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Quantum states are the ultimate criterion to produce sequences of random numbers. Spatially spread entangled
states allow the generation of correlated random sequences in remote locations. The impossibility of observing
a quantum state, without disturbing it, ensures that the messages encoded using these sequences cannot be
eavesdropped upon. This is the basis of quantum key distribution. It is then of crucial importance knowing
whether the sequences generated in the practice by spatially spread entangled states are truly random, or not.
Yet, that knowledge is not immediate. One of the obstacles is the very definition of randomness. “Statistical”
randomness is related with the frequency of occurrence of strings of data. “Algorithmic” randomness is related
with compressibility of the sequence, which is given by Kolmogorov complexity. Sequences generated by
entangled pairs of photons are analyzed, focusing on estimations of their complexity. Standard tests of statistical
randomness are also applied.
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I. INTRODUCTION

Sequences of random numbers are a basic supply in many
applied sciences of information, from statistics to cryptogra-
phy. Yet, the randomness of a given sequence is difficult to
establish in practice. Even the very definition of “random” is
controversial. All definitions agree that “predictable” implies
“not random,” hence “random” implies “unpredictable.” But,
the unpredictability of an event is, in general, an ambigu-
ous property. It depends on the available information. Some
consensus has been reached, that appropriate measurements
performed on quantum systems guarantee randomness. This
is a consequence of von Neumann’s axiom: quantum mea-
surements violate the principle of sufficient reason. Or, in
other words, a quantum measurement produces one or another
outcome without cause. It is intuitive to conclude that a
sequence of such outcomes is unpredictable, although this
conclusion is difficult to formalize [1]. Note that the existence
of sequences that are both “unpredictable” and “not random”
is still logically possible. Depending on the precise definitions
of “random” and “predictable” involved, chaotic sequences
may be an example of this case.

There are at least two definitions of randomness that are
relevant from a practical point of view [2].

(i) “Statistical” randomness. Imagine a sequence of 1 and
0. The sequence is “statistically random” if the number of
strings of 1 and 0 of different length n (say, 110101 for n = 6),
in the total sequence, coincides with the number one would get
if the sequence had been produced by tossing an ideal coin
(statistical spread is taken into account, of course). Yet, cer-
tifying this property for any value of n and/or different ways
of choosing the strings is not easy. Other tests of statistical
randomness involve the decay of the self-correlation or the
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mutual information. They all involve measuring probabilities.
The battery of tests provided by the National Institute of
Standards and Technology (NIST) is mostly based on this
approach.

(ii) “Algorithmic” randomness. A sequence can pass the
tests mentioned above and still be predictable and, hence, not
random. A well-known example is the sequence of the digits
of π (or any other transcendental number). A sequence is
“algorithmically random” if there is no algorithm or program
code able to generate the sequence using a number of bits
shorter than the said sequence. Note that this definition does
not employ probabilities. It applies even to sequences that
are not statistically stationary. By the way, practical tests of
randomness often include subroutines aimed to recognize the
digits of the best known transcendental numbers.

Algorithmic randomness is directly related with the defi-
nition of complexity developed by Kolmogorov [3], Chaitin
[4], and Solomonoff [5]. In few words, the complexity K of a
binary sequence of length N is the binary length of the shortest
program (running on a classical Turing machine) the output of
which is the said binary sequence. A sequence is “algorithmi-
cally random” if K ≈ N. As there is no way of expressing the
sequence using less bits than the sequence itself, the sequence
is said to be incompressible. This definition is intuitive and
appealing, but it has two main drawbacks.

(1) It is possible to demonstrate that all sequences are
(partially) compressible; hence, the precise condition K ≈ N
cannot be reached. This is solved by appropriately rescaling
the definition.

(2) K cannot be actually computed, for one can never be
sure that there is no shorter program able to generate the
sequence. Nevertheless, K can be estimated from the com-
pressibility of the sequence using, e.g., the algorithm devised
by Lempel and Ziv [6].

Randomness of quantum origin has been proved to be non-
computable [7], which is a condition weaker than algorithmic
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randomness. Algorithmic randomness of sequences produced
by quantum devices based on detecting single photons after
a beam splitter has been compared with sequences produced
by others means [8,9]. It was found that the quantum-device
generated sequences were not always the most random ones.
This result is probably caused by detectors’ deficiencies (see
Conclusions).

