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The standard state-dependent Heisenberg-Robertson uncertainty-relation lower bound fails to capture the
quintessential incompatibility of observables as the bound can be zero for some states. To remedy this problem,
we establish a class of tight (i.e., inequalities are saturated) variance-based sum-uncertainty relations derived
from the Lie algebraic properties of observables and show that our lower bounds depend only on the irreducible
representation assumed carried by the Hilbert space of state of the system. We illustrate our result for the cases
of the Weyl-Heisenberg algebra, special unitary algebras up to rank 4, and any semisimple compact algebra. We
also prove the usefulness of our results by extending a known variance-based entanglement detection criterion.
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For �w2 signifying the variance of measurement outcomes
for the observable w, Heisenberg’s uncertainty relation for
position x and momentum p is

�x2�p2 � 1/4, (1)

where [x, p] = i1, and 1 is the identity operator. Equa-
tion (1) fortuitously has a constant lower bound due to the
appealing algebraic properties of the commutator of x and
p. Robertson’s generalization to �A2�B2 � |〈[A,B]〉|2/4
for arbitrary observables A and B more generally has a
state-dependent lower bound [1], and so fails to capture the
intrinsic incompatibility of noncommuting observables [2,3].
This cannot be amended as the underlying product of un-
certainties is null whenever one of the uncertainties is null,
an observation that provided impetus for the emergence of
uncertainty relations [4–9] that eschew variance in favor of
entropy.

Properly assessing uncertainty is important for founda-
tional quantum mechanics [10–12] and for quantum infor-
mation and communication [13–16]; variance is closer than
entropy for practical quantum mechanics, a driving motiva-
tion behind research into sum-uncertainty relations (SURs),
which deliver state-independent lower bounds [17–25]. Here
we discuss SURs by showing connections with the algebras
of observables, with examples of the Weyl-Heisenberg wh,
special unitary su(n) and su(1, 1), and generally semisim-
ple compact algebras Extending SURs to general su(n) has
implications for nuclear physics [26] and quantum infor-
mation [28]. thereby extending the range to applications of
SURs in areas such as nuclear physics [26,27] and quantum
information [28], where u(n) or su(n) symmetries [29,30] are
prevalent.

Indeed, single-photon multipath quantum optical inter-
ferometry provides a convenient way to realize SU(n)
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symmetry [31–34] with the experimental signature obtained
via sampling photodetection of the photon emerging from
each of the n output ports, both by direct detection and by
adding special postprocessing interferometers at the output
followed by photodetection. Photodetection sampling statis-
tics obtained in these ways yield uncertainties from estimates
second-order cumulants for the distributions and, through this
process, our uncertainty relations can be empirically tested.
Such uncertainty relations are important for assessing the
ultimate limits of quantum interferometry [35]. Other ap-
plications include Bose-Einstein condensates, where SU(3)
symmetries play a role, e.g. [30]. Our approach lays a path
towards general uncertainty relations with state-independent
lower bounds for arbitrary algebras.

We strongly emphasize that our results refer to the “prepa-
ration uncertainty” [11,12] and not to the “measurement un-
certainty.” The former refers to the variance of the outcomes of
measurements of different observables performed on different
systems prepared in identical states. The latter, which has been
the subject of a lively debate recently [20,36–40], refers to the
relation between errors and postmeasurement disturbance in
an apparatus. We underline these are very different notions
[20,36,38–41], even if this difference is often obscured in the
literature.

As our relations are based on the sum of variances, they
easily relate more than two observables and possess a simple
physical interpretation as the diagonal of the uncertainty
volume, depicted in Fig. 1. The uncertainty relations that we
derive from algebraic properties are stated below, with the
explanation and derivation to follow. Some of our relations are
prior knowledge and some are new. Each algebra is defined by
its commutator relation, given by Eq. (1) for wh and by

[Jx, Jy] = iJz, [Jy, Jz] = iJx, [Jz, Jx] = iJy,

[Kx,Ky] = −iKz, [Ky,Kz] = iKx, [Kz,Kx] = iKy

(2)
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FIG. 1. Sum of variances is a measure of total uncertainty. Given
a (green) box with the uncertainties as edges, the sum of variances
is the squared length of the (red) diagonal. [Here 30 000 (blue)
points with Gaussian distribution corresponding to �x = �y =
1/2, �z = 1/4 are plotted as an illustration.]

for su(2) and su(1, 1), respectively. For semisimple compact
Lie algebras [42–44], we use {ei} in an operator basis with
diagonal Killing form, {λi} as group irrep labels, |�〉 as the
integral dominant weight, and |δ〉 as the Weyl root.

