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A state of an open quantum system is described by a density matrix, whose dynamics is governed by a
Liouvillian superoperator. Within a general framework, we explore fundamental properties of both first-order
dissipative phase transitions and second-order dissipative phase transitions associated with a symmetry breaking.
In the critical region, we determine the general form of the steady-state density matrix and of the Liouvillian

eigenmatrix whose eigenvalue defines the Liouvillian spectral gap. We illustrate our exact results by studying
some paradigmatic quantum optical models exhibiting critical behavior.
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I. INTRODUCTION AND MOTIVATION

In classical physics, phase transitions are driven by a
competition between the value of the system energy and the
entropy produced by its thermal fluctuations [1]. A quan-
tum system at zero temperature has zero entropy and is in
its ground state, which is the state minimizing the system
energy [2]. However, critical phenomena can occur in the
thermodynamic limit as a result of the competition between
noncommuting terms of the Hamiltonian.

Driven-dissipative systems have an intrinsic nonequilib-
rium nature and the properties of the stationary state of the
system cannot be determined via a free energy analysis [3-7].
The statistical mechanics of such systems can be remarkably
rich. For example, classical systems [8] can display long-
range order in 2D [9], since their driven-diffusive nature can
violate the Mermin-Wagner theorem [10], which is valid at
equilibrium. At a quantum level, by properly designing the
coupling with the environment and the driving mechanisms, it
is possible to stabilize phases without an equilibrium counter-
part [11,12].

The impressive experimental advances of the last decade
provide the opportunity to explore nonequilibrium critical
phenomena on a variety of platforms. Lattices of supercon-
ducting resonators [13,14], Rydberg atoms in optical lat-
tices [15,16], optomechanical systems [17,18], and exciton-
polariton condensates [19,20] provide a highly controllable
playground in which to study the emergence of dissipative
phase transitions. In the thermodynamic limit, the competition
between Hamiltonian evolution, pumping, and dissipation
processes can trigger a nonanalytical change in the steady
state [21]. The engineering of complex many-body phases has
been deeply explored in different contexts [22,23]. Dissipative
phase transitions have been discussed theoretically for pho-
tonic systems [24-36], lossy polariton condensates [37-39],
and spin models [11,12,21,40-45].

The interplay between classical and quantum fluctua-
tions in triggering nonequilibrium phase transitions has been
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addressed by different methods, including renormalization
group approaches based on the Keldysh formalism [37,46,47]
and via extensive numerical analysis of lattice systems
[43,48,49]. Very recently, the critical properties have been
investigated also experimentally in single superconducting
cavities [50], semiconductor micropillars [51,52], and large
arrays of microwave cavities [14]. Our understanding of
criticality in such systems, however, is still in its infancy,
since their description cannot be traced back to the traditional
framework of equilibrium statistical mechanics.

One of the first investigations in this direction was reported
by Kessler et al. [21]. They considered a specific spin model,
conjecturing some general properties of dissipative phase
transitions. However, a general theory connecting Liouvillian
spectral properties and dissipative phase transitions is still
lacking. In this work, we wish to provide a common theoreti-
cal framework to describe the emergence of critical behavior
in Markovian open quantum systems, analyzing both first- and
second-order phase transitions. We show the general form of
the steady-state density matrix in the vicinity of the critical
point. We determine also the form of the eigenmatrix of the
Liouvillian superoperator corresponding to the nonzero eigen-
value with the smallest modulus of the real part (the so-called
Liouvillian spectral gap or asymptotic decay rate). When the
transition is of the first order, we show that the gap closes
only at the critical point, where the stationary state is bimodal.
Concerning second-order phase transitions associated with a
symmetry breaking, we provide a general spectral description
proving that the Liouvillian gap remains closed in the whole
region of broken symmetry. In this context, we highlight the
connection between the structure of the eigenmatrices and the
symmetry properties of the Lindblad master equation. Note
that according to the theory presented in this work, when
the Liouvillian gap closes, also the imaginary part of the
corresponding eigenvalue must vanish. This is a more strin-
gent constraint with respect to that discussed in [21], where
only the real part is assumed to vanish. Particular attention
is devoted to the connection between our results and their
relation to mean-field solutions, bistability phenomena, and
metastability. We bring under a common paradigm apparently
different phenomena related to dissipative phase transitions
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which have been observed experimentally [14,50,52] and
predicted theoretically [12,48,49,53] for specific models. We
remark that our results are model independent. One of the
goals of the present work is to identify a general spectral
mechanism which can explain these phenomena regardless
of the nature of the system (bosons, fermions, or spins) and
dimensionality.

In order to better illustrate our general results, we analyze
some specific paradigmatic cases of linearly [54] and quadrat-
ically driven [29,55,56] Kerr resonators. Those models are
known to undergo a phase transition (of first [31] and second
order [29], respectively) in the thermodynamic limit of large
excitation numbers.

This paper is structured as follows. In Sec. II we introduce
the theoretical framework, pointing out some general key
properties of the Liouvillian superoperator and of density
matrices. In Sec. III and Sec. IV we consider, respectively,
first- and second-order dissipative phase transitions. Section V
is devoted to the numerical study of the two paradigmatic
examples mentioned above. Finally, in Sec. VI we draw
our conclusions and discuss possible perspectives for future
studies. In Appendix A we include the proofs of some useful
lemmas, while in Appendix B we consider an exactly solvable
model presenting a nondiagonalizable Liouvillian.

II. THEORETICAL FRAMEWORK

In this work, we will consider open quantum systems
where the coupling to a reservoir leads to a Markovian dynam-
ics for the system density matrix p(t), described by a master
equation in the Lindblad form [57]

0p() == p01+ Y IR0, ()

where H is the Hamiltonian describing the unitary evolution
of the system, while the dissipation superoperators D[I;] are
defined as
DIM1p() = 20, ()] — DI p(0) — p(ODIT. (@)

Each quantum jump operator *; is associated with a dissipa-
tion channel occurring at the rate y;. In the following, we will
consider the case where H, I';, and y; are time independent
(for each 7). This kind of master equation can be applied
for example to photonic quantum systems (see, for example,
Refs. [13,14,50-52]).

