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Friction as a consistent quantum-mechanical concept
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A quantum analog of friction (understood as a completely positive, Markovian, translation-invariant, phe-
nomenological model of dissipation) is known to be at odds with detailed balance in the thermodynamic limit.
We show that this is not the case for quantum systems with internal (e.g., spin) states nonadiabatically coupled
to translational dynamics. For such systems, a quantum master equation is derived which phenomenologically
accounts for the frictional effect of a uniform zero-temperature environment. A simple analytical example is
provided. Conjectures regarding the finite-temperature case are also formulated. The results are important for
efficient simulations of complex molecular dynamics and quantum reservoir engineering applications.
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I. INTRODUCTION

When dealing with complex dissipative environments,
modern quantum scientists substantially rely on intuition, like
ancient craftsmen taming the elements to build mills or sailing
vessels. Specifically, there is vast experimental evidence that
quantum effects play a pivotal role even in such complex
and manifestly dissipative processes as photosynthesis [1–3].
However, it not clear how coherent quantum dynamics is
induced and guided by dissipative interactions. Despite sev-
eral recent conceptual breakthroughs in the areas of quantum
reservoir engineering1 and topologically protected phases of
matter [6], the analysis of coherent dynamics in real-world
open systems is impeded by a prohibitively complex micro-
scopic modeling of nonperturbative system-bath interactions.

In classical mechanics, the similar curse of dimensionality
is escaped from by introducing friction, a phenomenological
nonconservative force resisting the relative motion of objects
and converting their kinetic energies into heat [7]. Despite be-
ing very simple, the concept of friction is proven useful even
in explaining some quantum-level dynamics involving strong
system-bath couplings, such as in the case of simple chemical
reactions in liquid solutions [8]. However, there is no unique
way to quantize nonconservative forces [7]. As result, existing
phenomenological quantum dissipative models, be they quan-
tum optical master equation [9], Föster, or Redfield models
[10,11], depend on the system Hamiltonian in a complex
way. This dependence cannot be simplified to a few friction
and diffusion coefficients, especially in the low-temperature
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1For instance, it was proven that quantum information processing

can be fully dissipation driven [4]. Furthermore, dissipation enables
optical and mechanical nonreciprocal couplings—a key ingredient
for implementing a quantum analog of a sailing vessel [5].

regime. Furthermore, to ensure that the surrounding physical
bath stays unchanged, the quantum dissipation model must be
nontrivially readjusted each time the Hamiltonian is altered
(e.g., by an external field or as a result of chemical reactions).
Furthermore, the models discussed describe the relaxation
dynamics in terms of interstate transition rates. This picture
is not natural when dealing with the dynamics of essentially
semiclassical vibration wave packets in many photochemical
reactions.

To mitigate the above complications, we develop in this
paper a phenomenological quantum dissipation model pos-
sessing favorable features of classical friction. For brevity,
we refer to this model as “quantum friction.”2 We restrict our
analysis to the simplest case of a homogeneous environment at
a zero temperature and master equations linear with respect to
the system density matrix. It is explained in detail elsewhere
that the corresponding quantum friction model must satisfy
the following four criteria [13,14]:

(i) Markovianity,
(ii) positivity,
(iii) translation invariance, and
(iv) an asymptotic approach to the canonical equilibrium

state.
Specifically, the Markovianity ensures that the quantum

friction is memoryless. Positivity guarantees that the model
is quantum-mechanically consistent, i.e., that any initial pos-
itive density matrix remain positive at all times. Translation
invariance makes quantum friction coordinate independent,
because the corresponding classical friction is a velocity-
only–dependent force.

The problem of finding a phenomenological model obey-
ing these four criteria has a long history and has been
the subject of many controversies over the years (see, e.g.,

2We want to disambiguate our broad notion of “quantum friction”
from its narrow meaning of the force acting on atoms flying near
surfaces [12].
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Refs. [15–17]). As early as 1976, Lindblad demonstrated that
this problem has no resolution for a harmonic oscillator [18].
Subsequent failed searches forced Kohen et al. to conjecture
in their 1997 review [19] that the incompatibility of all four
criteria is a generic property, although with the sagacious
comment: “except in special cases,” which were not known at
that time. Later, free quantum Brownian motion was identified
by Vacchini [20] to be such a special case. We have proven
that no other exceptions exist among quantum systems with
Next translation degrees of freedom [14].