We claim the following tight state-independent SURs:

wh : �x2 + �p2 � 1 [45], (3)

su(1, 1) : �K2
x + �K2

y − �K2
z � κ, (4)

κ being Bargmann index and, more generally, for the semisim-
ple compact case,

1

2

∑
i

�e2
i � 2〈�|δ〉, (5)

with specialization to

su(2) : �J 2
x + �J 2

y + �J 2
z � j, e.g., in [46–48], (6)

su(3) :
1

2

∑
i

�e2
i � 2(λ1 + λ2), (7)

su(4) :
1

2

∑
i

�e2
i � 3λ1 + 4λ2 + 3λ3, (8)

su(5) :
1

2

∑
i

�e2
i � 4λ1 + 6λ2 + 6λ3 + 4λ4. (9)

All these state-independent lower bounds are given functions
that depend only linearly on the choice of irreducible repre-
sentation (irrep). As discussed later, there are states for which
the equality holds. A geometric intuition for relations (4)–(9)
follows from Pythagoras’ theorem: the left-hand side is the
squared length of the diagonal of a “box” with uncertainties
as edges shown in Fig. 1. These edges are a measure of the
“total” uncertainty and bounded from below by a positive
constant.

We begin by developing our approach to the SUR based
on the familiar wh(1) algebra (1) treated by Heisenberg [45].
Heisenberg’s uncertainty relation (1) [1,45] follows from

(�x − �p)2 � 0 ⇒ �x2 + �p2 � 2�x�p � 1, (10)

which incorporates both the sum (3) and the Heisenberg
product �x�p � 1/2 (1) relations in the same expression.

Our focus is on the sum relation, and we now rederive this
SUR by another approach.

We express wh in terms of lowering a := (x + ip)/
√

2 and
raising a† ladder operators so

wh = span{a, a†, 1}, [a, a†] = 1, (11)

with the “weight,” or number, operator denoted n = a†a. The
(Fock) eigenstates {|m〉 ; m ∈ N} satisfy

n |m〉 = m |m〉 , a† |m〉 = √
m + 1 |m + 1〉 . (12)

Henceforth, a general arbitrary state is expressed as a sum
|ψ〉 = ∑

m ψm |m〉 over the weights {m} determined by diag-
onal operators for the algebra being studied. If some weights
are repeated, the sum extends over the orthogonal states of the
same weights. For wh,

�x2 + �p2 = 2〈a†a〉 + 1 − 〈x〉2 − 〈p〉2 (13)

is bounded by first considering

〈x〉 + i〈p〉 =
√

2
∑
m

νm, νm := √
m + 1ψm+1ψ

∗
m. (14)

The Cauchy-Schwarz inequality yields

〈x〉2 + 〈p〉2 = 2

∣∣∣∣∣
∞∑

n=0

νn

∣∣∣∣∣
2

� 2
∞∑

n=0

(n + 1)|ψn+1|2
∞∑

n′=0

|ψn′ |2 = 2〈a†a〉,

(15)

which proves Eq. (3), and the “lowest-weight state” |0〉 satu-
rates this bound.

Next we apply this wh technique to the ubiquitous su(2)
algebra, pertinent to spinlike systems with 2j ∈ N. For J± =
Jx ± iJy the su(2) raising and lowering operators, su(2) =
span {J+, J−, Jz} such that

[J+, J−] = 2Jz, [Jz, J±] = ±J±. (16)

The eigenstates {|m〉 ; 0 � m � 2j} of the weight operator Jz,
satisfying Jz |m〉 = (m − j ) |m〉 and

J+ |m〉 =
√

(m + 1)(2j − m) |m + 1〉 , (17)

form a basis for the (2j + 1)-dimensional irrep of su(2) with

C2=J 2
z + 1

2 (J+J−+J−J+) = J 2
z + J 2

x + J 2
y = c21 (18)

and eigenvalue 〈c2〉 = j (j + 1). Then

�J 2
x + �J 2

y + �J 2
z = c2 −

∑
i=x,y,z

〈Ji〉2. (19)

This sum (19) can be bounded, analogous to the wh case, by
expanding for an arbitrary state

|ψ〉 =
∑

ψm |m〉 . (20)