Since the Lindblad master equation (1) is linear in g,
it is possible to associate with it the so-called Liouvillian
superoperator L, defined as

O p(t) = Lp(1). 3)

The superoperator £ of the Lindblad master equation is
trace preserving and generates a completely positive map e*
describing the time evolution of the system [3-5,58]. For a
time-independent Liouvillian, there is at least one steady state
(if the dimension of the Hilbert space is finite [58]), i.e., a
matrix such that

Lpss = 0. “4)

This equation means that the steady-state density matrix is an
eigenmatrix of the superoperator £ corresponding to the zero
eigenvalue. Moreover, under quite general conditions (see
Refs. [59,60] and Appendix A 1), the steady state is unique.
As we will see below, dissipative phase transitions are strictly
related to the violation of this unicity condition.

Let us call  the Hilbert space of the system. A density ma-
trix p, as any other operator £, belongs to the operator space
‘H ® H. The Liouvillian superoperator, instead, is £ € L =
(HQH)" ® (H® H), where L is the Liouville space. In this
article, we will systematically adopt the following notation:
operators will be denoted by hats (e.g., A), superoperators
will be written in calligraphic characters (e.g., A), and states
and their duals will be expressed in the Dirac notation (|a)
and (al). A vectorized representation of an operator A will be
denoted by A, while the matrix representing a superoperator
A is indicated by A. In particular, the matrix representation of
the Liouvillian is

L=—i[(H®1)— (1 ®HA™)]

+lele M -l e1-1e ™, )
where the superscript TR denotes the transposition. Moreover,
we will introduce the Hilbert-Schmidt inner product

(A, B) = Tr[AB], ©)
which, in the vectorized representation, takes the intuitive
form A - B = Z (A*)M U(B)M . The definition of the norm
naturally follows as

IA? = Tr[ATA1 = A- A=) |A,, 1 (7)

A. Spectral properties of Liouvillian superoperators

To fully determine the dynamics of the system, the knowl-
edge of the steady-state density matrix pg, is not enough.
Indeed, one has to know all the spectrum of the Liouvillian
superoperator £, whose eigenmatrices and eigenvalues are
defined via the relation

Lpi = Aipi. ®)
Equivalently, in the vector representation, p; is a right eigen-
vector of the superoperator matrix £. Having introduced a
norm, we require the eigenstates to be normalized: || 5;[|> = 1
[61]. Since L is not Hermitian, its eigenvectors are, in general,
not orthogonal: p; - p; # 0. If the Liouvillian is diagonaliz-
able, we can conveniently use the eigenstates of L as a basis of
the Liouville space, apart from some exceptional points (see

Appendix A I and Ref. [62]). Under this hypothesis, for any
operator A there exists a unique decomposition

A=Y ap ©)
1

It can be proved [57,58] that Re[A;] < 0, Vi. Since the real
part of the eigenvalues is responsible for the relaxation to
the steady state, fs; = lim,—, 1 et p(0). For convenience, we
sort the eigenvalues in such a way that |[Re[X¢]| < |[Re[A(]] <
- < |Re[A,]|. From this definition it follows that 1y =0
and Py = Po/Tr [Po]. We can also identify another relevant
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quantity: the Liouvillian gap A = |[Re[X{]|, which is also
called the asymptotic decay rate [21], determining the slowest
relaxation dynamics in the long-time limit.

For any Liouvillian, the following lemmas hold (for a
detailed proof of Lemmas 3 and 4 see Appendix A 2):

Lemma 1. Given Eq. (8), ¢ p; = &*' p;.

Lemma 2. Tr [p;] = 0 if Re[A;] # 0. Indeed, the Liouvil-
lian evolution conserves the trace [3-5,58] and if Re[A;] 7% 0
for t — +o0o0 we have e/ p; = ' p; — 0.

Lemma 3. If Lp; = A; p; then Eﬁj = )»l’.‘[)j. This implies
that, if p; is Hermitian, then A; has to be real. Conversely,
if A; is real and of degeneracy 1, p; is Hermitian. If A; has
geometric multiplicity n and £ is diagonalizable, it is always
possible to construct n Hermitian eigenmatrices of £ with
eigenvalue A; [63].

Lemma 4. If X; =0 has degeneracy n, then there exist
n independent eigenvectors of the Liouvillian (the algebraic
multiplicity is identical to the geometrical one). Therefore,
there exist n different steady states towards which the system
can evolve, depending on the initial condition.

B. Spectral decomposition of density matrices

Let us consider a system admitting a unique steady state.
To be physical, its §(¢) must be a Hermitian, positive-definite
matrix with trace equal to one. Hence, from Lemma 2, to
ensure Tr [p(#)] = 1 at every time, we must have

A Al A
(1) Tr[p]+Zc,<r)pl—pu+§c,(0>e pi- (10)

1. The case of a real Liouvillian eigenvalue \;

When A, is real, p; can be constructed to be Hermitian (see
Lemma 3 of Sec. IT A). Thus, it can be diagonalized, obtaining
the spectral decomposition [58]

Zp(t) |W(l)

where all the p{”) must be real and (" |yD) = §,, ,,. More-
over, since p; is traceless (see Lemma 2 of Sec. IT A), some of
the p{") must be positive and the others negative. We can order
them in such a way to have p{") > 0 for n < i and p) <0
for n > n. Thus, we have

Y

pi o B — pr (12)
where
pr = [Nl
n<n
pr = Zp(l) |1/f(l) (13)
n>n
and where the {p,} have been normahzed to ensure Tr [,0+] =

Tr[p; ] =1. With this definition, ,0 are density matrices.
Consequently, a state of the form pH(0) = ps + A p; will
evolve in time as [62]

p(t) = pss + A (B — b)) (14)