Measurements performed on quantum entangled states can
generate correlated outcomes in two remote stations. The se-
quences of outcomes, assumed random, allow the encryption
of messages in a secure way using one-time-pad Vernam’s
cipher. This technique is known as quantum cryptography
[10], or quantum key distribution (QKD). The purity of the
achieved entanglement puts a minimum bound on the entropy
of the generated sequences [11] and, hence, to the degree of
statistical randomness. The loophole-free verification of the
violation of Bell’s inequalities was required as a necessary
step to certify the randomness of the sequences and the
invulnerability of QKD [1]. This loophole-free verification
has been recently achieved by several groups using different
techniques [12–15] (for a sort of critical review, see [16]).
Loophole-free generated sequences have been recently used
to produce series of numbers of “quantum certified” statis-
tical randomness [17,18]. Yet, the algorithmic randomness
of quantum-produced finite sequences is controversial. An
experimental approach has been proposed to explore this
problem [1,9].

In this paper, we carry out that proposal. We study the
algorithmic randomness of time series generated in Bell’s
experiments by using the realization of the Lempel and Ziv
algorithm developed by Kaspar and Schuster [19] and imple-
mented by Mihailovic et al. [20]. We also use part of the
battery of tests of NIST to evaluate statistical randomness
of the same files. It is evident that the results of these tests,
performed on actual Bell’s sequences, are crucial to ensure
the invulnerability of QKD in practice. In Sec. II, we briefly
describe the idea in the Lempel and Ziv algorithm. We also
review some previous attempts to detect deviations from ran-
domness in Bell’s experiments. In Sec. III we report results for
the main set of data of the experiment performed in Innsbruck
in 1998 [21], generously provided by Prof. G. Weihs. We also
include some data recorded in our own setup. Although our
experiment is far more modest, it sheds light on the probable
cause of the regularities found in some runs of the Innsbruck
experiment.

II. BACKGROUND

A. Lempel and Ziv algorithm

Complexity has advantages over other methods of de-
tecting regular behavior. Regarding the statistical methods,
complexity does not need to assume stationary probabili-
ties. Regarding nonstatistical methods, as the ones extracted
from the theory of nonlinear dynamical systems (Takens’s
theorem), complexity does not need to assume the existence
of a low-dimensional object in phase space. On the other
hand, complexity cannot be properly calculated; it can only
be estimated.

Assuming a time series of elements {s1, s2, . . . , sN } the
Lempel and Ziv algorithm adds a new “word” to its memory
every time it finds a substring of consecutive elements not
previously registered. The size of the compiled vocabulary,
and the rate at which new words are found, are the basic
ingredients to evaluate complexity. In the realization of the
algorithm [19,20], the time series is encoded so that a binary
string is produced. Then the complexity counter c(N), which
is defined as the minimum number of distinct words in a given
sequence of length N, is calculated. As N → ∞, c(N ) →
N/log2(N ) in a random sequence. The normalized complex-
ity measure K is then defined as

K (N ) ≡ c(N ) × log2(N )/N. (1)

The value of K(N) is designed to be near to zero for a peri-
odic or regular sequence, and near to 1 for a random one, if the
available value of N is large enough. For a chaotic sequence it
is typically halfway between 0 and 1. For a “strongly” random
sequence of relatively short length, K(N) can be considerably
larger than 1. As references, the sequence of the digits of π

has K(27 000) = 0.95. A typical chaotic time series (dimen-
sion of embedding dE = 4, one positive Lyapunov exponent)
recorded from a solid-state laser with modulated losses [22]
has K (105) = 0.4. A numerically generated quasiperiodical
(2-torus) time series has K (106) < 0.02.

B. Some previous studies on deviations from randomness in
Bell’s experiments

Some years ago, we looked for regularities in the time
series generated in the Innsbruck experiment. This experiment
is not only crucial to the foundations of quantum mechanics,
but also is a superb realization of the quantum channel of a
QKD setup.