In this paper, we report a class of “special cases” with all
four criteria satisfied at zero temperature. These are systems
with internal degrees of freedom, such as spin. The explicit
forms of quantum friction dissipators are derived for such
systems.

This paper is organized as follows: We start by formalizing
the four-criterion problem in Sec. II. A constructive proof of
existence of its solution at zero temperature for systems with
internal degrees of freedom is presented in Sec. III. The cor-
responding quantum friction dissipators are also derived and
analyzed in detail. The results obtained are illustrated on the
simplest analytically tractable example of a two-dimensional
harmonic oscillator in Sec. IV. In the following Sec. V we
discuss the conjectures regarding the existence of quantum
friction at finite temperatures. The paper concludes with a
brief summary and outlook.

II. FORMULATION OF THE PROBLEM

The object of our analysis will be the quantum systems
with Ñint > 1 internal states |̃i〉 coupled to Next �= 0 transla-
tion degrees of freedom. (Hereafter, the tilde ˜ marks quan-
tities associated with internal states.) An example of such
a system is a molecule with the following vibronic model
Hamiltonian:

Ĥ =
Next∑
k=1

1

2μk

p̂2
k + V (x̂)︸ ︷︷ ︸

vibrational part

+
Ñint∑
i=1

Ẽi |̃i〉〈̃i|︸ ︷︷ ︸
spin or electronic part

+
∑
i �=j

gi,j |̃i〉〈j̃ |︸ ︷︷ ︸
spin or electronic couplings

+
Ñint∑
i=1

δVi (x̂)|̃i〉〈̃i|︸ ︷︷ ︸
vibronic couplings

. (1)

Here the sets of nuclear coordinates x̂ = {x̂1, . . . , x̂Next } and
momenta p̂ = {p̂1, . . . , p̂Next } represent the translational de-
grees of freedom and the “internal” states |̃i〉 correspond to
different electronic and/or spin states of the molecule. The
symbols gi.j , Vi (x̂), and Ẽi denote the coupling constants,
coupling operators, and internal-state eigenenergies, respec-
tively. Assume that the molecule is immersed in a homo-
geneous environment (such as a gaseous media or uniform
solvent) at zero temperature. Our goal is to construct a phe-
nomenological model of the dissipative backaction of such an
environment on the system which satisfies the criteria i–iv of
quantum friction.

The question of which dissipative processes simultane-
ously satisfy criteria i and ii was resolved by Lindblad [21].

The answer is a master equation now bearing his name:

∂

∂t
ρ̂ = L [ρ̂], L = L0 + Lrel (2)

where the superoperator L0[�] = i
h̄

[�, Ĥ ] accounts for uni-
tary evolution of the system isolated from environment, and
the dissipation term Lrel describing the system-environment
couplings is

Lrel =
Nlbd∑
k=1

L lbd
Âk

, (3a)

L lbd
L̂

[ρ̂]
def= L̂ρ̂L̂† − 1

2
(L̂†L̂ρ̂ + ρ̂L̂†L̂). (3b)

The goal of this work is to identify the conditions under which
the dissipator Lrel defined by Eq. (3a) additionally obeys the
criteria iii and iv.

The translation invariance criterion iii with respect to the
nth coordinate is formally defined as

[p̂n,Lrel[ρ̂]] = Lrel[[p̂n, ρ̂]]. (3c)

A general recipe for imposing this criterion on the Lindblad
term (3a) was found by Holevo [22,23] and further analyzed
in applications by Vacchini [24,25]. Specifically, to satisfy
Eq. (3c) it is necessary and sufficient that the Lindblad op-
erators Âk in Eq. (3a) take the forms

Âk
def= e−iκk x̂ f̂k ( p̂). (3d)

Here f̂k ( p) ∈ CÑint×Ñint and κk ∈ RNext are arbitrary parame-
ters and matrix-valued functions. They generally should be
treated as a phenomenological quantities and can be deduced
from empirical fits to time evolution of higher-order averages,
e.g., 〈x̂2〉, 〈 p̂2〉. In the cases when the dissipative term Lrel

describes random collisions with light environmental parti-
cles, the values of h̄κk and f̂k ( p) can be associated with the
characteristic momentum exchange in a collision event and
the scattering amplitude in momentum space [14].