2. The case of a complex Liouvillian eigenvalue \;

Let us now consider an eigenmatrix p; with a complex
eigenvalue ;. As it stems from Eq. (10), to ensure a Hermitian
O(t) such an eigenmatrix must always appear in combination

with its Hermitian conjugate p;, which is also an eigenmatrix
of £ (Lemma 3 of Sec. IIA). Thus, one can simply con-

sider the Hermitian combinations p; + ,6? andi (p; — /3}). For
example, given an initial condition (0) = g5 + A(0; + ,6; )
with A real, one has [62]

() = pos + A pi+ €'y = pos + AP (e
+ﬁ3’e—i1m[)\i]1)

= Pos + 24 R (p; +

— pDysin(im[,;10)]. (15)

pl)cos(imfa; r)
+i(p;

C. Definition of dissipative phase transitions

Let us consider a system where a thermodynamic limit
is obtained when a parameter N — +o00. For example, in a
lattice of spins, N would be the number of lattice sites. For
any finite N, the system always admits a unique steady-state
solution. In the thermodynamic limit N — 400, a transition
between two different phases is characterized by the nonan-
alytical behavior of some ¢-independent observable 0 when
the parameter ¢ tends to the critical value ¢.. Formally, we
say that there is a phase transition of order M if

M
lim |—
¢ | oM

Since 6 does not depend on ¢, the discontinuity in Eq. (16)

is due to a discontinuous behavior in ps(¢, N — 00). As

proved in [64], a discontinuity of an eigenmatrix is to be
associated with a level crossing in the spectrum of the Liouvil-
lian. Since gy, is associated with Ao = 0, the phase transition

must coincide with the closure of the Liouvillian gap [21,65]

(indeed, in this case, is more correct to talk about level touch-

ing). Therefore, dissipative phase transitions are intimately

connected to the emergence of multiple steady states in the
thermodynamic limit N — +-o00.

Jim Tr[p (¢ Nl = +oo. (16)

III. FIRST-ORDER PHASE TRANSITION

In this section we consider the emergence of a first-order
dissipative phase transition at { = ¢, in the thermodynamic
limit N — +o00. Such a transition must be associated with the
existence of two different steady states, one for { < ¢, and the
other for ¢ > ¢., which implies that

MG N — +00)# =0 for ¢#¢. (A7)

According to our definition, a first-order dissipative phase
transition occurs when Eq. (16) is satisfied for M = 1, which
also corresponds to

hm 11m Dss(C,NY=pT # p~ = lim
¢ N>t ¢=>¢ N

hm Pss(C, N),

(18)
which defines p™ (p~) as the steady state in the thermo-
dynamic limit right after (before) the critical point. From
Eq. (18) we can write that Py (&) = 0(L — ¢)pT +60(L. —
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£)p~ for ¢ # ¢., where O(x) is the Heaviside step function.
Assuming the continuity of the Liouvillian, we can state
that £(¢.)p* =0 (we drop the explicit dependence on N
when assuming the thermodynamic limit). This implies that
A(&:) = Ao = 0 and hence p,,(¢.) and p;(¢.) belong to the
kernel spanned by p*. It is worth stressing that in the ther-
modynamic limit and for { = ¢, both the real and imaginary
part of 1| must vanish. Furthermore, in a first-order dissipative
phase transition, the condition Im[A;] = 0 must hold in a
finite domain around ¢, as a consequence of Lemma 3 [66].
Lemma 2 (Sec. IT) ensures that Tr [§;(¢)] = 0if A1(¢) # 0
(i.e., ¢ # ¢.). Moreover, as discussed in [64], A(¢) must be
continuous in a domain of the parameter space around { = ¢,
(cf. Fig. 1). By analogy, we want also p;(¢) to be continuous
around ¢, and to extend the zero-trace condition we must set

pi(&e) o pt —p. 19)

The above equation allows the identification of the states
ﬁli obtained with the eigendecomposition (12) with the two
phases p* [Eq. (18)] emerging in the thermodynamic limit.
Together with the continuity requirement, this allows us to
interpret ﬁli(;“) ~ p* in a domain around ¢ = ¢.. In this re-
gion, since the Liouvillian gap is finite, we also have py(¢)
Dss(£). Using that 6(0) = 1/2, we can infer

Po(Le) o< p +p. (20)

Accordingly, po(¢.) and p;(¢.) are orthogonal,
(Po(Lo), P1(L)) o Tr[(p*)’] = Tr[(p™)*] = 0.

since

A

for ¢ = (.
po x py + py

FIG. 1. Sketch depicting the paradigm of a first-order dissipative
phase transition, formally described in Sec. III. In the thermo-
dynamic limit, the Liouvillian gap A = |Re[X,]| closes when the
parameter ¢ of the Liouvillian assumes the critical value .. We
note that for ¢ >~ ¢., we must also have Im[A;] = 0. Right before
(after) the critical point, the steady-state density matrix pg 2 p;
(D5 =~ ,51*'), which represents one of the two different phases of the
system. At the critical point { = ¢, fs, is bimodal: the steady state
is a statistical mixture of p;" and p; .

For large but finite N, provided that |[Re[A,]| > |[Re[A ]| >
0, Egs. (19) and (20) are asymptotic good approximations and,
since p* = ﬁf(gc, N), we get the asymptotic expression

Pl (e N) + by (6e. N)
> )
which ensures Hermiticity and unit trace of the ps,(¢., N). Let
us note that Eq. (21) has a clear physical interpretation: at the
critical point, for a finite-size system, the steady state is the
equiprobable mixture of the two phases, which are encoded
in the spectral decomposition of p;(¢., N). Remarkably, in
a small region on the left (right) of the critical point, p;
(p; ) is metastable. This means that if the system is initialized
in one of these two states it will remain stuck, for a time
proportional to 1/A, before reaching the steady state [62]. This
can give rise to hysterical behavior, typical of first-order phase
transitions [51].
Conversely, if A} =0 in a point, one has to have a first-
order phase transition. A proof can be found in Appendix A 3.