In that experiment, each run includes four files; that is, for
each of the two stations, one has the time of photon detection,
and also a code for the angle setting and detector that fired (see
Fig. 1). We first looked for periodicities in one of the runs
(named longdist35) using standard linear transforms [23],
finding none. Later, we sought for low-dimensional objects
in phase space, using Takens’s reconstruction theorem, on the
whole set of available data [24]. We found a chaotic attractor
with dE = 10, and four positive Lyapunov exponents, in the
longest run in real time. It is named here longtime, and is made
of the runs originally named longtime1 and newlongtime2. It
was possible to reconstruct the attractor and to predict the
outcomes in the sequence roughly up to the inverse of the
largest positive Lyapunov exponent, as expected. Remarkably,
the same was possible for the 16 subsets corresponding to the
different settings in spite of their shorter length. If the files in
longtime were used for QKD, it would be possible to predict
until 20 bits of the key [24].

The run longtime was the only one where dE was reliably
measured. In order to check if the cause was its time length,
we perform a simpler Bell experiment, but with an unusually
long continuous time of observation. It amounts to more than
30 min, about five times longer than longtime. In this run,
named here SL1722, no value of dE is reliably measured. The
cause of the regularity in longtime is believed to be a drift
between Alice and Bob’s clocks. File SL1722 is recorded with
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FIG. 1. Reproduction of a portion of the data files of the Inns-
bruck experiment [21]. The left column (∗_V.dat file) indicates the
time photons were detected, in seconds. The right column (∗_C.dat
file) indicates the detector that fired and the analyzer’s orientation,
according to a code. The displayed files belong to the Alice station of
run longdist35.

a single clock instead, so that the obtained result is consistent
with this belief. Unfortunately, when the attractor in longtime
was found the Innsbruck experiment had been dismantled, so
it is impossible to know its cause for certain.

Inequalities involving algorithmic complexity of series of
outcomes produced by local realistic theories (bounds that are
violated by the quantum mechanical predictions) have been
derived [25–27]. Some of these inequalities are valid even
if the series are not independent and identically distributed,
which is a condition often stated as necessary for the validity
of the usual Bell inequalities. The violation of a measurable
version of an algorithmic inequality has been experimentally
verified [28]. Be aware that these inequalities involve series
of outcomes (regardless of the time each outcome is mea-
sured), while our paper deals mainly with the time elapsed
between measurements (regardless of the outcome, to get
longer series). Nevertheless, a relevant result regarding the
complexity of series of outcomes is briefly discussed at the
end of Sec. III B.

III. RESULTS

A. Structure of the Innsbruck experiment’s runs

The Innsbruck experiment includes fast switching of the
analyzers’ settings, driven by independent and quantum-based
random number generators, and spatially distant stations,
named the “remote, switched” condition. Most of the results
obtained in this condition are the set of runs named longdist*.
We also study some preparatory runs with the stations close
to each other and slowly varying settings (condition “local,
static”), and with close stations and fast and random switched
settings (condition “local, switched”). There are no “remote,

static” runs. We discard most of the runs that do not violate
the involved Bell inequality (SCHSH � 2).

The structure of the runs is shown in Fig. 1. For each of
the two stations, there are two files: the one with extension
∗_V.dat (left column in the figure) is the (always increasing)
series of photon detection times, in seconds. The one with the
same name but extension ∗_C.dat (right column in the figure)
indicates the setting of the analyzer and the detector that fired
at that time, using a two-bit code. Both files have the same
length. There is a pair of similar files for the other station. The
files’ length is the number of single photons detected. It is, in
general, different in each station.

A coincidence occurs when the difference of the values in
the ∗_V.dat for each station is smaller than a certain value,
which is called “time coincidence window” Tw. Once a coinci-
dence is found, we pick up the time value in ∗_V.dat of station
Alice (this choice is arbitrary: it may well be Bob, or the
average between them; in any case the difference is small) to
write down a time series of coincidences. The corresponding
codes in the two ∗_C.dat files allow calculating the value of
the SCHSH parameter.

Regarding the algorithmic inequality mentioned in the
previous section, the subsets corresponding to the different
settings are, in general, too short to allow a reliable estimation
of their complexity. Additionally, the basic angle setting here
is θ = 22.5◦, a value for which quantum mechanical predic-
tions do not violate the inequality. It is therefore impossible
to test the violation of the algorithmic inequality with the
available data.