It is worth showing why the dissipative dynamics satisfying
criteria i–iii deserves the name quantum friction. The average
positions and momenta of a wave packet, evolving according
to Eqs. (3), satisfy equations

d

dt
〈p̂n〉 = i

h̄
〈[Ĥ , p̂n]〉 + 〈

F̂ fr
n

〉
, (4a)

d

dt
〈x̂n〉 = i

h̄
〈[Ĥ , x̂n]〉 + 〈

Ĝfr
n

〉
, (4b)

where

F̂
fr

( p̂) = −
∑

k

h̄κkf̂
†
k ( p̂)f̂k ( p̂) (5)

defines the position-independent force 〈F̂
fr〉 which, under a

proper choice of operators f̂
†
k ( p̂), acts in the direction oppo-

site to momenta 〈 p̂〉, similarly to the conventionally defined
classical friction. Note, however, that this force is paired with

term 〈Ĝ
fr〉 in Eq. (4b), where

Ĝfr
n ( p̂) = 1

2
ih̄

∑
k

(
f̂

†
k ( p̂)

∂f̂k ( p̂)

∂p̂n

− ∂f̂
†
k ( p̂)

∂p̂n

f̂k ( p̂)

)
. (6)
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The presence of the term 〈Ĝ
fr〉 can be physically attributed to

changed effective masses of moving particles “dressed” by the
environment. This term is of the same nature as the “position
diffusion,” a well-known peculiarity of quantum Brownian
motion [26].

Recall that the classical frictional forces are accompanied
by thermal fluctuations satisfying the fluctuation-dissipation
theorem. Similarly, criteria i–iii are not sufficient to define
thermodynamically consistent quantum friction, and the ad-
ditional criterion Iiv is required to ensure detailed balance at
thermal equilibrium:

Lrel
[
ρ̂ th

T

] = 0. (7)

Here ρ̂ th
T = ρ̂|t→∞ ∝ e

− Ĥ
kBT is the stationary Gibbs system

state corresponding to temperature T . It is worth stressing that
Eq. (7) implies nonvanishing thermal fluctuations even at the
zero bath temperature.

The criteria i, ii, and iv are fulfilled, e.g., by the quantum
optical master equation [9]. A variety of other models are
known where some three out of four criteria i–iv are satisfied
(see Ref. [19] for detailed review). However except for free
Brownian motion [20], no model is known which satisfies
both Eqs. (3) and (7). The nonexistence of such a model for
the case Ñint = 1 was rigorously proven by us recently [14]. In
particular, we have shown that the criteria i–iii are compatible
only with the following weaker variant of the condition (7):

Tr
[
ρ̂ th

T ′Lrel
[
ρ̂ th

T

]] = 0 for any T ′, (8)

which we refer to as the relaxed thermalization (RT) condi-
tion.

The condition (8) always holds when Eq. (7) is satis-
fied. In fact, it can be shown that Eq. (8) only guarantees
that the steady state of the model coincides with the true
equilibrium ρ̂ th

T up to first order in system-bath couplings.
Thus, Eq. (8) is expected to approximate reasonably well
the exact thermalization criterion (7) when the bath-induced
decay and decoherence times are large compared with all the
characteristic dynamical timescales of the system [14].

III. RECONCILING THE FOUR-CRITERION
CLASH AT ZERO TEMPERATURE

In this section, we prove the existence of quantum friction
simultaneously satisfying criteria i–iv for systems character-
ized by the Hamiltonian (1) with Ñint > 1. Our methodology
is to first figure out the necessary requirements to satisfy the
criteria i – iii and RT criterion (8) for Ñint > 1 and then to
identify whether the RT criterion can be upgraded to the exact
thermalization condition (7).

As discussed in the previous section, the dissipator Lrel

satisfying criteria i–iii needs to have the form defined by
Eqs. (3). In the case T = 0, substitution of Eqs. (3) allows
us to cast Eq. (8) into Nlbd independent extremal conditions

Jk = Tr
[
ρ̂ th

0 L lbd
Âk

[
ρ̂ th

0

]]→ max (k = 1, . . . , Nlbd ). (9)

Specifically, Eq. (9) can be obtained from Eq. (8) and equal-
ities Tr[L lbd

Âk
[ρ̂]] = 0, which guarantee that Jk � 0 for any

k. Hence, Eq. (8) can be satisfied only when all Jk take their
maximal values Jk = 0.

