each resonance line
of the electron-14N spin system into four lines. The splitting
into four, rather than the usual 2I + 1 = 2 lines results from
the fact that the strength of the 13C hyperfine interaction
(≈150 kHz) is comparable to the nuclear Zeeman interaction
(Larmor frequency νL = 165 kHz) under our experimental
conditions. The nuclear spin quantisation axis therefore points
in different directions, depending on the state of the elec-
tron spin. As a result, the “usual” selection rule �mS =
±1,�mI = 0 for allowed ESR transitions cannot be applied
and all possible transitions have a nonvanishing amplitude
[26,27]. Details are given in the Appendix. Figure 4(b) shows
the simulated spectrum, with the couplings shown in the panel
at the top of the figure.

An effective population transfer requires that the 14N nu-
clear spin controls the evolution of the electron spin, with
little perturbation from the 13C spin. In our experiment, the
coupling from the passive spin is not negligible, in contrast to
previous experiments, where there was no passive spin [28],
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(a)

(b)

FIG. 5. (a) Pulse sequence for measuring the nuclear spin Rabi
frequency. The carrier frequency of the RF pulse is resonant with
the NMR transition |0, 0〉 ↔ |0, 1〉, as indicated by the vertical short
double arrow. The inset illustrates the state of the system during the
experiment. The sizes of the filled circles are roughly proportional
to the populations. The first transfer operation polarizes the nuclear
spin, and the second acts as a readout to measure the remaining
population after the RF pulse. (b) The MW pulses used for the
population transfer between the two states marked by the long
vertical arrows in the inset. The left-hand part shows the selective
pulse used in previous works [6,28] and the right-hand part the pulse
sequence used in the present work. In the selective pulse method, the
Rabi frequency of the MW pulse is about 0.2 MHz, while the pulsed
transfer uses hard pulses, with Rabi frequencies of about 10 MHz.

or the coupling from the passive spin was negligibly small
compared to the active spin [6]. Compared to the conventional
technique, the pulsed transfer reduces these perturbations.

As an application of the pulsed population transfer, we use
it to polarize the 14N nuclear spin, as shown in Fig. 5. After
the transfer, we measure the Rabi frequency of the 14N spin
by applying a constant radio-frequency (RF) field of variable
duration tRF . After the RF pulse, we use another conditional
gate operation for transferring the remaining nuclear spin
polarization back to the electron spin for detection.

The experiments were implemented in a 12C enriched
(99.995%) diamond sample synthesized by chemical vapor
deposition (CVD), where decoherence due to 13C nuclear
spins is small and the coherence time of the electron spin
is ≈20 μs [29,30]. To evaluate the effect of the passive 13C
spin, we compare two centers, one with and one without
the 13C. The NV axes of the two centers point in the same
direction, and the NMR transition frequencies in the con-
cerned subspace {mS = |0〉, |−1〉 } for these two centers were
4.981, 4.905, 2.822, and 7.075 MHz, for the transitions be-
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FIG. 6. Experimental results for the measurement of T ∗
2 for 14N.

(a-b) Population of the state |0, 0〉 measured in the FID experiments
for two different time periods. The measured data and fitting results
are indicated by circles and solid curves. (c) Coherence amplitude
extracted from the FID experiments versus time. Fitting the measured
data to the function A0e

−(t/T ∗
2 )k , we obtained T ∗

2 = 2.1 ms, A0 =
0.39, and k = 2.7.

tween the states |0, 0〉 ↔ |0, 1〉, |0, 0〉 ↔ |0,−1〉, |−1, 0〉 ↔
|−1, 1〉 and |−1, 0〉 ↔ |−1,−1〉. Figure 4(c) shows the spec-
trum obtained from the electron spin without a coupled 13C.
For both centers, we performed measurements with the two
different transfer techniques.

We measured the transverse relaxation time T ∗
2 for the

14N nuclear spin via an FID experiment [6,28]. In the mea-
surement, the MW and RF pulses were transition-selective,
resonant with the transitions |0, 0〉 ↔ |−1, 0〉 and |0, 0〉 ↔
|0, 1〉, respectively. To measure the dephasing as the decay of
the coherence, we performed partial FID measurements, for
periods of 0.8 μs each, at different starting times. Figure 6
shows the experimental results. The two upper traces show
partial FIDs, for different initial pulse separations, and the
bottom trace plots the extracted amplitudes of the oscillation
versus the initial evolution time for the four experiments.
Fitting the coherence amplitudes to the function A0e

−(t/T ∗
2 )k ,

we obtained T ∗
2 = 2.1 ms, A0 = 0.39, and k = 2.7. The ob-

served value of T ∗
2 is close to the longitudinal relaxation time

T1,e ≈ 3.5 ms of the electron spin, which represents an upper
limit for the measurement technique used here.