For

μm := ψ∗
m+1ψm

√
(m + 1)(2j − m), (21)
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we have

〈Jz〉 =
2j∑

m=0

m|ψm|2 − j, 〈Jx〉 + i〈Jy〉 =
2j−1∑
m=0

μm, (22)

which leads to

〈Jx〉2 + 〈Jy〉2 =
∣∣∣∣∣
2j−1∑
m=0

μm

∣∣∣∣∣
2

�
(

2j−1∑
m=0

|ψm+1|2(m + 1)

)

×
(

2j−1∑
m′=0

|ψm′ |2(2j − m′)

)

= 2j
∑
m

|ψm|2m −
(∑

m

|ψm|2m
)2

, (23)

using the Cauchy-Schwarz inequality. As

〈Jz〉2 = j 2 − 2j
∑
m

|ψm|2m +
(∑

m

|ψm|2m
)2

, (24)

we obtain the desired su(2) uncertainty relation (6). Next we
see how this approach robustly extends to the noncompact
case.

Closely related to su(2) is the noncompact su(1, 1) =
span {K+,K−,Kz} with ladder operators

K± = Kx ± iKy (25)

and commutation relations

[K+,K−] = −2Kz, [Kz,K±] = ±K±, (26)

where the operators Kx,y,z are self-adjoint on Hilbert space.
Kz eigenstates {|m〉}, such that

Kz |m〉 = (m + κ ) |m〉 , m, κ � 0, (27)

form a basis for the infinite-dimensional unitary irrep κ . We
restrict our discussion to irreps of the positive discrete series,
where the representation label common in physics are

κ = 1/2, 1, 3/2, . . . . (28)

The analysis also applies to the two limits of discrete series
with labels κ = 1/4, 3/4. The eigenvalue m is discrete; con-
tinuous m [49] is a topic for future investigation. The su(1, 1)
raising operators satisfies

K+ |m〉 =
√

(m + 1)(2κ + m) |m + 1〉 , (29)

and K− = K
†
+. Evidently the ladder of |m〉 states is un-

bounded above, but the Kz eigenstate |m = 0〉 with eigenvalue
κ is annihilated by K−. The quadratic Casimir operator is

C2 = K2
z − 1

2 (K+K− + K−K+) = K2
z − K2

x − K2
y = c21,

with c2 = κ (κ − 1). The sum of variances is

�K2
x + �K2

y + �K2
z � �K2

x + �K2
y − �K2

z

= 〈Kx〉2+〈Ky〉2−〈Kz〉2−c2. (30)

Assuming all sums converge, we bound this by expanding an
arbitrary state |ψ〉 = ∑

ψm |m〉 to obtain

〈Kz〉 =
∞∑

m=0

m|ψm|2 + κ, 〈Kx〉 + i〈Ky〉 =
∞∑

m=0

λm, (31)

with λm := ψ∗
m+1ψm

√
(m + 1)(2κ + m), whence

〈Kx〉2 + 〈Ky〉2 =
∣∣∣∣∣

∞∑
m=0

λm

∣∣∣∣∣
2

�
( ∞∑

m=0

|ψm+1|2(m + 1)

)

×
( ∞∑

m′=0

|ψm′ |2(2κ + m′)

)

=
( ∞∑

m=0

|ψm|2m
)( ∞∑

m′=0

|ψm′ |2(2κ + m′)

)

= 2κ
∑
m

|ψm|2m +
(∑

m

|ψm|2m
)2

, (32)

using the Cauchy-Schwarz inequality. As

〈Kz〉2 = κ2 + 2κ
∑
m

|ψm|2m +
(∑

m

|ψm|2m
)2

, (33)

we can recover the right side of Eq. (30) by subtracting
Eq. (32) from Eq. (33) to obtain

〈Kz〉2 − 〈Kx〉2 − 〈Ky〉2 � κ2 (34)

and thus the desired SUR (4). Actually we have proven the
inequality (30), which is even stronger than desired.

We have so far discussed three cases of SURs, all based
on ladder operator relations and Casimir operators, although
the wh case has a trivial Casimir operator, namely 1. We
now have the tools to investigate more general cases involving
semisimple Lie algebras.

Consider a compact semisimple rank-r Lie algebra

g = span {ek, em; k ∈ {1, . . . , r},m ∈ {r + 1, . . . , �}}, (35)

with ek a diagonal Cartan element and em a nondiagonal
operator. For su(2) this would be the Hermitian basis with
e1 = Jz and e2,3 = Jx,y . The � − r operators are combinations
of raising and lowering operators so, crucially, have null
expectation value on any eigenstate of the Cartan elements,
i.e., on any state of definite weight.