Pss(Ee, N) =~

1)

IV. SECOND-ORDER PHASE TRANSITIONS
WITH SYMMETRY BREAKING

In this section, we will consider second-order dissipative
phase transitions associated with a symmetry breaking. A
symmetry of an open quantum system is described by a
unitary superoperator &/ = V e V! (where V is a unitary
operator and the e in the previous definition means that, upon
the action of the superoperator U/ on a generic operator, the
latter has to be inserted in between V and ‘7‘1) [67], such that

U'cu =r, (22)

or, equivalently, [£, U] = 0. It follows that the matrix rep-
resentations U of U and £ of £ can be simultaneously di-
agonalized. From now on, we will call the symmetry sector
L, the subspace of the Liouville space L spanned by the
eigenmatrices of U/ with eigenvalue u. The existence of a
symmetry means that the Lindblad master equation cannot
mix different symmetry sectors. Therefore £ can be cast in
a block-diagonal form:

L, O 0
o L. ... 0

L=| . . R (23)
0o 0 ... L,

Consider an arbitrary density matrix g which is an eigen-
matrix of U: Up = up. Taking the trace of both sides of the
previous identity, and given the form of I/, one finds u = 1. If
Dss 1s the only eigenmatrix with zero eigenvalue of £ (unique
steady state), it must also be an eigenmatrix of Y. From a
physical perspective, this tells us that the symmetry sector to
which gy, (and therefore py) belongs is always L,—;.

A symmetry-breaking dissipative phase transition is asso-
ciated with the emergence of multiple eigenmatrices of £ with
A; = 0, each of them belonging to a different symmetry sector
L,,. The structure imposed by Eq. (23) is preserved and the
previous considerations still hold. Therefore, gy (belonging to
the symmetry sector L,—;) is still the only eigenmatrix of £
with nonzero trace.
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The block-diagonal structure of the Liouvillian [see
Eq. (23)], together with the previous observations, can play
a fundamental role in reducing the complexity of the problem.
Indeed, by properly exploiting spatial and/or internal sym-
metries, one can explicitly construct the reduced subspace in
which the steady-state density matrix belongs. This can give
a substantial speed-up for algorithms based on Monte Carlo
strategies [68], cluster expansions [69,70], corner methods
[71], and the tensor-network ansatz [72-74].

A. Z, symmetry

Let us consider first a system which has a discrete Z, sym-
metry represented by the superoperator Z, = Z, o Z; Later,
we will deal with the general case of a Z, symmetry. The
symmetry superoperator Z, admits two eigenvalues, namely
+1. For { < ¢. (¢ being the critical parameter) there exists a
unique steady state associated with the eigenvalue Ao = 0 and
Zhpgs = Pss- FOr £ > €., a phase transition with a symmetry
breaking takes place. Consequently, 1o = A; = 0 while g
and p; belong to two different symmetry sectors (cf. Fig. 2).
From these properties, it follows that gy and p; are orthogonal,

for ¢ > ¢

p= D@
J

AN
o)

Q@Q‘Q

| |
UN

FIG. 2. Sketch depicting the paradigm of a second-order dissi-
pative phase transition (cf. Sec. IV), associated with the breaking
of a Z, symmetry (in the sketch n =5). In the thermodynamic
limit, the Liouvillian gap A closes over the whole region ¢ > ¢,
¢ being the critical parameter triggering the transition. Moreover,
one has that Ag, ..., A,y =0 for ¢ > ¢.. When A # 0 (here for
¢ < &), the steady-state density matrix Jy; is monomodal. In the
symmetry-broken phase (A =0 and ¢ > ¢.), pss is an n-modal
statistical mixture of density matrices /5 1, which are mapped one onto
the other under the action of the symmetry superoperator Z,,.

since

(Polor) = (Z2p0lP1) = (Pol Z201) = — (Polpr1),  (24)

where we exploited the Hermiticity of Z,. Similarly,
(ﬁgml) = 0. Since A; = 0 is real and ,61T #* po, the eigenma-
trix p; is Hermitian (lemmas of Sec. Il A). Hence, the density
matrices

~x _ PoE P
Tr [po]
are steady states of the master equation breaking the symme-

try, as Z,p* = pT. From Eq. (24) it follows that 5+ and p~
are orthogonal as well. So we have

(25)

oo pT+p", (262)
procpt —pT (26b)

Thus, we can conclude that the two symmetry-broken
states p* are the two matrices stemming from the spectral
decomposition of gy, i.e., ﬁli [cf. Eq. (12)]. For a finite-size
system, where the steady state is unique,

P Loy N) + Py (8e, N)
] .

Since we are considering a second-order phase transi-
tion, we must ensure that the unique steady state in £
coincides with both the symmetry-breaking steady states in
¢ pss(CT) = pr(e) = p (). Consequently, according
to this discussion, p1({.) = 0. Therefore, a second-order
phase transition is characterized by the coalescence of two
eigenvectors of the Liouvillian, which may give rise to a
Jordan form of the Liouvillian (see Appendix B). In order to
unveil the symmetry breaking in a finite-size system (where
the symmetry is always preserved) one can resort to different
strategies. To identify the critical point, one can use an exter-
nal weak probe which breaks the symmetry (see for example
Refs. [43,69]) and look for divergences in the associated sus-
ceptibility. To characterize the existence of the two (or more)
metastable states which individually break the symmetry, one
can also resort to a quantum trajectory protocol [7]. Indeed,
the dynamics of a single trajectory can explicitly break the
symmetry, even if once the average over many trajectories is
taken, such a symmetry is restored [49,56].

pss (& 2 8e, N) = 27)

B. Z, symmetry

Consider now a generic symmetry superoperator
Z, =7, Z,]; In this case, the Liouvillian can be partitioned
into n blocks, each -characterized by an -eigenvalue
zj=exp[2imj/n], with j=0,1,...,n—1 (.., the
eigenvalues must satisfy the equation z =1). In the
symmetry-broken phase, in each of those blocks there
exists an eigenmatrix p; such that £p; = 0and Z,0; = z; ;.
Lemma 3 of Sec. II A imposes L,@JT. = 0. Moreover, ,6; is also
an eigenmatrix of Z, of eigenvalue z7, since

