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Noise-induced non-Markovianity
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We have studied the non-Markovianity of a dichotomously driven spin-boson model in the strong-coupling
regime in both memory kernel and time convolutionless master-equation formulations. A strong correlation
between the decay time of the environmental correlation function and the nonzero non-Markovianity is found
in the absence of the external noise. Stochastic driving is shown to create strong non-Markovianity when the
dynamics of the system without driving is Markovian. Also, exact analytical expressions for the trace distance
distinguishability and the non-Markovianity were obtained for the certain range of the parameters that describe
the system and its environment.
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I. INTRODUCTION

Non-Markovianity of open quantum system dynamics
which refers to nontrivial memory effects has been one of
the most active areas of research due to both its relevance
for quantum information science and possible applications in
quantum technologies [1–3]. Various context-dependent mea-
sures, such as trace-distance based distinguishability [4,5],
divisibility of dynamical maps [6], Fisher information [7],
entanglement assisted classical capacity [8], and violation of
quantum regression theorem [9] have been developed to quan-
tify the non-Markovianity of the system dynamics. Such mea-
sures have been used to study memory effects in the dynamics
of many quantum systems, such as qubit(s) driven by classical
noise [10–12], spin-boson model [13–18], and photosynthetic
systems [19–21] theoretically. Several experimental realiza-
tions of non-Markovianity control in optical [22–25] and solid
state settings [26–28] are, also, reported. Non-Markovianity
of a spin-boson model in the weak-coupling regime was stud-
ied in the temperature-cutoff frequency of the environmental
spectral function plane by Clos and Breuer [13] who found, by
using a time convolutionless master-equation approach, that
its dynamics are non-Markovian for the low temperature and
the low cutoff frequency region. Temperature and interaction
strength dependence of the non-Markovianity for the spin-
boson model were discussed in Refs. [20,21] in the context of
photosynthetic systems. Liu et al. [20] have studied the non-
Markovianity in the chromophore-qubit system dynamics as a
function of bath temperature and the coupling constant both
in weak- and strong-coupling regimes with polaron master
equation for super-Ohmic bath spectral density and found
that the increasing temperature leads to reduction in non-
Markovianity in both weak and strong interaction cases, while
increasing coupling constant enhances non-Markovianity in
weak coupling and diminishes in the strong-coupling case.
While increasing temperature was found to enhance N in the
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strong-coupling regime in Ref. [21], the opposite was found
in Ref. [20].

Many sources of non-Markovianity, such as strong system-
reservoir coupling, being in contact with a structured bath,
low environmental temperature, initial system-reservoir corre-
lations, being driven by classical noise [10–12,16], and being
in contact with multiple reservoirs [29], have been found.
Kutvonen et al. [30] suggested that the non-Markovianity
could be accounted for by assuming the bath as a combi-
nation of a part in thermal equilibrium and a part that is in
nonequilibrium, which does not change while the transitions
in the system take place. Mixing of random unitary dynamics
as well as being driven by classical noise have been shown
to lead to strong non-Markovian effects in both theoretical
and experimental studies [10–12,22,31,32]. There has been
a discussion of whether non-Markovianity arising from a
mixing of random unitary dynamics could also be considered
as manifestation of backflow of information from the environ-
ment to the system [31], which was settled in positive [32].
One of the manifestations of the memory effects of the dy-
namics has been seen in the entanglement revivals in which
entanglement of the system is stored and backtransferred to
the qubits by the quantum environment [33,34]. Because of
the lack of backaction and the inability to store and share
quantum correlations for the classical fields, the emergence of
those revivals in quantum systems driven by classical random
forces has been difficult to explain [16]. The effect of various
noise types on the non-Markovianity of dynamics of qubit(s)
have been studied by a number of groups in various settings
[10–12]. Reference [11] investigated the effect of longitudinal
telegraph noise which causes pure dephasing and 1/f α noise
and have found that there exist a close connection between the
non-Markovianity and the autocorrelation time of the noise.
Rossi and Paris [12] have shown that a transverse telegraph
noise would lead to non-Markovian dynamics. Recently, Abel
and Marquardt [35] investigated the dynamics of a charge
qubit coupled to quantum telegraph noise and evaluated the
time evolution of the coherence numerically. It is found that
in the strong-coupling regime beyond a certain threshold the
decay behavior of the coherence converts into an oscillation in
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time in contrary to the influence of any Gaussian noise source.
Rossi and Paris have studied the dynamics of single- and
two-qubit systems interacting with either Gaussian noise or
random telegraph noise and analyzed the effect of these noises
on the behavior of quantum correlations and found that both
fast telegraph and Gaussian noises cause to decay incoher-
ently for the quantum correlation, while the slow dichotomous
noise allows it to oscillate intensively as sudden death and
rebirth tendency, but the correlation vanishes rapidly under
the effect of slow Gaussian environment [12]. Man et al. have
shown that while the dynamics of a qubit coupled to a single
bath can be Markovian or non-Markovian depending on the
coupling strength, its dynamics is always non-Markovian if it
is coupled to N > Nc baths, where Nc depends on the bath
parameters [29]. Relation between the Markovianity of the
dynamics and backflow of various physical properties, such as
energy [18] and heat [17], from the environment to the system
were also considered.