The Casimir operator C2 and its state-independent eigen-
value c2 are

C2 = 1

2

�∑
k=1

e2
k , c2 = 2〈� |δ〉 + 〈� |�〉 ,

|�〉 :=
r∑

i=1

λi |wi〉 , (36)

with |�〉 the highest weight for the irrep � = (λ1, . . . , λr ),
|wi〉 the ith fundamental weight, and |δ〉 the Weyl root. The
Weyl root is half the sum of all positive roots as detailed in
[42] or [43]. Scalar products (36) are computed with a metric
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matrix G [43]: for

|μ〉 :=
∑

i

μi |wi〉 , 〈μ|τ 〉 = μ · G · τ. (37)

The sum of the variances of all {ei} is

1

2

�∑
k=1

�e2
k = 〈C2〉 − 1

2

�∑
k=1

〈ek〉2 = c2 − 1

2

r∑
k=1

〈ek〉2, (38)

where, in the last equality, we assume the system state |λ〉 is
an eigenstate of the r Cartan operators so that

〈em〉 = 〈λ| em |λ〉 = 0 (39)

for m > r due to the action of the raising and lowering
operators. For the weight |λ〉,

1

2

r∑
k=1

〈ek〉2 = 〈λ |λ〉 � 〈� |�〉 , (40)

where the upper bound is attained for the highest-weight state.
Combining Eqs. (38) and (40) yields

1

2

�∑
k=1

�e2
k � c2 − 〈� |�〉 = 2〈� |δ〉 , (41)

which is the desired SUR (5) for semisimple compact Lie
algebras. Moreover, the uncertainty-sum relation is tight as
the inequality is saturated by the highest-weight state |�〉, its
Weyl-reflected images, and any state in the group orbit of |�〉,
i.e., any coherent state [50].

We now demonstrate the value of Eq. (41) through its
application to examples of compact unitary algebras, namely
su(3), su(4), and su(5). For su(3), Eq. (7) follows immedi-
ately from Eq. (41) using

GSU(3) = 1

3

(
2 1

1 2

)
. (42)

The Hermitian basis for the defining, i.e., three-dimensional
(λ1, λ2) = (1, 0), irrep of su(3) is

A− =

⎛
⎜⎝

0 −i 0

+i 0 0

0 0 0

⎞
⎟⎠, A+ =

⎛
⎜⎝

0 1 0

1 0 0

0 0 0

⎞
⎟⎠,

B− =

⎛
⎜⎝

0 0 0

0 0 −i

0 i 0

⎞
⎟⎠, B+ =

⎛
⎜⎝

0 0 0

0 0 1

0 1 0

⎞
⎟⎠,

C− =

⎛
⎜⎝

0 0 −i

0 0 0

i 0 0

⎞
⎟⎠, C+ =

⎛
⎜⎝

0 0 1

0 0 0

1 0 0

⎞
⎟⎠,

h1 = diag(1,−1, 0), h2 = diag(1, 1,−2). (43)

The Killing form is 2 × 1, whereas the quadratic Casimir
operator

C2 = 1
2

(
A2

+ + A2
− + B2

+ + B2
− + C2

+ + C2
− + h2

1 + h2
2

)
has eigenvalue

c2(λ1, λ2) = 2
3

(
λ2

1 + λ2
2 + 3[λ1 + λ2] + λ1λ2

)
(44)

for irrep (λ1, λ2). For the (1,0) irrep (43), C2 = 8
31.

Now we verify inequality (7) for a different su(3) irrep,
namely the (8-dimensional) adjoint irrep (1,1). In this case

With this, we easily verify the lower uncertainty bound

1

2
[�(A+)2 + �(A−)2 + �(B+)2 + �(B−)2

+ �(C+)2 + �(C−)2 + �(h1)2 + �(h2)2]

:= 1

2

∑
i

(�ẽi )
2 � 2(λ1 + λ2). (45)

which confirms that the general formula (41) gives the correct
inequality (7).