2,00 = (2.012)) = (Zopi 2)) = 22p).  (@8)
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Note that by definition z; = z,—;, and hence ,6} = pn—j.Asa

particular case, if z; = 2% then p; = ;.
To construct a basis of the degenerate subspace made of
density matrices, consider the operator

2 /0_;‘ A] + pn J ]
Po = — = e = 29
2 il = & el Z2T[ a @
With this choice, 50 is a density matrix, since it is Hermitian

and it has trace 1 (Tr[p;] = Tr[pol8;0). For p1 = Z,po,
one has

+z
Z Y1+ E0) (30)
2Tr o]

v

which is still Hermitian and of unitary trace, and therefore
a density matrix. By iterative application of the symmetry
operator Z,, and since p; # p; ; for i 7& J, one obtains a basis
{p:} of density matrices, with i =0,...,n — 1. In compact
notation, one has

n—1

1/ A
2 =l Zj(l)pj
. 31
ZTf[,Oo] ;Tr[ﬁo] G

Equation (31) can be inverted to obtain p; as a function of f;:

n—1 . n—1 n—1 (Z Z: ),0 n—1 n—1 ZZ 16
x\! 2 \g2j) Py Jj—k"J
2 @A =20 ey = ;
o Y4 Telp) o el
n—1
n n
= - 8jkPj = w7 Pr> (32)
Tr o] ; M Tl
where we used the identity
n—1 s .
i (j—k)\ [
=) (e ) =nd;. (33)
1=0 1=0
We conclude that
n—1 2
@) pi
Or O _ 34
o<y . (34)

=0

Summarizing, we have constructed a basis of {5;} of the
kernel of the Liouvillian made of density matrices such that
Znﬁi = ,3m0d(,~+],,,), as depicted in Fig. 2. This construction
ensures that Z, oy = po. Again, for large enough but finite N,
where the steady state is unique also for ¢ > ¢., we get the
asymptotic expression

n—1 2 2 c,N
P =L N)= Y % (35)

=0

V. APPLICATIONS TO SPECIFIC MODELS

In the following, we will explore some specific models
exhibiting dissipative phase transitions in a thermodynamic
limit. We will show that in the finite-size case, our theory
predicts with high fidelity the form of gy in the vicinity of
the critical point. In particular, we will analyze some systems

for which a brute force diagonalization of the Liouvillian
supermatrix £ is possible.

A. The driven-dissipative Kerr resonator

The first example which we discuss is the general model
of a single driven-dissipative Kerr nonlinear resonator, for
which an exact solution of gy, exists [54]. In a reference frame
rotating at the coherent pump frequency w,, the Hamiltonian
of this system is

H=—Ad'a+ —a'ataa + F@a' + a), (36)

NlQ

where A = w, — w. is the pump-cavity detuning, F is the
driving amplitude, and U quantifies the Kerr nonlinearity. The
operators a' and & are the bosonic creation and annihilation
operators, respectively. The corresponding Lindblad master
equation reads

9p(1) = —ilH, p(H)] + %D[&]ﬁ(r), (37

where y is the dissipation rate of the cavity mode. The
properties of this model, and the emergence of a first-
order phase transition, have been extensively discussed in
Refs. [28,29,31]. A well-defined thermodynamic limit is ob-
tained for |F| — +o0o while keeping U|F|? constant [31].
This is equivalent to expressing nonlinearity and driving am-
plitude in the following form:

U=0U/N, F=FVN, (38)

and letting N — 4-o00. In Fig. 3 we study numerically the
emergence of the first-order phase transition by increasing
N. The top panel shows the mean value of (afa) /N =
Tr [pssatal/N as a function of F/y. The middle panel shows
the rescaled Liouvillian gap —Re[A;/y] as a function of the
rescaled driving amplitude. Such Liouvillian gap tends to
zero in the thermodynamic limit N — +o0, while Im[A;] = 0
around the critical point also for finite N. The bottom panel
of Fig. 3 presents a study of the ﬁdelity between the steady
state Py, and the matrix & = ( + p; )/2, obtained by the
spectral decomposition of p; [Eq (12)]. We recall that the
fidelity is defined as f(p, &) = Tr[v//P /). A fidelity
equal to 1 indicates that the two states are identical. As
the thermodynamical parameter N increases, we notice two
important effects: (i) in the region in which the Liouvillian
gap is minimal the fidelity is maximal; (ii) the region in which
Dss and € are close becomes narrower and narrower. This
is consistent with our general results which are exact in the
thermodynamic limit.

It is interesting now to connect our findings with the
results predicted by mean-field theories. A Gross-Pitaevskii-
like mean-field approximation for the driven-dissipative Kerr
model is known to exhibit bistability, while the full quantum
solution is always unique [54]. In the same way, a Gutzwiller
mean-field theory predicts multiple solutions [33,75]. In
Fig. 4, we investigate the properties of the exact steady state
pss and of the density matrices p;” and p; for a system with
N = 10 as a function of the rescaled driving amplitude F/y .
In the top panel, we plot the mean photon density (afa) /N =
Tr[ata X1/N,for ¥ = pgs, ,61+, p; asindicated in the legend.
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FIG. 3. Numerical results for the driven-dissipative Kerr model.
Top panel: Rescaled number of photons {(af@) /N as a function of
the rescaled driving F/y for different values of N. Middle panel:
—Re[X,/y] (Liouvillian gap) for different values of N. In the se-
lected range of parameters we find that Im[A,] is zero within the nu-
merical error. Bottom panel: The error 1 — f, where f is the fidelity
between the steady-state density matrix gy, and the one reconstructed
via the eigendecomposition of the first eigenstate & = (5;" + 57)/2.
Parameters: A/y = 10, U/y = 10.

To further characterize the nature of ;" in the phase transition,
in the bottom panel we plot the fidelity between pgs and
X =& pf, by [where & = (9 + py)/2]. For F < Fe, ps
is almost exactly 5, . Around the critical point F' >~ F, b
becomes an equal mixture of /31+ and p, . The maximal mixed
character occurs for F = F.. Finally, for F > F., the density
matrix becomes very close to p, . This analysis allows us to
interpret the two stable solutions predicted by the mean-field
approach in terms of the metastable states which compose ;.