In the present work, we investigate the non-Markovianity
of the dynamics of a two-state system (TSS) which is in
contact with a thermal bath and its transition energy is driven
by a classical telegraph noise. Such multienvironment cou-
plings might arise in several contexts, for example, in long-
range electron transfer processes in biological systems the
solvent environment could be considered as a collection of
harmonic oscillators while the low frequency and/or large-
amplitude motion of molecular environment (which cannot
be treated in harmonic approximation) could be described as
a two-state Markovian noise [36–41]. Coupling to both clas-
sical and quantum environments has been used to model the
stochastic disturbances in the energy gap [37–39], electronic
coupling [42–46], and both the gap and the coupling [47] to
investigate the effect of such motions on the transfer rate in the
spin-boson model. Stochastic driving of dissipative systems
has been shown to violate detailed-balance conditions, which
indicates nonequilibrium dynamics [48]. So, the problem
investigated in the present paper can also be considered as an
example of a bath composed of a part which is in thermal
equilibrium and a nonequilibrium part as Ref. [30]. There has
been discussion on the relation between the time locality of
the master equation used to describe the system dynamics and
the non-Markovianity of the dynamics. Mazzola et al. [49]
have investigated the question of whether memory kernel
master equations always describe non-Markovian dynamics
as characterized by reverse information flow by calculating
the BLP measure for phenomenological and Shabani-Lidar
post-Markovian master equations and have shown that N = 0
for both dynamics. We have, also, tested the time locality
of the master-equation dependence of the non-Markovianity
of the system dynamics in the present study and found that
both the memory kernel and the time convolutionless master
equations produce similar non-Markovianity features at the
considered system parameter limits.

The outline of the present paper is as follows. In
Sec. II, we present the model, the memory-kernel and time-
convolutionless master equations, carry out the noise aver-
aging of the dynamical equations, and briefly describe the
BLP non-Markovianity measure. Calculations on the non-
Markovianity of the model with and without external noise
as functions of system and noise parameters are presented and

discussed in Sec. III. Section IV concludes the paper with a
summary of the main findings.

II. MODEL

We consider a dichotomously driven two state system
(TSS) in contact with a thermal bath. The total Hamiltonian
of the closed system formed by the TSS and its environment
can be written as

H = HS (t ) + HB + HI , (1)

with

HS (t ) = ε(t )

2
σz + V

2
σx, (2)

HB =
∑

λ

ωλb
†
λ bλ, (3)

HI =
∑

λ

gλ(b†λ + bλ)σz, (4)

where HS (t ), HB , and HI describe the two level system
driven by the telegraph noise, the bath which is composed of
independent harmonic oscillators with natural frequencies ωλ,
and the interaction between the system and the environment,
respectively. Here σi with i = x, y, z are the Pauli spin matri-
ces, V is the tunneling splitting between the two states of the
TSS. ε(t ) = ε0 + �α(t ) describes the dichotomously driven
transition energy of the TSS with ε0 as its static value, while �

is the amplitude of the external stochastic field. α(t ) describes
the dichotomous Markov process (DMP) with possible values
±1 and the average 〈α(t )〉 = 0. DMP autocorrelation has an
exponential decay form, i.e., 〈α(t )α(t

′
)〉 = exp (−ν|t − t

′ |),
where ν is the jumping rate of the noise. b

†
λ and bλ are

the creation and annihilation operators of the environmental
oscillators, while gλ denotes the coupling constant between
the TSS and the λth harmonic oscillator in the bath with
frequency ωλ. The initial state of the closed system is assumed
to be in the product form ρ(0) = ρS (0) ⊗ ρB (0) with the bath
in thermal equilibrium at inverse temperature β, which leads
to ρB = exp (−βHB )/Tr[exp (−βHB )].

The effect of interaction between the TSS and the harmonic
bath is characterized by the bath spectral density J (ω) =∑

λ g2
λδ(ω − ωλ), which is assumed to be of the structured

form [50,51]

J (ω) = 8 κ2 γ ω0 ω(
ω2 − ω2

0

)2 + 4γ 2ω2
(5)

in the present study. Here κ is the strength of the coupling
between the TSS and the oscillator, ω0 is the center frequency
of the bath oscillator, and γ indicates the broadening of the
levels of the oscillator due to its environment.