We generalize this procedure to su(4) and su(5), yielding
(8) and (9), respectively, and confirm our procedure for irreps
(λ1, λ2, λ3) and (λ1, λ2, λ3, λ4), respectively. For su(4), we
obtain the Gell-Mann matrices �1−15 in Appendix A follow-
ing Stover’s procedure [51] to obtain

c2(λ1, λ2, λ3) = 1
4

(
3λ2

1 + 2[2λ2 + λ3 + 6]λ1 + 4λ2
2

+ 4λ2[λ3 + 4] + 3λ3[λ3 + 4]
)
. (46)

The lower bound (8) is successfully obtained with each ei

replaced by �i so our expression is confirmed for this su(4)
irrep.

For su(5) we have the 5 × 5 Gell-Mann matrices �′
1−24

given in Appendix A and we obtain

c2(λ1, λ2, λ3, λ4) = 2
5

[
2λ2

1 + 3λ2λ1 + 2λ3λ1 + λ4λ1 + 10λ1

+ 3λ2
2 + 3λ2

3 + 2λ2
4 + 15λ2 + 4λ2λ3

+ 15λ3 + 2λ2λ4 + 3λ3λ4 + 10λ4
]
.

(47)

Replacing each ei in inequality (9) by the Gell-Mann ma-
trix �i given in Appendix A confirms that the SUR (9)
holds for this su(5) irrep. We note that the bound is the
same for conjugate irreps, v.g., the su(3) irreps (λ1, λ2)
and (λ2, λ1) have the same bound, with similar symmetry
for conjugate representations holding for su(4) and su(5)
irreps.

Whereas Eq. (41) is an equality on the sums of all vari-
ances, one can also obtain various inequalities involving sums
over a restricted set of variances. There are also some special
cases of our inequalities that appear in [52,53]. Tóth et al. [54]
have given inequalities involving variances and expectation
values of su(2) for detecting bound entanglement in spin sys-
tems. One can reproduce their proofs for su(n) (Appendix B)
and find that a violation of

(N − 1)
n−1∑
k=1

(�ek )2 �
∑
m

〈
e2
m

〉 − 2(n − 1)N (48)

implies entanglement for N particles, each in the fundamental
representation (1, . . . , 0) of su(n). In (B1), the sum over k

is a sum of the variances of the r = n − 1 elements in the
Cartan subalgebra of su(n), whereas the sum over m is over
the remaining elements not in the Cartan subalgebra.

As a simple example of application of Eq. (B1), fix n and
consider the n-fold coupling of the fundamental of su(n),
i.e., the n-fold coupling of (1, 0, . . . , 0). The scalar irrep
(0, 0, . . . , 0) occurs once in this decomposition. The states of
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the scalar irrep in this n-fold coupling are determinants in the
n states. In su(2), this would be the coupling of two spin-1/2
particles to the entangled s = 0 singlet state. For su(3), with
basis states |100〉, |010〉, |001〉, the scalar that appears as the
three-particle coupling is the (entangled) determinant state

|ψ〉 = N

∣∣∣∣∣∣∣
|100〉1 |010〉1 |001〉1

|100〉2 |010〉2 |001〉2

|100〉3 |010〉3 |001〉3

∣∣∣∣∣∣∣,
where N is a normalization. Clearly since this state is in (0,0)
of su(3), �ek = 0 and 〈e2

m〉 = 0 for all k and m for this state.
Thus our inequality (B1) becomes

0 � 0 − 2 × 2 × 3 = −12

and so is clearly violated, correctly implying that |ψ〉 is
entangled.

Finally, Tóth et al. also obtain an inequality containing the
sums of all the variances: this is nothing but our Eq. (41)
for states in the irrep (N, 0, . . .), which are not the highest
weight state, its reflection, or a coherent state for this irrep.
This generalizes the entanglement detection results of [54] to
su(n).

In conclusion, we have presented a class of state-
independent tight SURs based on algebraic properties,
and our scheme shows how to generalize to other alge-
bras. Thanks to the concavity of the variance, the results
presented here are valid also for mixed states, since

(�ek )2
(ρ) �

∑
i pi (�ek )2

(|ψi 〉) for ρ = ∑
i pi |ψ〉i 〈ψ |. Inequal-

ities (3) and (6) were known previously [19,46–48,55–57]
as is (implicitly) inequality (4) [50], but bounds were not
explicitly stated nor was their common algebraic origin from a
similar derivation. Furthermore, the state-independent nature
of the tight lower bound was not investigated. Instead previous
analyses focused on their connection with algebraic coherent
states [50]. Different relations for state-independent variance-
based uncertainty relations were known explicitly only for
qubits [20,37,58]. Whereas state-independent uncertainty re-
lations were traditionally connected to entropic uncertainty
relations, our results show how one can obtain them also for
variance-based ones.