As a reference experiment, we first applied the pulse se-
quence used in earlier works to a center without coupled 13C.
The Rabi frequency of the MW pulses was 0.19 MHz, with the
carrier frequency set to the transition between the |0, 0〉 and
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FIG. 7. Results of 14N Rabi experiments in the NV centers
without and with coupled 13C, shown as left and right columns, from
previous (top) and the new sequence introduced here (bottom).

|−1, 0〉 states. The frequency of the RF pulse was 4.981 MHz.
The experimentally measured nuclear spin Rabi nutation is
shown in Fig. 7(a), together with a fit to the function

P|0〉 = α + β cos(2πνRtRF ), (8)

where νR denotes the Rabi frequency for 14N, and α and β

are constants. Table II shows the parameter values obtained
by fitting the experimental data. Here we chose Fig. 7(a) as a
reference for evaluating the following experiments.

Figure 7(b) shows the results obtained from the center with
a coupled 13C, from the previous pulse sequence in Fig. 5,
where the Rabi frequency of the two MW pulses is 0.21 MHz.
Comparison with Fig. 7(a) shows that the signal was degraded
by the couplings from 13C, resulting in a loss of signal by
12% and a decrease of the oscillation amplitude of 29%, since
the Rabi frequency of the MW pulses is not large enough
compared with the splitting caused by 13C, which is about
0.15 MHz.

Figures 7(c)–7(d) show the results obtained from our mod-
ified sequence shown in Fig. 5, applied to the centers without
and with the coupled 13C. Table II shows the fitted param-
eters. Comparing the values for Figs. 7(b) and 7(d) shows
a significant advantage for the new pulse sequence, which
increases the oscillation amplitude of the signal by 21%. This

TABLE II. Fit results from the experimental data shown in
Figs. 7(a)–7(d).

α β νR (kHz)

Fig. 7(a) 0.816 0.164 8.2
Fig. 7(b) 0.743 0.117 7.5
Fig. 7(c) 0.723 0.168 8.1
Fig. 7(d) 0.742 0.151 7.5

advantage can be traced to the reduced effect of the coupling
to 13C due to the faster operations. The infidelity caused by
the coupling from 13C is reduced by ∼A/ν1,MW > 10, where
ν1,MW = 0.21 MHz is the Rabi frequency of the transition
selective MW π pulses in Fig. 5.

IV. CCNOT GATE

13C nuclear spins close to NV centers are interesting can-
didates for qubits [31], provided effective gate operations can
be implemented. If the hyperfine coupling is strong, two-qubit
gates can be implemented by transition-selective pulses [6].
However, if multiple qubits are required, such as for the
implementation of quantum error correction, it also becomes
important to control more remote 13C spins [5,32]. In these
cases, selective pulses result in long gate times and as a result,
the coherence time of the electron spin limits the fidelity of
the overall gate operation. The pulsed scheme discussed above
results in significantly shorter gate times and can thus alleviate
this problem.

In this section, we still consider a system consisting of one
electron, one 14N, and one 13C spin. We implement a CNOT
in the electron-13C system, with the additional constraint that
the 14N nuclear spin is in the state mI = 1. In the three-spin
system, this operation is a CCNOT gate or Toffoli gate [2],
where 13C and 14N are the control spins, and the electron
spin is the target. Since our scheme to implement the CNOT
relies only on the secular component A13Czz

of the hyperfine
interaction, we choose a center with |A13Czx

| � |A13Czz
|, for

which the quantization axis is close to the NV axis [33]. In
this case, the hyperfine coupling from the 13C splits each
peak of the electron-14N system into two; details are given
in the Appendix. With the field along the NV axis, we can
approximate the relevant interaction Hamiltonian between the
electron and 13C as

1

2π
Hc = A13Czz

Szsz, (9)

where sz denotes the z component of the 13C nuclear spin
operator.