In case of strong coupling between the system and the bath,
the polaron transformation can be used to either decrease the
efficiency of the interaction term or destroy the system-bath
coupling constant by transforming the total Hamiltonian to
the polaron frame. The generator of this transformation is the
operator:

U = 1
2Bσz, (6)
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where B = ∑
λ

gλ

ωλ
(b†λ − bλ). The transformation leads to a

shift in the position of the bath oscillator based on the state
of the TSS. Applying this transformation to the Hamiltonian
in Eq. (1), one obtains

H
′
tot = eU H e−U = H ′

0 + H ′
B + H ′

I

= ε(t )

2
σz + Vr

2
σx +

∑
λ

ωλb
†
λ bλ

+ V

2
(σ+ B− + σ− B+), (7)

where B± = exp (±iB) and σ± = (σx ± i σy )/2 are the TSS
raising and lowering operators of the system. Under po-
laron transformation, the environmental Hamiltonian does
not change; the tunneling term of the system Hamiltonian
is rescaled as V e−Q(τ ), which becomes zero for spectral
densities that have a power exponent less than 2 [38,52].

In polaron frame, because of J (ω) in Eq. (5), Vr = 0.
Under those conditions, the system-environment interaction
can be described in the form

H ′
I =

∑
i

Ai ⊗ Bi, (8)

where A1,2 = {σ+, σ−} presents operators of the system,
while B1,2 = {B−, B+} defines bath operators. A memory ker-
nel master equation in the interaction picture for the density
operator of the TSS can be derived for the Hamiltonian of
Eq. (7) by using the projector operator technique in Nakajima-
Zwanzig form as follows [53]:

ρ̇ ′
S (t ) = −

∫ t

0
dt1 TrB[H̄ ′

I (t ), [H̄ ′
I (t1), ρS (t1) ⊗ ρB]], (9)

where TrB indicates partial trace over the bath degrees of free-
dom; H̄ ′

I (t ) = U0 H ′
I U

†
0 with U0 = e−i

∫ t

0 dτ H ′
0(τ ) and H ′

0(t ) =
ε(t )

2 σz + ∑
λ ωλb

†
λ bλ is the interaction Hamiltonian in the in-

teraction picture and polaron frame. The time convolutionless
(TCL) master equation can be obtained from Eq. (9) by simply
changing the argument of ρS (t ) in the integrand from t1 to
t . Some model-dependent studies indicate that TCL might
describe system dynamics better than NZ.

Polaron frame NZ and TCL forming master equations for
the system density operator ρS (t ) in the Schrödinger picture
can be derived with the help of Eq. (9) as follows:

ρ̇NZ
S (t ) = −i

[
HS, ρ

NZ
S (t )

]

−
∫ t

0
d t ′

∑
i,i ′

{(
Ai U (t, t ′) Ai ′ ρ

NZ
S (t ′) U †(t, t ′)

−U (t, t ′) Ai ′ ρ
NZ
S (t ′) U †(t, t ′) Ai

)〈Bi (t ) Bi ′ (t
′)〉

+ (
U (t, t ′) ρNZ

S (t ′) Ai ′ U
†(t, t ′) Ai

−Ai U (t, t ′) ρNZ
S (t ′) Ai ′ U

†(t, t ′)
)〈Bi ′ (t

′) Bi (t )〉}
(10)

and

ρ̇TCL
S (t ) = −i

[
HS, ρ

TCL
S (t )

]
−

∫ t

0
d t ′

∑
i,i ′

{(
Ai U (t, t ′) Ai ′ U

†(t, t ′) ρTCL
S (t )

−U (t, t ′) Ai ′ U
†(t, t ′) ρTCL

S (t ) Ai

)〈Bi (t ) Bi ′ (t
′)〉

+ (
ρTCL

S (t ) U (t, t ′) Ai ′ U
†(t, t ′) Ai

−Aiρ
TCL
S (t ) U (t, t ′)Ai ′ U

†(t, t ′)
)〈Bi ′ (t

′)Bi (t )〉},
(11)

where the superscript on ρS (t ) in the left-hand side indi-
cates the form of the master equation. In both equations, the
propagator of the coherent system dynamics U (t, t ′) can be
expressed as

U (t, t ′) = T
[

exp

(
− i

2

∫ t

t ′
dτ [ε0 + ε(τ )]σz

)]

= I cos [F (t, t ′)/2] + i σz sin [F (t, t ′)/2], (12)

where T indicates time ordering, I is the 2 × 2 unit matrix,
and

F (t, t ′) = ε0(t − t ′) + �

∫ t

t ′
dτ α(τ ) (13)

contains both the static gap and the integral of the noise. We
should note that, after this point, we will work the Schrödinger
picture and will drop both superscripts and overbars from the
operators. Although the starting equations for NZ and TCL
projections are quite similar [Eq. (9)], the final dynamical
equations display a number of differences which will be
discussed below.