The result of Eq. (41) exploits the relation between the
SUR and the quadratic Casimir operator when the Killing
form is diagonal, which is an easily generalizable notion
including infinite-dimensional irreps, but the state saturating
this lower bound might not be normalizable. Some work needs
to be done, such as dealing with continuous irreps, verifying
SURs for various irreps, and generalizing to other algebras.
Some aspects of our work were known before but not in a
unified, explicit, purely algebraic approach as done here.
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APPENDIX A: GELL-MANN MATRICES FOR su(4) AND su(5)

The 4 × 4 Gell-Mann matrices are

�1 =

⎛
⎜⎜⎜⎝

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠, �2 =

⎛
⎜⎜⎜⎝

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠, �3 =

⎛
⎜⎜⎜⎝

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

⎞
⎟⎟⎟⎠, �4 =

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

⎞
⎟⎟⎟⎠,

�5 =

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

⎞
⎟⎟⎟⎠, �6 =

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎠, �7 =

⎛
⎜⎜⎜⎝

0 −i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠, �8 =

⎛
⎜⎜⎜⎝

0 0 −i 0

0 0 0 0

i 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠

and

�9 =

⎛
⎜⎜⎜⎝

0 0 0 −i

0 0 0 0

0 0 0 0

i 0 0 0

⎞
⎟⎟⎟⎠, �10 =

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0

⎞
⎟⎟⎟⎠, �11 =

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 0 −i

0 0 0 0

0 i 0 0

⎞
⎟⎟⎟⎠, �12 =

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 0 −i

0 0 i 0

⎞
⎟⎟⎟⎠,

�13 =

⎛
⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠, �14 =

⎛
⎜⎜⎜⎝

1√
3

0 0 0

0 1√
3

0 0

0 0 − 2√
3

0

0 0 0 0

⎞
⎟⎟⎟⎠, �15 =

⎛
⎜⎜⎜⎜⎝

1√
6

0 0 0

0 1√
6

0 0

0 0 1√
6

0

0 0 0 −
√

3
2

⎞
⎟⎟⎟⎟⎠.
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The 5 × 5 Gell-Mann matrices are

�′
1 =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, �′

2 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, �′

3 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, �′

4 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠,

�′
5 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, �′

6 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, �′

7 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, �′

8 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

and

�′
9 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎠, �′

10 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠, �′

11 =

⎛
⎜⎜⎜⎜⎜⎝

0 −i 0 0 0

i 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠,

�′
12 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 −i 0 0

0 0 0 0 0

i 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, �′

13 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 −i 0

0 0 0 0 0

0 0 0 0 0

i 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, �′

14 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 −i

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

i 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠,

�′
15 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 −i 0 0

0 i 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, �′

16 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 −i 0

0 0 0 0 0

0 i 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

and

�′
17 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 −i

0 0 0 0 0

0 0 0 0 0

0 i 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, �′

18 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

0 0 0 −i 0

0 0 i 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, �′

19 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −i

0 0 0 0 0

0 0 i 0 0

⎞
⎟⎟⎟⎟⎟⎠,

�′
20 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −i

0 0 0 i 0

⎞
⎟⎟⎟⎟⎟⎠, �′

21 =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 −1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, �′

22 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1√
3

0 0 0 0

0 1√
3

0 0 0

0 0 − 2√
3

0 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

�′
23 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1√
6

0 0 0 0

0 1√
6

0 0 0

0 0 1√
6

0 0

0 0 0 −
√

3
2 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, �′
24 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1√
10

0 0 0 0

0 1√
10

0 0 0

0 0 1√
10

0 0

0 0 0 1√
10

0

0 0 0 0 −2
√

2
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

042121-6



STATE-INDEPENDENT UNCERTAINTY RELATIONS PHYSICAL REVIEW A 98, 042121 (2018)

APPENDIX B: DERIVATION OF THE INEQUALITY (48)
IN THE MAIN TEXT

All separable states of N systems, with properties de-
scribed by operators in an su(n) algebra, satisfy the following
inequality. Namely a violation of the inequality implies that
the systems are entangled:

(N − 1)
r∑

k=1

(�ek )2 �
�∑

m=r+1

〈
e2
m

〉 − 2(n − 1)N, (B1)

where the sum over k is a sum over the r = n − 1 commuting
elements in the Cartan subalgebra of su(n) and the sum of m is
a sum over the remaining nondiagonal operators in su(n). The
operators in su(n) are normalized so that Tr(e†aeb ) = 2δab,
as per Eq. (36) for su(3). We derive Eq. (B1) explicitly for
su(3) and discuss the specific parts of the derivation that will
generalize to su(n).