The experiments described here were done with the same
12C enriched sample as those in Sec. III, but with a different
NV center, with T ∗

2 ≈ 10 μs. Figures 8(a) and 8(c) show the
electron spin spectra obtained through FID measurements
in the mS = 0 and mS = ∓1 manifolds, respectively. The
number of resonance lines indicates that in this center, the
hyperfine tensor component A13Czx

is <50 kHz and thus
sufficiently small to be neglected. The splitting of the peaks
indicates that A13Czz

≈ 150 kHz. In the following, we con-
sider two subspaces of the full Hilbert space, both of which
correspond to two-qubit systems with one electron-spin qubit
and one 13C nuclear spin qubit, while the 14N nuclear spin
is in the mN = 1 state. The first subspace is spanned by the
states mS = 0 and mS = −1 of the electron and the second
by the states mS = 0 and mS = 1. In these two subspaces,
we implement two slightly different CNOT gates, with the
electron spin as a target and the nuclear spin as the control
qubit. In the first subspace, we use the control condition that
the 13C spin is in the ↓ state, in the second subsystem that it is
in the state ↑. Table III summarises these gates.
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FIG. 8. Spectra of the electron spin coupled to one 14N and one
13C nucleus. The spectra in (a) and (c) are obtained from FIDs
using MW pulses with the carrier frequencies set to the transition
frequencies between states mS = 0 and ∓1, and Rabi frequencies
of 10 and 6 MHz, respectively. The spectra in (b) and (d) show
the results obtained from the FID after the CNOT gates were im-
plemented in the mS = 0 and ±1 manifolds with the 14N in state
mI = 1, respectively. The states of the 13C nuclear spin are indicated
by ↑, ↓. The origin of the frequency axis in (a), (b) is the ESR
transition frequency between the states mS = 0 ↔ −1 (D + γeB),
and in (c), (d) mS = 0 ↔ +1 (D − γeB ). The dashed vertical lines
indicate the positions of the resonance lines where the nuclear spins
are in the state that corresponds to the control condition: in this case,
the gate operation flips the electron spin, which is verified by the fact
that the corresponding peaks are absent in the spectra (b) and (d).

Figure 9 shows the pulse sequence used. The double arrows
indicate the carrier frequencies of the MW pulses. The Rabi
frequency of the pulses in the CNOT is 0.5 MHz. These two
pulses are hard pulses for the electron and 13C system, since
the Rabi frequency is much larger than the coupling to 13C,
while they are selective with respect to the state of the 14N. In
order to observe the effects of the CNOT gate, we measured
the FID signal. Figures 8(b) and 8(d) show the spectra of the

TABLE III. Output states of the electron (target) and 13C (con-
trol) spins of the CNOT operations in the mS = 0 and ∓1 manifolds,
indicated as CNOT1 and CNOT2.

Input Output of CNOT1 Output of CNOT2

1 ↑ 1 ↑ 0 ↑
1 ↓ 1 ↓ 1 ↓
0 ↑ 0 ↑ 1 ↑
0 ↓ −1 ↓ 0 ↓
−1 ↑ −1 ↑ −1 ↑
−1 ↓ 0 ↓ −1 ↓

11

m

1

-1

S

0

(a)

Laser

(b)

MW

2

t

CNOT FID measure

FIG. 9. (a) Pulse sequence for demonstrating the CNOT gate
implemented in the electron-13C system. (b) Populations of the initial
and final states when the CNOT gate is applied to subspace with
mS = 0 ↔ −1, mI = 1. We therefore do not consider the 14N spin
here. The filled and empty circles denote population of 1/2 and 0,
respectively. The states marked by |↑〉 and |↓〉 are the 13C eigenstates.
The carrier frequencies of the MW pulses are set to the transition
frequencies between the mS = 0 and 1 or −1, indicated as the lines
with double arrows. ν1 and ν2 indicate the transition frequencies
D ± γeB, respectively. The Rabi frequencies of the MW pulses
are 0.5 and 10 MHz in the CNOT gate and the FID measurement,
respectively.

electron after the implementation of the CNOT gates in the
mS = 0 and mS = ±1 manifolds, respectively. The single
peak in the right or left transition of the 14N multiplet verifies
the operation of the CNOT gate, which transfers population
from states |0↑〉 to |1↑〉, or |0↓〉 to |−1↓〉, respectively.
We use the amplitude ratio between the single peak and the
corresponding peak in the doublet to estimate the fidelity
of the CNOT gate, and obtain values of 0.95 and 0.99 for
Figs. 8(b) and 8(d), respectively.