B. The driven-dissipative resonator with two-photon pumping

As an example of second-order dissipative phase transi-
tion with symmetry breaking, we will consider the driven-
dissipative Kerr model with two-photon pumping and losses.
In a reference frame rotating at the parametric pump fre-
quency, the Hamiltonian of this system is [29,56]

H=-pd'a+ —a'a'aa + —(a'a' +aa), (39
where G is the two-photon driving amplitude. This time, in
addition to the Hamiltonian and to the one-photon dissipa-

C T T T | | o 15
1
0.5

2 '\’ 5
3 L " P 405
S L — ﬁi"

FIG. 4. Top panel: Average number of photons according to
Dss and pT as a function of the rescaled driving F/y for N = 10
(see definitions in the main text). The dotted line indicates the
Gross-Pitaevskii prediction. Bottom panel: Fidelity f between the
steady-state density matrix A, and a density matrix § = p*, p~, &
[for £ = (6~ + p1)/2] as a function of the rescaled driving F/y.
The transition can be seen as a switching from a region where j~
describes the system to one where the physics is dominated by /.
Even if the region of phase coexistence in ps, is very narrow, p;
describes the physics in a larger region. Parameters are set as in
Fig. 3.

tion superoperator D[a], we will consider also a two-photon
dissipation channel with rate n. The corresponding Lindblad
master equation reads

8p(t) = —i[H, p(0)] + %D[&]ﬁ(t) + gD[&Zm(n. (40)

The analytical solution of the steady state of this model has
been provided in Ref. [55], and the emergence of first- and
second-order phase transitions (according to the value of A)
has been discussed in Ref. [29]. The emergence of a similar
symmetry breaking has been also observed in an equivalent
classical system [76]. The thermodynamic limit of this model
is obtained by expressing U and 7 as

U=U/N, n=i/N, (41)

and considering the limit N — +o0. In this way the ratio
U /n is kept constant. This model has a discrete Z, symmetry,
resulting from the invariance under the transformation a —
—a. The corresponding superoperator 2, is

Zz — ein&fﬁ .efiznﬂd’ (42)
with 25055 = Pys.

In Fig. 5 we show the emergence of a second-order phase
transition by increasing the value of N. The top panel shows
(ata) JN = Tr[pgatal/N as a function of G/y. In the mid-
dle panel we show the rescaled Liouvillian gap —Re[A;/y]
as a function of the rescaled pump amplitude. The abrupt
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FIG. 5. Numerical results for the driven-dissipative two-photon
Kerr model. Top panel: Rescaled number of photons (a'@) /N as
a function of the rescaled driving G/y for different values of N.
Middle panel: —Re[A;/y] (Liouvillian gap) for different values of
N. Bottom panel: The error 1 — f, where f is the fidelity between
the steady-state density matrix P and & = (A1 + py)/2. The curves
are shown in the region where A, is purely real. Parameters: A/y =
—10,U/y =10,7/y = 1.0.

change in the behavior of X indicates the onset of the phase
transition. In the whole region of broken symmetry, the gap
is much smaller than y and A; is real, while p; is a traceless
Hermitian matrix which belongs to the odd symmetry sector
of Z, (2,01 = —p1). The states ,61+ and p; obtained via the
spectral decomposition of p; are such that 2,5, = p; . As
has been shown in Sec. IV, in the symmetry-broken region,
Dss can be constructed as a symmetric mixture of ,6]+ and p; .
As shown in the bottom panel of Fig. 5, this gives an excellent
approximation for the finite-sized systems considered here.
Remarkably, this expression for p;; remains very accurate
even quite far from the thermodynamic limit.

In order to characterize the abrupt change in the behavior
of Ay, which becomes discon_tinuous for N — +o0, we plot
part of the full spectrum of £ for N = 20 across the critical
point. In the top panel of Fig. 6, we show the real part of
the spectrum, while the bottom one reports the imaginary
part. Starting from the imaginary part, we clearly see that
there is a point in which two complex-conjugate eigenvalues
(highlighted by the red line) become real. We call G g(NV) the
point at which this bifurcation happens. Looking at the top
panel, this merging is associated with a change in the behavior
of the real part of those eigenvalues, which split and bifurcate.
The one approaching zero is responsible for the phase transi-

3 10 2030 4
N -

Re[A1/7]

|
—_
S

Im[A; /7]

| | _10
20 25 30

FIG. 6. Liouvillian spectrum in the two-photon Kerr model for
N = 20. Top and bottom panels: Real and imaginary part of the
eigenvalues of £. The dots represent the 10 smallest-modulus eigen-
values obtained by numerical diagonalization. The red lines are a
guide for the eye indicating the two eigenvalues which merge into A;
for G > y. Inset: A log-log plot of AG = Gp(N) — G, (defined in
the text) as a function of the parameter N, showing the power-law be-
havior AG = AN7" with A =21.1 +£0.2 and n = 0.881 £ 0.006.
In the thermodynamic limit, the bifurcation point Gg(N) and the
critical point G, coincide. Same parameters as in Fig. 5.

tion and its associated eigenvector becomes p; = ,61+ — p; for
G > Gp(N). As we saw in Fig 5, it is not clear where the gap
starts to close, but one might guess that it happens when the
two eigenvalues bifurcate. To test this conjecture, in the inset
we plot, as a function of N, the scaling of the bifurcation point
AG = Gp(N) — G, where G, is the critical point extrapo-
lated via the study of the analytic solution for N = 1000. In-
deed, the clear power-law decay of this quantity demonstrates
that the onset of this transition can be understood in terms of
a merging of two eigenvalues. The emergence of criticality
is thus to be associated with a touching of two eigenvalues
in the complex plane. This fact, together with the emergence
of a discontinuity in A; for N — oo, implies that at the
bifurcation point, the Liouvillian becomes nondiagonaliz-
able, resulting in a Jordan structure. This leads to a nonexpo-
nential relaxation dynamics at criticality. To better understand
this behavior, in Appendix B we study an exactly solvable
two-level system which admits a Jordan block structure for
a specific choice of parameters.