Denote 〈ei
α〉 = λi

α , where α labels a Gell-Mann matrix and
i the particle. The collective operators eα = ∑N

i=1 ei
α . The

Cartan elements are e1 and e2. Then

(N − 1)((�e1)2 + (�e2)2) −
8∑

m=3

〈
e2
m

〉 + 4N � 0. (B2)

Using

(�e1)2 = 〈
e2

1

〉 − 〈λ1〉2, (B3)

=
〈(∑

i

ei
1

)⎛
⎝∑

j

e
j

1

⎞
⎠〉

−
〈(∑

i

ei
1

)〉〈⎛
⎝∑

j

e
j

1

⎞
⎠〉

.

(B4)

If the states are factorizable (i.e., separable), then the average
values satisfy

(�e1)2 =
∑

i

〈(
ei

1

)2〉 − ∑
i

(
λi

1

)2
. (B5)

Doing the same for e2 and summing gives

((�e1)2 + (�e2)2) (B6)

=
∑

i

[〈(
ei

1

)2〉 + 〈(
ei

2

)2〉] −
∑

i

[(
λi

1

)2 + (
λi

2

)2]
. (B7)

From the explicit expression of the Gell-Mann matrices, one
finds

(
ei

1

)2 + (
ei

2

)2 = 4

3
13×3, (B8)

so that

(N − 1)((�e1)2 + (�e2)2) (B9)

= 4

3
N (N − 1) − (N − 1)

[∑
i

(
λi

7

)2 + (
λi

8

)2

]
. (B10)

Next,

∑
m

〈
e2
m

〉 − 4N =
∑

β

〈(∑
i

ei
m

)⎛
⎝∑

j

ej
m

⎞
⎠〉

, (B11)

=
∑
m

⎡
⎣∑

i

〈(
ei
m

)2〉 + ∑
i 
=j

〈
ei
mej

m

〉⎤⎦ − 4N. (B12)

One easily verifies that, for fixed i,∑
m

(
ei
m

)2 = 4 × 13×3, (B13)

so that we now have∑
m

〈
e2
m

〉 − 4N =
∑
m

∑
i 
=j

λi
mλj

m (B14)

�
∑
m

(∑
i

λi
m

)2

−
∑
m

∑
i

(
λi

m

)2
, (B15)

�
∑
m

N
∑

i

(
λi

m

)2 −
∑
m

∑
i

(
λi

m

)2
, (B16)

� (N − 1)
∑
m

∑
i

(
λi

m

)2
. (B17)

Subtracting Eqs. (B17) from (B10) yields

(N − 1)((�e1)2 + (�e2)2) −
∑
m

〈
e2
m

〉 − 4N

� 4

3
N (N − 1) − (N − 1)

8∑
α=1

∑
i

(
λi

α

)2
. (B18)

Finally, one readily verifies that, for fixed i,

8∑
α=1

(
λi

α

)2 = 4

3
, (B19)

so that

(N − 1)
8∑

α=1

∑
i

(
λi

α

)2 = 4

3
N (N − 1), (B20)

from which Eq. (B2) follows.
For su(4), Eq. (B7) becomes

(
ei

1

)2 + (
ei

2

)2 + (
ei

3

)2 = 3

2
14×4, (B21)

while Eq. (B19) gives
∑15

α=1(λi
α )2 = 3

2 . Moreover, the factor
4N is replaced by 6N so that Eq. (B1) follows.

For su(5), Eq. (B7) becomes

(
ei

1

)2 + (
ei

2

)2 + (
ei

3

)2 + (
ei

4

)2 = 8

5
15×5, (B22)

while Eq. (B19) gives
∑24

α=1(λi
α )2 = 8

5 . This time, the factor
4N is replaced by 8N and Eq. (B1) follows. Finally, we can
conjugate the entire algebra by any (global) n × n unitary
matrix U since, by Eq. (B13), the sum

∑
m(ei

m)2 of squares
of Cartan elements is proportional to the unit matrix and thus
invariant under transformation by U .
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