The dynamics of the TSS in the memory kernel formu-
lation can be obtained from Eq. (10) with the help of the
propagator U (t, t ′) defined in Eq. (12) by expressing the
system density matrix as ρS (t ) = [I + Pi (t ) · σ ]/2, where
Pi (t ) = TrS[σi ρS(t )] as follows:

d

dt
P NZ

x (t ) = [ε0 + �α(t )]P NZ
y (t ) − 2 V 2

∫ t

0
dt ′ e−Q2(t−t ′ ) cos [Q1(t − t ′)] P NZ

x (t ′), (14)

d

dt
P NZ

y (t ) = −[ε0 + �α(t )]P NZ
x (t ) − 2 V 2

∫ t

0
dt ′ e−Q2(t−t ′ ) cos [Q1(t − t ′)] P NZ

y (t ′), (15)

d

dt
P NZ

z (t ) = −4 V 2
∫ t

0
dt ′ e−Q2(t−t ′ ) sin [Q1(t − t ′)] sin [F (t, t ′)]

− 4 V 2
∫ t

0
dt ′ e−Q2(t−t ′ ) cos [Q1(t − t ′)] cos [F (t, t ′)] P NZ

z (t ′). (16)
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Similarly, time convolutionless equations can be deduced from Eq. (11) as

d

dt
P TCL

x (t ) = [ε0 + �α(t )]P TCL
y (t ) − 2 V 2

∫ t

0
dt ′ e−Q2(t−t ′ ) cos [Q1(t − t ′)] cos [F (t, t ′)] P TCL

x (t )

+ 2 V 2
∫ t

0
dt ′ e−Q2(t−t ′ ) cos [Q1(t − t ′)] sin [F (t, t ′)] P TCL

y (t ), (17)

d

dt
P TCL

y (t ) = −[ε0 + �α(t )]P TCL
x (t ) − 2 V 2

∫ t

0
dt ′ e−Q2(t−t ′ ) cos [Q1(t − t ′)] sin [F (t, t ′)] P TCL

x (t )

− 2 V 2
∫ t

0
dt ′ e−Q2(t−t ′ ) cos [Q1(t − t ′)] cos [F (t, t ′)] P TCL

y (t ), (18)

d

dt
P TCL

z (t ) = −4 V 2
∫ t

0
dt ′ e−Q2(t−t ′ ) sin [Q1(t − t ′)] sin [F (t, t ′)]

− 4 V 2
∫ t

0
dt ′ e−Q2(t−t ′ ) cos [Q1(t − t ′)] cos [F (t, t ′)] P TCL

z (t ), (19)

where Q1(t ) and Q2(t ) are the imaginary and the real parts of
the bath correlation function, respectively, and are defined in
terms of the bath spectral function as

Q1(t ) = 1

2 π

∫ ∞

0
dω

J (ω)

ω2
sin(ωt ), (20)

Q2(t ) = 1

2 π

∫ ∞

0
dω

J (ω)

ω2
coth

(
β ω

2

)
[1 − cos(ωt )], (21)

which enter into dynamical equations (10) and (11) via the
average of bath operators B± as

〈B±(0)B∓(t )〉 = e−Q2(t )−i Q1(t ), (22)

〈B±(t )B∓(0)〉 = e−Q2(t )+i Q1(t ). (23)

Although the memory kernel and time-local equations are
obtained from quite similar starting equations [(10) and (11),
respectively], an inspection of the resulting equations (14)–
(16) and (17)–(19) indicates that populations and the coher-
ences are independent of each other in both formulations.
While the time rate of change for the population is similar
in form for both formulations [Eqs. (16) and (19)] with the
exception of the time argument of Pz(t ) on the right-hand
side, dynamical equations for the coherences in NZ and TCL
formulations display a number of important differences. For

instance, in the NZ master equation for the coherences, the
memory kernel depends on the environmental correlation
functions only [Eqs. (14) and (15)], while in TCL formulation
the corresponding time-dependent coefficients include noise
effects as well as the TSS bias ε0 [F (t, t ′) in Eqs. (17)
and (18)].

A. Stochastic averaging

The dynamical equations (14)–(16) (NZ) and (17)–(19)
(TCL) include stochastic terms α(t ) and integral of α(t ) and
should be averaged over the realizations of the noise process
which can be accomplished by either ensemble averaging,
i.e., solving those equations for a large number of noise
realizations and averaging the results, or by averaging the
set of coupled differential equations over the noise probabil-
ity density. We will use the latter approach and follow the
method of Ref. [38] which is based on Bourret-Frisch [54]
and Shapiro-Loginov [55] theorems and will make use of the
results in Ref. [56]. Let 〈Pi (t )〉 be the noise-averaged Pi (t ).
The dichotomous nature of the stochastic field α(t ) makes
it possible to carry out the averaging in exact form, but the
number of coupled differential equations is doubled in the
process; for each dynamical variable 〈Pi (t )〉 one needs to also
find the evolution of 〈αi (t )〉 = 〈α(t ) Pi (t )〉. We will present
the results of the averaged NZ equations first:

d

dt
〈Px (t )〉 = ε0 〈Py (t )〉 + � 〈αy (t )〉 − 2 V 2

∫ t

0
d t ′ e−Q2(t−t ′ ) cos [Q1(t − t ′)]〈Px (t ′)〉, (24)