Let |n〉 and En be the system Hamiltonian eigenstates
and eigenvalues, respectively. Each of these states can be
represented in the form

|n〉 =
Ñint∑
i=1

|̃i〉 |�n,i〉, (10)

where |�n,i〉 are the vibrational parts of the eigenstates. Note
that |�n,i〉 are neither normalized nor orthogonal. Below we
deal with their momentum wave functions �n,i ( p) and also
with the operators �n,i ( p̂) obtained via the substitution p→ p̂.
In addition, we will use the notation |ϕk,n〉 = Âk |n〉. The
expressions for Jk in Eq. (9) can now be rewritten as

Jk = |〈0|ϕk,0〉|2 − 〈ϕk,0|ϕk,0〉. (11)

Here we accounted for the fact that the thermodynamic equi-
librium at T = 0 corresponds to the ground state ρ̂ th

0 = |0〉〈0|.
The Cauchy-Schwarz inequality requires that

|〈0|ϕk,0〉|2 � 〈ϕk,0|ϕk,0〉〈0|0〉 = 〈ϕk,0|ϕk,0〉, (12)

where the equality holds if and only if |0〉 ∝ |ϕk,0〉. Hence, it
follows from Eqs. (9) and (11) that

Jk = 0 iff Âk |0〉 = αk |0〉 for all k (αk ∈ C). (13)

Equations (13) can always be resolved with respect to Âk . The
general solution can be written in terms of operators f̂k ( p̂)
introduced in Eq. (3d) as

f̂k ( p̂) = f̂0,k ( p̂) + αk

Ñint∑
i=1

�0,i ( p̂ − h̄κk )

�0,i ( p̂)
|̃i〉〈̃i|, (14a)

where f̂0,k ( p̂) is the position-independent operator satisfying
the equation

f̂0,k ( p̂) |0〉 = 0. (14b)

For instance, the general solution for f̂0,k in the case of a
two-level internal subsystem (Ñint = 2) can be represented as

f̂0,k ( p̂) =
1∑

i,j=0

(−1)i−jG1−i,k ( p̂)�∗
0,i ( p̂)�0,j ( p̂)|1̃ −i〉〈1̃ −j |,

(15)

where G0,k ( p) ∈ C and G1,k ( p) ∈ C are arbitrary functions.
One can notice that the operators (15) always contain off-

diagonal terms between different internal states |̃i〉. Hence, the
population of internal states is conserved when f̂0,k = 0 for
all k. In the case when |̃i〉 represent the electronic states of a
molecule, the latter model can represent instantaneous events
(e.g., the direct collisions of light particles with the molecule’s
nuclei) not involving electrons.

Equations (14) answer the question of when criteria i–iii
can be satisfied together with the relaxed thermalization con-
dition (8). Let us now turn to the conditions required to satisfy
strict thermalization condition iv [Eq. (7)]. The substitution of
Eqs. (14) allows us to rewrite condition (7) as

Nlbd∑
k=1

α2
k |0〉 =

Nlbd∑
k=1

f̂k ( p̂)†f̂k ( p̂) |0〉 =
Nlbd∑
k=1

αkÂ
†
k ( p̂) |0〉 .
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It is easier to analyze this relation after multiplying both sides

by the operator
∑Ñint

j=0 |̃0〉〈j̃ |�0,j ( p̂), which gives

∀ p :
Nlbd∑
k=1

α2
k

Ñint∑
j=1

(|�0,j ( p)|2 − |�0,j ( p − h̄κk )|2) = 0. (16)

As discussed in Ref. [14], the effect of the part of Lind-
blad operator Âk proportional to αk can be associated with
an instantaneous inelastic collision with a massless particle,
such as a photon, having momentum h̄κk . In light of this
interpretation, the exact thermalization condition (16) requires
invariance of the momentum distribution with respect to the
entire sequence of such collisions described by operator Lrel.
Apart from exceptional cases, the condition (16) can be satis-
fied if and only if either αk = 0 or κk = 0 for each k. Note,
however, that the terms L lbd

Âk
corresponding to κk = 0 do not

contribute to friction F̂
fr

in Eq. (4a). In other words, despite
the underlying dissipative process formally satisfies criteria
i–iii of quantum friction, it does not involve direct momentum
transfer between the system and the bath. Hence, it cannot be
physically interpreted as a frictional process and, thus, is out
of scope for our programme.