In time stamped setups like these, the value of Tw can be
chosen at will after the experiment has ended. Due to different
response times of detectors and electronic channels, cable
lengths, etc., a time delay between the files in each station
must be added. The value of the delay is found by maximizing
the number of coincidences for a given value of Tw. This leads
to some ambiguity in the definition of the coincidences’ file.
Here we use the values of Tw and delay reported by the authors
of the experiment.

B. Algorithmic and statistic randomness

The time stamped files are translated into binary sequences
assigning the value 1 (0) if the time difference between two
successive inputs is above (below) the average for the whole
file [20]. We calculate K of these sequences and also submit
them to statistical tests developed by NIST. The complete
battery includes 15 tests. Here we use the simplest six, namely,
frequency (monobit) test, frequency test within a block, runs
test, tests for the longest run of ones in a block, binary matrix
rank test, and discrete Fourier-transform (spectral) test. We
say a run has positive (“yes”) NIST randomness only if it
passes the six tests. The calculation of K and these six tests
form a set of relatively simple and fast running programs that
are feasible to be included as a control of randomness in a
QKD setup in the practice. As will be seen, all runs that are
discarded by the complexity criterion (arbitrarily, K < 0.9)
are also discarded by NIST tests. Yet, it must be kept in
mind that this result is specific for the set of runs included
in this paper. Given the different nature of the two types
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TABLE I. Summary of results. They correspond to total coincidences between stations, unless indicated otherwise. The condition of the
experiment is indicated for the first run with the same name; e.g., the condition of being “remote, switched” applies to all runs the names
of which start with Longdist. The “static” runs have fixed settings, which are indicated. All runs belong to the Innsbruck experiment [21],
excepting SL1722 and Conlt3, which are ours. The second column is “yes” only if the run passes all six tests of NIST named in the main text.

Filename (description) Complexity NIST (RND = ?) SCHSH N

Longtime (remote, switched) 0.55 NO 2.51 95801
Longtime, subset {0,3} 0.65 NO Not applicable 2122
Longdist0 (remote, switched) 0.97 yes 2.53 15501
Longdist0, singles 0.96 NO Not applicable 471017
Longdist1 11.94 yes 2.63 16168
Longdist2 11.21 yes 1.98 26675
Longdist3 11.25 yes 2.67 24335
Longdist4 11.24 yes 2.66 25402
Longdist10 10.88 NO 2.20 26529
Longdist11 10.82 yes 2.41 25573
Longdist12 0.93 NO 2.37 27158
Longdist12, singles 0.97 yes Not applicable 934979
Longdist13 10.84 yes 2.36 27160
Longdist20 10.37 yes 2.06 41549
Longdist22 0.59 NO 2.16 39915
Longdist22, singles 0.96 yes Not applicable 1237058
Longdist23 10.37 yes 2.63 41058
Longdist30 12.24 yes 2.10 14145
Longdist31 0.97 yes 2.62 13022
Longdist32 12.24 yes 2.70 10992
Longdist33 12.18 yes 2.06 13004
Longdist34 12.26 yes 1.87 14289
Longdist35 0.34 NO 2.73 14562
Longdist35, singles 0.96 yes Not applicable 388455
Longdist36 11.0 yes 2.72 14573
Longdist36, singles 0.96 yes Not applicable 388573
Longdist37 12.16 yes 2.05 14661
Loccorr1 (local, switched) 0.96 yes 2.74 72533
Loccorr3 0.96 yes 2.74 73269
Loccorr3, singles 0.96 yes Not applicable 853985
Bluesin1 (local, static), α = 0◦, β = 7.5◦ 0.98 yes Not applicable 6797
Bluesin2, α = 0◦, β = 15◦ 0.97 yes Not applicable 6815
Bluesin3, α = 0◦, β = 22.5◦ 0.97 yes Not applicable 6822
Bluesin4, α = 0◦, β = 30◦ 0.96 yes Not applicable 6824
Bluesin5, α = 0◦, β = 37.5◦ 0.97 yes Not applicable 6784
SL1722 (local, static), α = 0◦, β = 22.5◦ 0.96 yes Not applicable 56913
Conlt3 (local, static, uncorrelated) 7.29 yes Not applicable 4950

of randomness, the safe criterion is that a sequence can be
considered random only if it passes both types of tests.