d

dt
〈Py (t )〉 = −ε0 〈Px (t )〉 − � 〈αx (t )〉 − 2 V 2

∫ t

0
d t ′ e−Q2(t−t ′ ) cos [Q1(t − t ′)]〈Py (t ′)〉, (25)

d

dt
〈Pz(t )〉 = −

∫ t

0
dt ′ K1(t − t ′) −

∫ t

0
dt ′ K2(t − t ′) 〈Pz(t ′)〉 +

∫ t

0
dt ′ K3(t − t ′) 〈αz(t ′)〉, (26)

d

dt
〈αx (t )〉 = −ν 〈αx (t )〉 + ε0 〈αy (t )〉 + � 〈Py (t )〉 − 2

∫ t

0
d t ′ e−Q2(t−t ′ ) cos [Q1(t − t ′)] e−ν|t−t ′ |〈αx (t ′)〉, (27)

d

dt
〈αy (t )〉 = −ν 〈αy (t )〉 − ε0 〈αx (t )〉 − � 〈Px (t )〉 − 2

∫ t

0
d t ′ e−Q2(t−t ′ ) cos [Q1(t − t ′)] e−ν|t−t ′ |〈αy (t ′)〉, (28)

d

dt
〈αz(t )〉 = −ν 〈αz(t )〉 +

∫ t

0
dt ′ K3(t − t ′)〈Pz(t ′)〉 −

∫ t

0
dt ′ K4(t − t ′) −

∫ t

0
dt ′ K5(t − t ′)〈αz(t ′)〉, (29)
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where Ki (t ) are defined as

K1(t ) = 4 V 2 e−Q2(t ) sin [Q1(t )] S0(t ) sin [ε0(t )],

K2(t ) = 4 V 2 e−Q2(t ) cos [Q1(t )] S0(t ) cos [ε0(t )],

K3(t ) = 4 i V 2 e−Q2(t ) cos [Q1(t )] S1(t ) sin [ε0(t )],

K4(t ) = 4 i V 2 e−Q2(t ) sin [Q1(t )] S1(t ) cos [ε0(t )],

K5(t ) = 4 V 2 e−Q2(t ) cos [Q1(t )] S2(t ) cos [ε0(t )].

S(t, t ′) = exp [−i �
∫ t

t ′ dτ α(τ )] is the time evolution opera-
tor of the Kubo oscillator and satisfies the stochastic evolution
equation. In Eqs. (26)–(29), S0(t ), S1(t ), and S2(t ) are noise
propagators of the dichotomous noise that can be evaluated by
using S(t, t ′) [38] and are defined as

S0(t ) = 1

2 η
(ν+ e−t ν−/2 − ν− e−t ν+/2), (30)

S1(t ) = i
�

ν
(e−t ν+/2 − e−t ν−/2), (31)

S2(t ) = 1

2 η
(ν+ e−t ν+/2 − ν− e−t ν−/2), (32)

where η = √
ν2 − 4 �2, ν+ = ν + η, and ν− = ν − η.

Similarly, the time local equations (17)–(19) can be aver-
aged over the dichotomous noise α(t ) to obtain

d

dt
〈Px (t )〉 = −1

2
�2(t )〈Px (t )〉 + 1

2
�3(t )〈αx (t )〉

+ [ε0 + �5(t )]〈Py (t )〉 + [� + �6(t )] 〈αy (t )〉,
(33)

d

dt
〈Py (t )〉 = −1

2
�2(t )〈Py (t )〉 + 1

2
�3(t )〈αy (t )〉

− [ε0 + �5(t )]〈Px (t )〉 − [� + �6(t )] 〈αx (t )〉,
(34)

d

dt
〈Pz(t )〉 = −�1(t ) − �2(t ) 〈Pz(t )〉 + �3(t ) 〈αz(t )〉, (35)

d

dt
〈αx (t )〉 = −

[
ν + 1

2
�2(t )

]
〈αx (t )〉 + 1

2
�3(t )〈Px (t )〉

+ [ε0 + �5(t )]〈αy (t )〉 + [� + �6(t )] 〈Py (t )〉,
(36)

d

dt
〈αy (t )〉 = −

[
ν + 1

2
�2(t )

]
〈αy (t )〉 + 1

2
�3(t )〈Py (t )〉

− [ε0 + �5(t )]〈αx (t )〉 − [� + �6(t )] 〈Px (t )〉,
(37)

d

dt
〈αz(t )〉 = −[ν + �2(t )] 〈αz(t )〉 + �3(t )〈Pz(t )〉 + �4(t ),

(38)

where

�i (t ) =
∫ t

0
dt ′ Ki (t

′), i = 1, 2, 3, 4,

�5(t ) =
∫ t

0
dt ′ 2 V 2 e−Q2(t ′ ) cos [Q1(t ′)] S0(t ′) sin [ε0(t ′)],

�6(t ) = 2 i V 2 e−Q2(t ′ ) cos [Q1(t ′)] S1(t ′) cos [ε0(t ′)].