The remaining possibility to obey condition (16) by setting
αk = 0 and κk �= 0 in Eqs. (14) leads to an exactly thermal-
izable dissipator Lrel satisfying Eq. (7). This finding that all
four criteria i–iv can be simultaneously satisfied is the central
result of this work. For example, in the case of the two-level
internal subspace considered above, this is achieved by setting
αk = 0 in Eq. (14a) and choosing arbitrary functions G0,k ( p),
G1,k ( p) and vectors κk in Eq. (15). It is worth stressing,
however, that unlike classical friction, this solution leads to
the nonvanishing term 〈Ĝ

fr〉 in Eq. (4b).
What makes quantum friction possible in the case Ñint >

1? Our formal results admit the following physical interpreta-
tion: The very notion of friction is implicitly attached to the
classical concept of bath. When considering classical dynam-
ics, it is sufficient to treat the bath as an infinite heat tank at
constant temperature. However, this model fails to account
for proximity effects responsible for spatial and/or temporal
system-bath correlations. These correlations turned out to be
crucial for quantum thermalization [14]: Without them, micro-
scopic perpetual motion would be possible. Internal degrees
of freedom enable quantum friction by serving as an ancilla
subsystem to phenomenologically mimic proximity effects
on translation degrees of freedom. We have seen that the
thermalizability criterion iv can be fulfilled even if this ancilla
subsystem consists of just two quantum states. However, a
very essence of proximity effects implies that this mechanism
can work only when the external and ancilla internal degrees
of freedom are coupled nonadiabatically. This implies that
the system ground state |0〉 is such that |�0,i〉 �∝ |�0,j �=i〉 and
|�0,i〉 �= 0 for all i and j . If this condition is satisfied, quantum
friction simultaneously thermalizes both the external degrees
of freedom and the ancilla subsystem. Otherwise, neither of
these degrees of freedom can be thermalized, as can be seen,
e.g., from Eq. (15) in the case of |�0,1〉 = 0.

FIG. 1. The ball-and-spring model of a quantum damped har-
monic oscillator [Eq. (17)] with an additional internal structure
represented by the molecular stretching mode x2 (see Sec. IV for
details).

IV. AN ILLUSTRATION: THE DAMPED
HARMONIC OSCILLATOR

Let us illustrate the conclusions of the previous section by
quantizing the familiar classical model of a damped harmonic
oscillator,

ẍ1 + 2γ (ẋ1)ẋ1 + ω2
1x1 = 0, (17)

where ω1 and γ = γ (ẋ1) are the oscillator’s frequency and
frictional damping rate, respectively. Recall that, according
to Lindblad’s celebrated result [18], the model (17) cannot
be quantized within criteria i–iv imposed on the friction term
under the assumption that an oscillating body is a structureless
point particle. Here we assume that the oscillating body is
a pre-aligned diatomic molecule AB of mass M with one
internal harmonic degree of freedom: a stretching vibrational
mode x2 characterized by the reduced effective mass μ and
potential energy V̂vib ∝ x̂2

2 .
Consider the dynamics of such a molecule in a harmonic

dipole trap, as shown in Fig. 1, assuming that the long-term
thermalization dynamics is guided by an effective friction
force (e.g., due to radiation decay), which stirs the system into
thermodynamic equilibrium with an environment. Assuming
that atom A is a primary contributor to the induced dipole
moment, the system Hamiltonian can be written in the form

Ĥ = p̂2
1

2M
+ p̂2

2

2μ
+ V̂dipole + V̂vib, (18)

where x1 in an external center-of-mass molecular coordinate
and V̂dipole 
 Mω2

1
2 (x̂1 − μ

m1
x̂2)2 is a laser-induced trapping

potential. It is convenient to rewrite the Hamiltonian (18) in
the normal mode representation:

Ĥ =
2∑

l=1

h̄ωlâ
′
l
†â′

l . (19)

Here â′
l is the annihilation operator for the lth normal mode:

â′
l = 1√

2

(
1

h̄
√

β ′
l

x̂ ′
l + i

√
β ′

l p̂
′
l

)
[β ′

l = (h̄ωl )
−1], (20)
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and the operators x̂ ′
l and p̂′

l of normal coordinates and mo-
menta are defined as

x̂ ′
1 = √

m1 cos(ϕ)x̂1 − √
m2 sin(ϕ)x̂2,

x̂ ′
2 = √

m1 sin(ϕ)x̂1 + √
m2 cos(ϕ)x̂2,

p̂′
1 = cos(ϕ)√

m1
p̂1 − sin(ϕ)√

m2
p̂2, p̂′

2 = sin(ϕ)√
m1

p̂1 + cos(ϕ)√
m2

p̂2.

(21)

We are interested in the situation when the external and
internal motions are coupled, i.e., when ϕ �= 0, π .

Let us derive the phenomenological frictional dissipator
for the case of a cold environment T = 0. According to the
conclusions of Sec. III, the dissipator of interest should be of
the form (3) with

Âk = e−iκk x̂1fk (p̂1, p̂2, x̂2) (22)

and satisfy Eq. (13).
It is helpful to introduce the operators

â1 = a1(x̂1, p̂1, p̂2) =
√

2(â′
2

√
β ′

2 sin(ϕ) + â′
1

√
β ′

1 cos(ϕ)),

â2 = a2(x̂2, p̂1, p̂2) =
√

2(â′
2

√
β ′

2 cos(ϕ) − â′
1

√
β ′

1 sin(ϕ)),

(23)

which satisfy

â1,2|0〉 = 0. (24)

Here |0〉 is the system’s ground state and also the equilibrium
Gibbs state for T = 0. It can be written in the momentum
representation as

〈p′
1, p

′
2|0〉 ∝ exp

(
−

2∑
l=1

1

2
β ′

lp
′2
l

)
. (25)

The general solution of the equation Âk |0〉 = αk |0〉 com-
pliant with the translation invariance condition (3c) with
respect to x1 is

Âk = e−iκk x̂1Ĝ′
k â2 + αke

−ih̄κk
1√
m1

â1 . (26)

Here Ĝ′
k = G′

k (p̂1, p̂2, x̂2) is an arbitrary operator indepen-
dent of x̂1. Equation (26) is nothing but the specialization of
the general solution (14). It obeys the exact thermalization
condition (7) if αk = 0 for all k and satisfies only RT condition
(8) otherwise.

As expected, the dissipator Lrel corresponding to solution
(26) with αk = 0 vanishes when the internal and external
degrees of freedom are dynamically decoupled (e.g., when
Ñint = 1 or ϕ = 0). However, the solutions of both Eqs. (14a)
and (26) with αk �= 0 do exist even in the latter case. A
simple computation shows that these solutions reduce to
fk (p̂1) ∝ exp ( p̂1κk

m1ω1
) obtained in Ref. [14]. The latter solution

[and, more generally, the last term in Eq. (26)] indicate that
the system-environment correlations are minimized (for any
given κk) when the associated effective force 〈Gfr

k 〉 depends
exponentially on momenta p̂. Interestingly that unlike typical
classical friction forces anti-aligned with momenta, the last

term in Eq. (26) has a long exponentially vanishing “endother-
mic” tail representing a force aligned with p1. For further
discussion on the physics of these tails, see Ref. [14].

In contrast, the solution (26) with αk = 0 represents an
arbitrary nonlinear friction force acting on the external degree
of freedom x1. Importantly, this force exists due to the dissi-
pative coupling between the external and internal degrees of
freedom. The origin for this coupling can be illustrated by the
classical ball-and-spring model of a diatomic molecule where
each ball is subjected to an independent nonlinear friction
force. In this model, the total effective friction force applied to
the system’s center of mass depends on the relative velocity of
the balls, whereas the decay of the internal oscillation depends
on the center-of-mass velocity. The hallmark of the quantum
friction is inability to cancel these interdependencies out even
for the linear friction F fr

1 ∝ p1.

V. DISCUSSION OF FINITE-TEMPERATURE CASE

So far, our analysis has been restricted to interactions
of quantum systems with baths cooled down to the zero
temperature. An existence of quantum friction forces at finite
temperatures is an open question beyond the scope of this
work. Nevertheless, we would like to briefly discuss insights
that might help to find the answer.