If we use a transition-selective pulse to implement the
CNOT gate, its Rabi frequency may not exceed 20 kHz if the
theoretical fidelity should be at least 0.99 in the absence of
dephasing effects. For such a low Rabi frequency, the duration
of the π pulse becomes at least 25 μs, which is longer than the
relaxation time T ∗

2 ≈ 10μs. Dephasing would thus reduce the
fidelity of such a gate operation to ∼0.6.

V. OFFSET DEPENDENCE

A. Narrow frequency range

The operations implemented by the (π/2)x − 1/2|A| −
(π/2)y pulse sequence depend strongly on the MW car-
rier frequency used to generate the pulses, as evidenced by
the expression for U in Eq. (5). We therefore verified this
dependence in the system consisting of the electron and 14N
nuclear spins by performing the gate operations as a function
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FIG. 10. Dependence of the operation U defined by Eq. (5) on
the offset of the MW carrier frequency. The filled circles represent
the experimental data, the full curve represents a simulation for ideal
(δ-function) pulses, while the dash-dotted line was simulated with the
pulse durations of 21.6 μs used in the experiment. The blue dotted
vertical line indicates the offset used for implementing U1 and the
dark green dashed line for U2. The error bars represent the standard
deviation of the measured data points.

of the carrier frequency and measuring the resulting ground
state population. Applying the unitary of Eq. (5) to the initial
state Eq. (7) yields ground state population

P|0〉 = 1

2
− 1

6
sin

(
πν

A

)
. (10)

Figure 10 shows the results of this experiment performed
in the sample with natural abundance. The vertical axis rep-
resents the population of the mS = 0 state measured by the
second laser pulse as a function of the offset of the MW carrier
frequency, see Eq. (4). The dotted and dashed vertical lines
indicate the offsets where the operation corresponds to U1

and U2, respectively. We compare the experimental results
(filled circles) to a simulation of the experiment without
dephasing effects, i.e., T2 → ∞, and using ideal pulses with
infinite Rabi frequency of the MW pulses, shown as the full
curve. The dash-dotted curve in the figure shows the result
of a simulation for the actual Rabi frequency (11.6 MHz)
used in the experiment, and T2 → ∞. It agrees well with the
experimental data, indicating that T2 effects are negligible in
this experiment.

B. Wide frequency range

In addition to the data shown in Fig. 10, we also mea-
sured the offset dependence over the whole frequency range
from 2.75 to 2.99 GHz to obtain the full offset dependence.
Figure 11 shows the experimental results and compares them
to a simulation that treats the nuclear and the electronic spins
as spin-1 systems. Since the MW power at the sample varies
as a function of frequency, we performed the experiment in
two parts and set the duration of the π/2 pulses to 21.6 μs in
the low-frequency part and to 27.5 μs in the high-frequency
part. The two parts are separated by the dashed vertical line
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FIG. 11. Offset dependence of a CNOT gate with 14N as con-
trol, comparing experimental results (dots) with a simulation (solid
curve). The horizontal axis shows the carrier frequency of the MW.
The scan consists of two segments, separated by the dashed line,
where the pulse duration was changed.

in Fig. 11. The agreement between theory and experiment is
best near 2.83 GHz and 2.93 GHz, where the calibration for
the pulse duration was performed.

C. Transition-selective pulse

For comparison, we also implemented U2 in the conven-
tional way [7–10], using one low power pulse with a Rabi
frequency of 0.23 MHz. Figure 12 shows the experimental and
simulated results. The comparison between the experimental
and simulated data shows that the T2 effects cause ∼17% loss
of the fidelity of the gate, when it is implemented at offset 0.
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FIG. 12. Experimental results from a CNOT gate using a low-
power pulse with a Rabi frequency of 0.23 MHz shown as circles.
The dash-dotted and full curves show numerical simulations for the
cases of T2 ≈ 2.5μs and T2 → ∞. The dashed vertical line indicates
the offset for implementing U2.
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VI. DISCUSSIONS AND CONCLUSIONS

The conventional method for implementing CNOT gates
based on transition-selective pulses is an approximation [14],
and the fidelity is limited by the spectral resolution of the
system. Our results show that these limitations can be circum-
vented by using quantum gates based on hard pulses and free
precession periods. The resulting gate duration is considerably
shorter, which reduces the effects of relaxation. It allows us to
implement a CNOT gate with an overall duration of < 300
ns in the electron and 14N spin system, which is shorter than
the pulse obtained by optimal control (∼450 ns) [34], and
much shorter than with a transition-selective pulse (1.8 μs)
[8]. The gains are even bigger in the electron and 13C spin
system with the small coupling strength of ≈150 kHz, where
the spectral resolution seriously limits the fidelity of gates
based on transition-selective pulses.