B. Non-Markovianity measure

We employ the widely used trace-distance based measure
developed by Breuer, Laine, and Piilo [4,5] (BLP) to inves-
tigate the non-Markovianity of the dynamics produced by
the telegraph noise averaged Nakajima-Zwanzig [Eqs. (24)–
(29)] and TCL [Eqs. (33)–(38)] master equations. BLP mea-
sure is defined in terms of the information flow σ (ρ1, ρ2) =
d
dt

D(ρ1, ρ2), where

D(ρ1, ρ2) = 1
2 Tr|ρ1 − ρ2|, (39)

where D(ρ1, ρ2) is the distinguishability between states ρ1

and ρ2. A monotonously decreasing D(ρ1, ρ2) is considered
to be a sign of unidirectional flow of information from the
system to its environment signifying Markovian dynamics,
while positive σ (ρ1, ρ2) in any time interval is considered
an indication of information backflow from the environment
to the system. BLP measure is defined as an optimization
problem:

N = max
ρ1,ρ2

∫
σ>0

σ (ρ1, ρ2) dt (40)

over all the possible initial states. Wissmann et al. [57] have
shown that for the BLP measure the optimal initial states ρ1(0)
and ρ2(0) are always orthogonal and lie on the boundary of
the state space. We have used |ψ1,2(0)〉 = 1√

2
(|0〉 ± |1〉) as the

initial states in the present work.

III. RESULTS

We first discuss the non-Markovianity of the dynamics
without the external noise. Figures 1(a)–1(d) display the con-
tour plots of BLP non-Markovianity measure on the density
plot of the decay time of the environmental correlation func-
tion τd as function of the dimensionless interaction parameter
α = 4 κ2 γ /ω3 and the inverse temperature β for the memory
kernel Nakajima-Zwanzig [Figs. 1(a) and 1(c)] and the time
convolutionless [Figs. 1(b) and 1(d)] master equations at
two different damping constants [underdamped limit γ = 0.1
in Figs. 1(a) and 1(b) and overdamped limit γ = 100 in
Figs. 1(c) and 1(d)] for ε0 = 1 and ω0 = 10. We have defined
the decay time τd as an estimation of the decay coefficient
of the kernel function G(t ) = exp [−Q2(t )]. Depending on
the relative values of ω0, γ , α, and β, G(t ) might display
damped oscillations, resurgent damped oscillations, or pure
decaying behavior which is exponential or Gaussian in time.
The displayed τd is obtained by fitting either G(t ) or its
maxima to function exp (−t/τd ) or exp (−t2/τ 2

d ) depending
on whether G(t ) is monotonous in time or its time dependence
display damped oscillations, respectively. As expected, the
decay is the fastest when the system-environment coupling
is large and the temperature is high (τd ≈ 10−2). In this
limit, the so-called short-time approximation [51] can be used
to express the environment correlation function as G(t ) =
exp (−t2/τ 2

d ) with τd = √
β/Er , where Er = κ2/ω0 is the

reorganization energy of the system. τd is found to be the
largest at the opposite limit of low temperature and weak
system-environment coupling independent of the damping of
the oscillator. As can be seen from a comparison of Figs. 1(a)
and 1(c), τd is higher for the overdamped case compared

042125-5



ARZU KURT AND RESUL ERYIGIT PHYSICAL REVIEW A 98, 042125 (2018)

(a) (b)

(c) (d)

FIG. 1. Decay time of the bath correlation function and
the non-Markovianity contours of the spin-boson model in
polaron frame as function of the dimensionless coupling
constant α and the inverse temperature β according to the
Nakajima-Zwanzig memory kernel master equation [(a)
and (c)] and the time convolutionless master equation [(b)
and (d)] in under- [(a) and (b), γ = 0.1] and overdamped
[(c) and (d), γ = 100] limits for the peak oscillator fre-
quency ω0 = 10. The graded color density plot and the
legend bar indicate the change of the bath correlation
function decay time in logarithmic scales and the dashed
red line shows the equality τd = √

10.

to the underdamped limit at the same α and β values. One
should note that, sometimes, the inverse of the width of the
spectral function J (ω) (1/γ ) is considered as a measure of the
correlation time of the environment. Contrary to expectations,
τd defined above seems to be directly proportional to γ .