Up to now, we considered the case in which an eigenvalue
of the symmetry sector L_; approaches zero, which gives rise
to a symmetry breaking without inducing first-order disconti-
nuities in py,. The two-photon Kerr model is known to present
also a first-order phase transition with symmetry breaking for
A > 0 [29]. Indeed, together with the emerging of a zero in
L_;, the symmetry sector L; acquires two zero eigenvalues
of L: one associated with gy, the other with an eigenmatrix
whose eigenvalue touches zero only at the critical point.
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FIG. 7. Study of the first-order phase transition with symmetry
breaking in the two-photon Kerr resonator. Top panel: Rescaled num-
ber of photons (aa) /N as a function of the rescaled driving G/y
for different values of N. Middle panel: Real part of A, , rescaled by
y for N = 10. The two branches of Liouvillian eigenvalues lead to
the first-order phase transition (red) and a symmetry breaking (blue).
Bottom panel: Average number of photons according to g,; and [);.
Parameters: A/y =10,U/y =10, n/y = 1.0.

This allows a discontinuous behavior of ps; with symmetry
breaking. In Fig. 7 we plot the behavior of the system in such
regime. The top panel shows the emergence of a first-order
phase transition in the rescaled density. In the middle panel,
we plot the real part of the two eigenvalues of the Liouvillian
with the smallest modulus. One presents the phenomenology
we expect from a symmetry breaking: —Re[A;] < y in the
symmetry-broken phase G > G.(N). The other is responsi-
ble for the discontinuous first-order behavior: —Re[A;] < v
only for G ~ G.(N). Indeed, we tested that p; (associated
with X;) satisfies 2,0, = —p;. Moreover, Zg[)li = pf and
Pss = (P17 + p1)/2. As for pa, Z2p, = p, and it cannot be
associated with a symmetry breaking. In the bottom panel we
test the structure of g, in connection to the spectral decompo-
sition of p,: the first-order phase transition can be interpreted
as a switch between p, and p;. The symmetry breaking
emerges in the fact that 55 >~ (p;” + p; )/2. In conclusion, in
these specific numerical examples we recover all the features
predicted by our general theory.

VI. CONCLUSIONS

In this article, we have presented theoretical results for
first- and second-order dissipative phase transitions. Within

a general formalism, we have determined the structure of
the density matrix in the vicinity of a critical point. In
particular, due to the closure of the Liouvillian gap at the
critical point, we have shown how the the steady-state density
matrix is directly related to the eigenmatrix of the Liouvillian
superoperator corresponding to the eigenvalue A; (the one
with the smallest absolute value of the real part). We have
illustrated our general results by considering two specific
quantum optical models, where the emergence of a dissipative
phase transition can be studied analytically and numerically.
Our work provides a general insight into dissipative phase
transitions. Moreover, it gives precise constraints for varia-
tional methods [25,77] to describe critical phenomena in open
quantum systems, whose corresponding ansatz matrices must
satisfy the relations derived in this work.
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APPENDIX A: PROOFS

1. Remarks on the Liouvillian diagonalizability

Generally, the Liouvillian is a non-Hermitian superoper-
ator with a holomorphic dependence on the system parame-
ter(s) ¢. Therefore, there might exist values of ¢ for which
L(¢) is not diagonalizable: this implies the existence of a
degenerate eigensubspace.

The eigenvalues A;(¢) of £(¢) can be _obtained via the
resolution of the characteristic equation det[£(¢) — A; ()] =
0. A well-known result of function theory [64] guarantees
that the roots of this equation are branches of analytic func-
tions of ¢ with, at most, algebraic singularities. Therefore,
the number s of distinct eigenvalues of £(¢) is a constant
except in a countable number of points. This ensures that
if the Liouvillian has a simple spectrum on a finite region
of the parameter space, it will be diagonalizable for any ¢,
except the countable exceptional points. For all the systems
considered in this work, this condition is fulfilled far from the
thermodynamic limit.

2. Proofs of the lemmas in Sec. ITA
Lemma 3. If Lp; = A;p; then Cﬁj = A;",b;. This implies
that, if p; is Hermitian then A; has to be real. Conversely,
if A; is real and of degeneracy 1, p; is Hermitian. If A; has
geometric multiplicity n and L is diagonalizable, it is always
possible to construct n Hermitian eigenmatrices of £ with
eigenvalue ;.
Proof. Thanks to the master equation we have
£,0iT = —i[H, ,ol-T] + E(Za,o;aT — a'a,oiT — ,oiTaTa)
= [—l[H, Hil+ 5(264/%6” —a'ap; — piaTa)]

= (Lp) = A7p). (AD)

If p; is Hermitian, we have X;0; = Lp; = L’,é;[ = )\j‘,@j =
A} pi. Thus, we can conclude A; = A}. Conversely, in the case
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in which X; € R is a simple eigenva}lue (i.e., with degener-
acy 1), we can conclude that §; = /317 , and thus p; is Hermi-
tian. If the eigenvalues have geometric multiplicity n, it may
happen that for some eigenmatrices ﬁj # p;. From Eq. (Al)
it follows 13,51'T = )\,ﬁj . In this case, we can consider the
matrices (p; + ,6;[ )/2 and i(p; — 161.T )/2, which are Hermitian
by construction, and whose eigenvalue is A;.

Lemma 4. If A; =0 has degeneracy n, then there exist
n independent eigenvectors of the Liouvillian (the algebraic
multiplicity is identical to the geometrical one). Therefore,
there exist n different steady states towards which the system
can evolve, depending on the initial condition.