In conclusion, our scheme for multiqubit operations pro-
vides significant improvements for quantum registers con-
sisting of electronic and nuclear spins. The benefits include
reducing the gate time and improving the control in the system
with more couplings. The gates that we have chosen to imple-
ment here are important since they are members of the sets of
gates required for universal quantum computing. Although we
implemented the experiments in the NV center system at low
magnetic fields, the method is completely general and can be
applied to many other systems and higher magnetic fields.
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APPENDIX

Here we consider a system Hamiltonian consisting of the
electron and 13C spins, by choosing the mI = 0 subspace of
the 14N. The axis of the NV center and the position of the 13C
nucleus define a symmetry plane for the system [35] and we
choose a symmetry-adapted coordinate system with the z axis
along the NV axis, and the 13C nucleus in the xz plane. The
Hamiltonian can then be written as

1

2π
HE,C = DS2

z − νeSz − νLsz + A13Czz
Szsz + A13Czx

Szsx.

(A1)

Here sz/x denote the z/x-components of the spin operator for
13C, νe = γeB, and νL = γCB with γC = 10.7 MHz/T.

We further restrict our system to the subspace spanned by
the states {|0〉e, |−1〉e} ⊗ {|↑〉C, |↓〉C}, where the Hamiltonian
is

1

2π
Hsub

E,C = −1

2
(D + νe )σz −

(
νL + 1

2
A13Czz

)
sz

− 1

2
A13Czx

sx + 1

2
A13Czz

σzsz + 1

2
A13Czx

σzsx.

(A2)

Here, we have omitted the constant term (D + νe )E4/2, with
E4 denoting the identity in the four-dimensional space. σz

denotes the z component of the Pauli matrices for the electron

spin. States |↑〉 and |↓〉 denote the eigenstates of sz with
eigenvalues 1/2 and −1/2, respectively, and |0〉e and |−1〉e
denote the eigenstates of σz with eigenvalues 1 and −1.

The Hamiltonian of Eq. (A2) can be diagonalized by the
unitary transformation

UT = |0〉〈0| ⊗ E2 + |−1〉〈−1| ⊗ Ry (α), (A3)

where E2 denotes an identity operator for 13C and

Ry (α) = e−iαsy (A4)

with

α = arctan

(
A13Czx

A13Czz
+ νL

)
, (A5)

indicating the orientation of the quantization axis of the 13C
spin in the subspace of mS = −1. From the parameters νL =
165, A13Czz

= −152, and A13Czx
= 110 kHz given in Fig. 4,

we obtain α = 83◦.
From UT , one obtains the eigenstates as |0↑〉,

|0↓〉, |−1〉[−|↑〉 sin(α/2) + |↓〉 cos(α/2)], and |−1〉[|↑〉
cos(α/2) + |↓〉 sin(α/2)]. The corresponding energies
are

1

2π
E1 = −νL/2, (A6)

1

2π
E2 = νL/2, (A7)

1

2π
E3 = 1

2
ν− + (D + νe ), (A8)

1

2π
E4 = −1

2
ν− + (D + νe ), (A9)

where

ν− =
√

A2
13Czx

+ (νL + A13Czz
)2 (A10)

is the transition frequency of the 13C spin in the subspace of
mS = −1.

The ESR transition frequencies between the levels Ek and
El , with k = 3, 4, and l = 1, 2, are

ν3,1 = 1
2 (ν− + νL) + (D + νe ), (A11)

ν4,1 = − 1
2 (ν− − νL) + (D + νe ), (A12)

ν3,2 = 1
2 (ν− − νL) + (D + νe ), (A13)

ν4,2 = − 1
2 (ν− + νL) + (D + νe ), (A14)

and the transition probabilities

sin2

(
α

2

)
, cos2

(
α

2

)
, cos2

(
α

2

)
, sin2

(
α

2

)
, (A15)

respectively.
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