The most important finding concerning the non-
Markovianity of the dynamics of the TSS when there
is no external noise is the close connection between the
existence of non-Markovianity and the magnitude of τd .
From Figs. 1(a)–1(d) it is obvious that N is nonzero when
τd >≈ √

10 independent of the damping for both TCL and
NZ master equations. In this regime, the characteristic time
of the system dynamics is faster compared to the decay of
the bath correlations which enables the information on the
system to be retained in the environment and flow back
into the system. Furthermore, the gross features of the
non-Markovianity of the NZ and TCL formulations seem
to be similar for the parameters considered in the present
work (the similarity depends on ω0 being large). A general
observation from Figs. 1(a)–1(d) is that the dynamics are
non-Markovian at low temperatures almost independent of
the other problem parameters and the type of master equation
one uses to describe the system dynamics which is similar
to the findings of Rivas who has shown that the spin-boson
model approaches “eternal” non-Markovian regime as the
temperature of the environment approaches zero [58]. These
findings are in disagreement (agreement) with those reported
by Chen et al. [21] (Liu et al. [20]) who reported that the
increasing (decreasing) temperature and interaction strength
increases the non-Markovianity for a spin-boson model in the
context of photosynthetic systems.

We next investigate the effect of the telegraph noise on the
non-Markovianity of the TSS dynamics in various points of
the parameter space explored in Fig. 1. In Figs. 2(a)–2(d),
we present the non-Markovianity as a function of the noise

color K = �/ν and the noise frequency in both NZ [Figs. 2(a)
and 2(c)] and TCL [Figs. 2(b) and 2(d)] formulations. First,
we consider the high temperature (β = 0.05), underdamped
(γ = 0.1), and strong coupling (α = 0.35) case for ω0 = 10,
which is Markovian when there is no external noise. As can
be seen from Figs. 2(a) and 2(b), the external noise creates
non-Markovianity when the noise is slow [K > 1/2, i.e., the
noise propagator S0 of Eq. (30) is oscillatory] in both NZ
and TCL approaches and the magnitude of N increases with
increasing K with a weak dependence on the noise frequency.
A similar finding has been reported for the dichotomously
driven qubit dynamics [11]. Figures 2(a) and 2(b), also, show
that the fast jumping noise (K 
 1) does not create any non-
Markovianity. The effect of noise on N is quite different when
the dynamics is already non-Markovian in the absence of the
external noise as can be seen from Figs. 2(c) and 2(d), which
display N for low temperature (β = 20), weak coupling (α =
0.0035), and overdamped (γ = 100). In those figures, N is
always less than its non-noisy value and the effect of noise
depends both on its frequency and the color. At high ν and
intermediate K values N approaches zero, while for strongly
colored noise, N increases with increasing K similar to the
first case considered above which can be understood as the
external noise effect dominating the thermal fluctuations of
the environment.

To further investigate the effect of noise on N , we display
the dynamics of coherences along with the distinguishability
for parameters that lead to Markovian dynamics when there
is no external noise and non-Markovian dynamics under the
noise in Figs. 3(a) and 3(b), respectively. Only TCL results are
shown in the figure; the NZ ones are very similar. For the con-
sidered parameters of the problem and the initial states used in
the calculation of N [Px (0) = ±1], the change in Pz is negli-
gible and the dynamics of the TSS can be depicted in cylindri-
cal coordinates with the z axis representing time. Figures 3(a)
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(a) (b)

(d)(c)

FIG. 2. Effect of the dichotomous noise on the non-
Markovianity of the spin-boson model in polaron frame as
function of noise color K = �/ν and the noise frequency ν

in the Nakajima-Zwanzig memory kernel [(a) and (c)] and the
time convolutionless master-equation [(b) and (d)] approaches
for weak coupling (α = 0.0035) at low temperature (β = 20)
[(a) and (b)] and strong coupling α = 0.35 at high-temperature
β = 0.05 [(c) and (d), γ = 100] limits for the peak oscillator
frequency ω0 = 10.

and 3(b) show the dynamics of the system with two chosen
initial states in NZ and TCL approaches under no-noise and
with external noise driving with parameters ν = π/2 and
� = π , which corresponds to K = �/ν = 2 slow noise limit.
From Fig. 3(a) it is obvious that, for the given parameters, the
dynamics when there is no external noise are Markovian be-
cause the distinguishability, which is the distance between the
two solutions shown as the lines connecting those solutions
in the figure, decreases monotonously as time increases. On
the other hand, external noise not only increases the decay of
Px (t ) and Py (t ), as expected, but it also destroys the mono-
tonicity of the distinguishability between ρ1(t ) and ρ2(t ),
which leads to non-Markovianity. To delineate the source of

(a) (b)

FIG. 3. Dynamics of ρ (1) and ρ (2) at ε0 = 1, ω0 = 10, γ = 1,
α = 0.035, and β = 0.1, without external noise (a) and with external
telegraph noise with parameters ν = π/2 and � = π (b). The line
plots show the change in distinguishability with time, the dashed line
in (b) is D(ρ1, ρ2) calculated from Eq. (42), and the shaded area
displays the region where dD(ρ1, ρ2)/dt > 0.

such noise-induced non-Markovianity, we will examine NZ
and TCL master equations for the coherences Eqs. (24), (25),
(27), (28) and Eqs. (33), (34), (36), (37), respectively.