First, note that, in the case T = 0, the exactly thermalizable
frictional dissipator [defined by Eqs. (3) and (14) with αk = 0]
has the property that each individual term L lbd

Âk
independently

satisfies condition (7). However, the analogous property can-
not hold at finite temperatures for any Lindblad operator Âk

of the form (3d),

∀ T �= 0 : L lbd
Âk

[
ρ̂ th

T

] �= 0. (27)

The proof of inequality (27) is given in the appendix. This
result can be intuitively understood in the simplest case Next =
1 as follows: The most general form of the operator f̂k in
Eq. (3d) corresponding to a single translational degree of
freedom is

f̂k =
Next∑

i,j=1

∑
k

|̃i〉〈j̃ |ci,j,kp̂
k, (28)

where ci,j,k are complex coefficients to be determined. Now,
imagine that we truncated the translational basis to K states.
It is obviously impossible to satisfy the exact thermalization
condition in this approximation. Indeed, in order to turn the
inequality (27) into the equality while satisfying condition (7),
(ÑintK )2 − 1 constraints must be satisfied with only Ñ2

intK −
1 unknowns ci,j,k (here we excluded the complex scaling
factor).

As discussed in Ref. [14], the terms L lbd
Âk

can be regarded
as Markovian approximations for relaxation processes similar
to those involved in the Doppler cooling. Importantly, each
term L lbd

Âk
represents an independent frictional process in such

an interpretation. At the same time, inequality (27) shows that
these processes cannot be independent since each of them
drives the system out of thermal equilibrium. This contra-
diction shows that, if the friction-like Markovian dissipator
Lrel exists for finite temperatures, it must consist of several
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interdependent terms of the form L lbd
Âk

, and hence has a non-
trivial physical interpretation, as in non-translation-invariant
case [27]. Alternatively, the contradiction may signify that no
friction-like quantum process exists at nonzero temperatures.
Nevertheless, if the latter conjecture is correct, the conven-
tional interpretation of friction in the classical limit would
require revisiting.

At the same time, the RT condition

∀ T ′ : Tr
[
ρ̂ th

T ′L lbd
Âk

[
ρ̂ th

T

]] = 0 (29)

can be seamlessly satisfied. Indeed, Eq. (29) sets only
ÑintK − 1 constraints (which is less than the previously men-
tioned number of Ñ2

intK − 1 parameters) and can be obeyed
together with the TI condition (3c). For instance, the dissipa-
tion superoperator Lrel for the harmonic oscillator example
of Sec. IV satisfying criteria i–iii and RT condition (29) at a
finite temperature is given by Eqs. (3) with

Âk ∝ exp

{
−iκk

[x̂ ′
2 sin(ϕ) + x̂ ′

1 cos(ϕ)]√
m1

}
× exp

{
κk

[β ′
2λ2p̂

′
2 sin(ϕ) + β ′

1λ1p̂
′
1 cos(ϕ)]√

m1

}
= e−iκk x̂1 exp

{
κk

1√
m1

[β ′
2λ2p̂

′
2 sin(ϕ) + β ′

1λ1p̂
′
1 cos(ϕ)]

}
,

(30)

where λl = tanh
(

h̄ωl

4kBT

)
.

VI. CONCLUSION

The concept of friction (defined as the phenomenological
dissipative model satisfying criteria i–iv) can be consistently
extended into quantum mechanics for systems with inter-
nal degrees of freedom in the case of a zero-temperature
environment. This finding complements the previous no-
thermalization-without-correlations result [14], implying that
such dissipators are absent for structureless particles. We
proved and illustrated on the analytically tractable example
that the internal degrees of freedom enable the quantum fric-
tion by serving as an ancilla subsystem to harvest the required
correlations and mimic system-bath quantum proximity ef-
fects. Informally, this implies that, to be thermodynamically
consistent, quantum friction must dissipate heat both into
an environment and inside the system itself. For this to be
true, external and ancilla degrees of freedom need to be
nonadiabatically coupled.

Quantum friction can be used as a simple phenomenologi-
cal relaxation model to simulate the nonequilibrium dynamics
of complex molecular systems strongly coupled to an homo-
geneous environment (e.g., a molecule in a solvent). Such a
model is guaranteed to be consistent in the thermodynamic
limit and may allow for substantial memory and time savings
in numerical studies of fundamental photoinduced processes,
such as photoisomerization, light-induced charge and energy
transfer in organic materials.