The main results are summarized in Table I. The last
column is the length of the sequence. It corresponds to the
number of coincidences, except for the “singles” files, in
which case they correspond to the Alice station. There are
three groups of sequences with different complexities (Fig. 2):
the ones with K < 0.9, which are not considered random; the
ones with K ≈ 1, which are “normally” random; and the ones
with K > 1, which are “strongly” random, which means that
the normalization factor in Eq. (1) is insufficient. Most of the
sequences belong to the latter two groups, meaning that Bell’s
experiments often generate sequences of algorithmically ran-
dom numbers (as expected).

The run longtime not only has low K and is discarded
by NIST statistical tests (3 over 6), but is even par-
tially predictable, as it was discussed before. The subset

corresponding to analyzers’ settings and firing detectors
Alice = 0, Bob = 3 shows a slightly higher K than the com-
plete sequence (probably because it is shorter), and is also
unable to pass NIST. Runs longdist22 and longdist35 have
low K and, correspondingly, they do not pass NIST. Runs
longdist10 and 12 have high K but do not pass NIST. None of
these five runs can be considered random despite the fact that
they violate the involved Bell inequality. They are indicated
by open circles in Fig. 2.

All runs with K > 1 pass NIST excepting longdist10. As
a reference, run Conlt3 is obtained from the coincidences be-
tween detectors observing uncorrelated fields; it has K=7.29
and passes NIST.

It seems that higher K may correspond to lower SCHSH. For
example, the three runs with higher K (longdist30, 32, and 37,
all with K > 12) have an average SCHSH = 2.28, while the
three ones with lower K (but still K ≈ 1 : longdist0, 36, and
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FIG. 2. Graphical representation of main data in Table I. Open
circles (full squares) indicate the runs that do not pass (do pass)
NIST tests. The horizontal line indicates Bell’s limit; the vertical line
indicates K = 0.9.

31) have an average SCHSH = 2.62. Runs longdist10 and 12
are not included in this set because they do not pass NIST. Run
longdist34, which has the highest complexity of all (12.26), is
also discarded because it has SCHSH = 1.87 < 2.

The complexities of single files and coincidence files are,
in general, nearly the same. There are exceptions: in runs
longdist22 and 35 the value of K in coincidence files is smaller
than in singles ones, down to the point that they cannot be
considered random. On the other hand, in longdist36 the value
of K is larger for coincidences than for singles, although both
can be considered random.

All runs obtained in the “local” condition (regardless if
“switched” or “static”) have high K and pass NIST. Finally,
the complete sequences of outcomes (the columns on the right
in Fig. 1) have high K and also pass NIST. This confirms the
reliability of the random number generators used to drive the
settings in the Innsbruck experiment. This also experimentally
confirms the main result theoretically implied in [25]: if the
experimenter is able to generate an incompressible string (the
one that drives the settings) then the measured photons come
up with a noncomputable behavior as well.

IV. SUMMARY

An estimation of Kolmogorov complexity of sequences
recorded in Bell’s experiments has been performed. Almost
all sequences have complexity K ≈ 1 or K > 1, which means
they are algorithmically random, as expected. The few with
low K belong to the “remote, switched” condition. They do
not pass NIST tests either. This deviation from randomness
is presumably caused by a drift between the clocks in each
station, an effect that had been independently detected. It is
worth mentioning that in random number generators based
on detecting photons after a beam splitter the deviation from
randomness is caused mostly by detectors’ different efficien-
cies, blind time, and spurious after pulses. In the Innsbruck
experiment these deficiencies have negligible impact, because
of relatively low detection rate, and filtering provided by the
time-coincidence selection.

Even though low K does not allow us, by itself, to predict
outcomes, it implies that the involved sequences are com-
pressible, and hence potentially vulnerable. In our opinion,
the main conclusion of this paper is that, although random
sequences are generated in many cases, it is not safe tak-
ing randomness for granted in experimentally generated se-
quences, even if they violate the involved Bell inequality by
a wide margin with a maximally entangled state. Deviations
from randomness are observed even in the controlled condi-
tions of the Innsbruck experiment, which are very difficult
(perhaps impossible) to achieve in a QKD setup operating in a
real world situation. Therefore, applying additional statistical
and algorithmic tests and, if necessary, using distillation and
extraction techniques are advisable before coding a message
in practice.
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