For the strong coupling and the high-temperature limit,
both NZ and TCL equations for 〈Px (t )〉 and 〈Py (t )〉 [Eqs. (33)
and (34)] and their noise correlators [Eqs. (36) and (37)] can
be approximated as

Ṗx (t ) = ε0Py (t ) + �αy (t ),

Ṗy (t ) = −ε0Px (t ) − �αx (t ),
(41)

α̇x (t ) = −ναx (t ) + ε0αy (t ) + �Py (t ),

α̇y (t ) = −ναy (t ) − ε0αx (t ) − �Px (t ),

which can be solved analytically for the optimal initial states
to obtain the distinguishability as

D(ρ1, ρ2) =
∣∣∣∣ 1

2η
(ν+e−ν−t/2 − ν−e−ν+t/2)

∣∣∣∣, (42)

which is the same as the absolute value of the noise propagator
S0 [Eq. (30)]. Note that, although the static bias of the TSS
ε0 enters into dynamical equations (41), the distinguishability
is independent of it. Using the definition of information flow
σ (ρ1, ρ2) = dD(ρ1,ρ2 )

dt
and the BLP non-Markovianity measure

Eq. (40), N can be obtained analytically from Eq. (42) as

N = 2

(
1 − ν(ν + 2)

4�2

)
1

eξ − 1
, (43)

where ξ = −2iπν/η. A similar expression was obtained for
the non-Markovianity of the dynamics of a TSS under the
influence of telegraph noise only by Ref. [11].

It is interesting to note that, even when the dynamical
equations for the coherences are in the explicitly Markovian
form as in Eq. (41), they might describe a non-Markovian
dynamics as measured by the change in the trace-distance
based distinguishability when the external noise is slow. A
similar finding is reported in Ref. [13] which has questioned
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the notion of standard Markov approximation by showing
that the master equation with stationary rates which is often
regarded as a Markovian description does not necessarily lead
to a Markovian dynamics in the sense of unidirectional infor-
mation flow from the system to the environment for the spin-
boson model. As the effect of slow noise in this context might
be considered as creating a superposition of two possible
solutions with ε = ε0 ± �, our findings can be related with
random mixtures of Markovian dynamical maps creating non-
Markovian dynamics discussed in Ref. [32]. Noise induced
non-Markovianity can also be attributed to the nonequilibrium
effects due to the stochastic driving which was shown to
violate the detailed-balance condition and lead to nonequi-
librium dynamics [48]. Kutvonen et al. [30] suggested that
the non-Markovianity could be accounted for by assuming the
bath as a combination of a part in thermal equilibrium and a
part that is in nonequilibrium, which does not change while
the transitions in the system take place. So, the dichotomous
driving in the present problem can also be considered as an
example of a nonequilibrium generating source.

One should note that the model studied in the present paper
assumes that the driving noise affects the transition energy
of the two-level system but it would be expected that noise
in tunneling would also induce non-Markovianity in the light
of the findings of Ref. [12], which reported that transverse
telegraph noise leads to non-Markovian dynamics. We should
note that dichotomous character of the driving noise is instru-
mental in inducing non-Markovianity; white noise would lead
to Markovian dynamics as can also be deduced from Fig. 1 (a
thermal bath at very high temperature could be considered as
a white noise).

IV. CONCLUSION

We have considered the effect of dichotomous noise on the
dynamics of a two state system which is in contact with a

thermal bath of harmonic oscillators in the strong system-bath
coupling regime in memory kernel and time local master-
equation approaches. The noise was assumed to modulate
the transition energy of the TSS. We have obtained and
numerically solved noise-averaged dynamical equations for
both NZ and TCL approaches to study non-Markovianity
of the TSS dynamics as quantified by the distinguishability
based BLP measure. In the absence of the external noise, we
have found that the non-Markovianity is strongly correlated
with the decay time of the environmental correlation function
which increases with decreasing coupling between the system
and the environmental oscillator and the temperature of the
bath and increasing of the damping of the oscillator. External
noise is found to affect the non-Markovianity in two different
ways depending on the Markovianity of the dynamics in the
absence of the noise. When the dynamics are already non-
Markovian, low frequency and weak external noise causes
slight decrease in non-Markovianity, while high frequency,
intermediate noise makes the dynamics Markovian. On the
other hand, slow noise is found to induce non-Markovianity
when the dynamics is Markovian in its absence. Both memory
kernel and time local formulations of the master equation
are found to signal similar BLP non-Markovianity features
for the noiseless and noisy conditions which indicates that
the form of the master equation is not a factor determining
the Markovianity properties of the dynamics. Furthermore,
although the dynamical equations we have obtained for the
strong-coupling, high-temperature limit under the external
noise driving have time-independent coefficients, they lead to
non-Markovian dynamics which can be considered as an ex-
ample of random mixing induced non-Markovianity. It would
be interesting to study the effect of dichotomous noise on the
recovery fidelity defined by Hinarejos et al. that measures the
best possible performance of the system to store a qubit of
information [59] to investigate the possible role of noise in
quantum memory devices.
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