The existence of friction-like quantum dissipators at finite
temperatures remains an intriguing open question. The affir-
mative or negative answers would challenge the microscopic
or semiclassical theories of friction. For computational ap-
plications permitting approximate thermalization, the relaxed

thermalization work-around (8) may be used in place of taxing
microscopic models [28,29], if system-bath couplings are
weak.
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APPENDIX: PROOF OF INEQUALITY (27)

The proof is by contradiction. Suppose that the inequality
(27) can be turned into equality. This assumption implies that
〈n|L lbd

Âk
[ρ̂ th

θ ] |l〉 = 0 for all n an l or, more explicitly, that

∀ n, l : Rn,l − Sn,l = 0, (A1)

where

Rn,l =
∑
m

γm(θ )〈n|ϕk,m〉〈ϕk,m|l〉,

Sn,l = 〈ϕk,n|ϕk,l〉γl (θ ) + γn(θ )

2
.

Here γi (θ ) = 〈i|ρ̂ th
θ |i〉 = e−Ei /θ∑

n e−En/θ is a positive statistical
weight of the ith eigenstate.

The equalities (A1) imply that
∑

n,l |Rn,l|2 −∑
n,l |Sn,l|2 = 0. After some algebra, this relation reduces to∑

m,n

|〈ϕk,m|ϕk,n〉|2
[
γm(θ ) − γn(θ )

2

]2

= 0. (A2)

Since the term in square brackets is positive for all m �= n, we
can conclude that the necessary condition for thermalization
is that 〈ϕk,m|ϕk,n〉 = 0, or 〈m|Â†

kÂk |n〉 = 0 for all m �= n. The
latter implies that

∀ m : Â
†
kÂk |m〉 = f̂

†
k f̂k |m〉 = ck,m |m〉, (A3)

where ck,m are certain non-negative constants. The non-
negative Hermitian operator Â

†
kÂk can be expanded as

Â
†
kÂk =

N−1∑
i,j=0

|̃i〉〈j̃ |Fi,j ( p̂), (A4)

where Fi,j (p) are some complex-valued functions, such that
Fi,j (p) = F ∗

j,i (p). Using Eq. (A4), the equality (A3) can be
rewritten in the matrix form∑

j

Fi,j ( p)�m,j ( p) = cm�m,i ( p). (A5)

Note that here we can treat p as c numbers. The Ñint × Ñint

matrix F has at most Ñint distinct eigenvalues λk . Each
eigenstate |n〉 is associated with one of these eigenvalues
λ(n). Let us choose the set of Ñint indices rk , such that |rk〉
is associated with λk . Then, each of remaining eigenstates
should be representable as a linear combination of |rk〉,

�m,i (p) =
∑

k:λ(rk )=λ(m)

cm,rk
( p)�rk,i ( p), (A6)
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with p-dependent coefficients crk,m( p). Furthermore,

λ(n) �= λ(m) ⇒
∑

i

�∗
n,i ( p)�m,i ( p) = 0 for all p. (A7)

The basis states |n〉 can generally satisfy constraints (A6) and
(A7) only in two cases: (1) some of the internal states are
decoupled from the rest (i.e., the dynamic space splits into
isolated subspaces) and (2) all λk are equal. Here we are
not interested in case (1) and assume that the dynamics of
all the external and internal degrees of freedom is mixed by
couplings. Case (2) implies that

Â
†
kÂk = λ � 0, (A8)

where λ is some non-negative constant. Without loss of
generality, it is sufficient to consider two cases: λ = 0
and λ = 1.

The case λ = 0 implies that ∀ m : Âk |m〉 = 0, which can
be satisfied only if Âk = 0. Hence, we can exclude the case
λ = 0 from consideration.

Consider now λ=1. In this case, the equality Llbd
Âk

[ρ̂ th
T ]=0

takes the form

Âkρ̂
th
T Â

†
k − ρ̂ th

T = 0. (A9)

It is easy to show that, in the case of nondegenerate γk (θ ),
the above equality can be satisfied if and only if Âk = 1, i.e.,
when Llbd

Âk
= 0. This completes the proof.
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