Proof. We will prove this lemma by contradiction. Let
us suppose that the algebraic multiplicity is greater than the
geometrical one (see [63]). Since the dimension of the reduced
space is n, we can write the Liouvillian as a matrix acting on a
basis of vector in this reduced space; i.e., the invariant space of
Mo has a finite dimension. Since we can write the Liouvillian
as a matrix, this means that we can put in its canonical Jordan
form. In other words the Liouvillian acting on the vectors of
this subspace can be decomposed in a diagonal part Apand a
nilpotent matrix N via a similarity transformation S:

L, =S"(Ao+N)

A 1 0 0 0

0 X 1 0 O
S=s7 o s @)

0 0 0 A 1

1 0 0 0 Ao

Of course, the new basis of vectors obtained by the nonunitary
transformation S may not be orthonormal. The time evolution

of the system is given by %', and since Ag and N commute,
one has

eﬁko’ — SfleAgzeNtS

- Nt)? Nty

n!
r l2 ln—l "
1 t 2 n—=D)! nl
0 1 [ ln—Z ln—l
(n=2)! (n—1)!
— S*le)»ot . . . . . .. S.
0 t
L 0 0 1 |

(A3)

Since Ay = 0, the previous expression clearly will cause the
dynamics to diverge, proving the absurd. We stress that this
reasoning cannot be directly extended to A; # 0 nor to infinite
degeneracies n — oo.

3. Vanishing of A, associated with a first-order phase transition

In Sec. IIT we proved that if there is a jump in one observ-
able at the critical point ¢ = ¢, than A; = 0. Here, we prove

that the last condition is also sufficient; i.e., lim A;(¢) =0
{*)é_(?

implies a first-order phase transition.

We will prove this statement by contradiction. Let us
suppose that even if A; = O there is no phase transition. From
the definition (16), we deduce that for any operator 6 in
H & H, (6(¢)) is continuous in ¢.. Hence, we have that also
0o(¢) is continuous. From Lemmas 3 and 4 of Sec. I A,
the eigenstate p;(¢.), being associated with A1(¢.) = 0, exists
and is Hermitian. By exploiting its spectral decomposition,
we can write 01(¢.) = [[)f(g“c) — ﬁf({c)]/ﬁ [we stress that
here we have |57 (5] = 1, and (5 (¢). Ay () = 0 by
construction].

The first part of the proof is to show that pyo(¢.) =
(A1 (L) + b1 (E)1/+/2. Indeed, |p1(L)ll =1 and e“p) =
01. Thus, exploiting the triangular inequality, we have

eﬁ, lafr(é‘c) - ﬁl_(CC)
2

LN + et pr (goll?
2

‘ 2

1= 151N = lle” pr (&)l =

e
~X

< 1. (Ad)

It follows that |e“! ﬁli(cc)n =1 for every time ¢. Hence,
ﬁf({c) must be a linear superposition of eigematrices of the
Liouvillian with zero eigenvalue. Considering that p,(¢.) =
(A (&) = Ay CI/V2, 1 po(Go)ll = 1and (5] (&), Ay (60)) =
0, we obtain Po(&.) = [A (&) + Ay (£)1//2.

Having proved the first part, let us consider the eigende-
composition of p;(¢) around .. Except at the critical point,
we have lim, . «, % p7(¢) = po(¢)/Tr [i]. But, by hypoth-
esis, all function are continuous; hence,

pi (L) = lim lim e“pi(¢) = lim po(¢)/Tr [4]
{—¢ t—00 I

_ A+ hr (@)
5 .

Consequently, we find that at the critical point, p; ({.) =
Py (&.). This statement would require that at & = ¢, p1(¢.) =
0. This statement is absurd, since Lemma 4 of Sec. ITA
guarantees that p;(¢.) is a well-defined eigenvector of the
Liouvillian. Therefore, by the absurd, we deduce that the
function py(¢) cannot be continuous at ¢ = ¢,.

(A5)

APPENDIX B: NONEXPONENTIAL DECAYS
AND JORDAN BLOCKS

In this appendix, we provide a simple analytic example of a
nonexponential decay associated with a Jordan block structure
of the Liouvillian. Let us consider a spin-1/2 subjected to
the action of two competing decay channels whose evolution
obeys (h = 1) [78]

8p(1) = Lp(t) = —ilA, p(t)]) + %D[é‘]ﬁ(t)
+ gD[axmm, (B1)

where H = %6".
obtained as

The steady-state density matrix can be

1 y 0
,Oss—m(o y—{—e)' (B2)
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The eigenvalues of £ are

A =0,
M=—y—§+ y? —o?,
c . . (B3)
)»2——)/—5— Yo — o,
Ay = =2y — €,

which are associated with the following (unnormalized)

eigenmatrices:
R R I [y 0 R 0 Myleltie
X POss = s & ,
Po o P 377 \0 e P1 X )
R O lw-&—m —1 0
P2 X 14 s pP3 X 0 1
1 0

(B4)

The eigenmatrices p, » describe the decay of the 6> compo-
nents with rate A; », while p3 is associated with 6° and A3.

This simple model is particularly interesting since, accord-
ing to the values of the couplings, it can display different
relaxation dynamics toward the steady state:

(1) If y > w the Liouvillian has 4 real distinct eigenvalues
(it is diagonalizable). In this case, the decay at long times will
be exponential. The asymptotic decay rate is Aj.

(2) If y < w the Liouvillian has 4 distinct eigenvalues
(it is diagonalizable), 2 of which are complex conjugate
(A1 = A3). In this case, the decay at long times will be an
exponential decay of magnitude Re[X] = Re[X,] multiplied
by an oscillating term given by Im[A].

(3) If A = wwehave Ay = A, and p; = p»: the Liouvillian
is not diagonalizable but it can be written in a Jordan form.

The presence of a Jordan form has strong consequences for
the long-time dynamics. Indeed, given a general initial state

p(0) = (;* ! a), (B)
the decay of the observables 6 ¥ is given by
Tr[67p(1)] = 2¢~ " {tw(Re[b] + Im[b]) + Re[b]},
Tr[6”p(t)] = 2¢ " {tw(Re[b] + Im[b]) — Re[b]}, (B6)

hence not exponential. However, we stress that the asymptotic
decay rate is A3 for 6° (purely exponential decay). We also re-
mark on the strong similarity between the behavior of A; » and
that of the eigenvalues characterizing a second-order phase
transition. In both cases, a pair of two complex-conjugate
eigenvalues becomes real in proximity to an exceptional point.
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