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Exceptional points and dynamics of an asymmetric non-Hermitian two-level system
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We investigated a damped two-level system interacting with a circularly polarized light as described by
an asymmetric non-Hermitian Hamiltonian. This is a simple enough system to be studied analytically while
complicated enough to exhibit a rich variety of behaviors. This system exhibits a ring of exceptional points in
the parameter space of the real and imaginary dipole couplings where within the ring the energy eigenvalue of
the system does not change. This leads to unstable regions inside the exceptional ring, which is shown using a
linear stability analysis. These unstable regions are unique to gain-loss systems and have the surprising property
that no matter how small the gain/loss ratio, the gain always prevails at long times. We also report on eigenvalue
switching, phase rigidity and dynamics of the system around the exceptional points. We highlight that some of
these properties are different from those in the widely studied case of symmetric non-Hermitian Hamiltonians.
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I. INTRODUCTION

The third postulate of quantum mechanics supposes that
every physical observable has a corresponding quantum me-
chanical (QM) operator. From here, the usual conclusion is
that these QM operators should be Hermitian, thereby leading
to real eigenvalues and observables. Hermiticity is, however,
only a sufficient condition to guarantee real observables. From
such Hamiltonians, equations of motion for the observables
(or the density matrix) can be derived and this master equa-
tion approach applies most naturally to closed quantum sys-
tems. A weaker condition is PT symmetry [1–3], where such
Hamiltonians are non-Hermitian but retain a real eigenvalue
spectrum. For open quantum systems interactions with the
environment can be included by phenomenologically adding
decays to these master equations with appropriate decay rates
being separately estimated from the tunneling or scattering
between system and reservoir. In contrast, non-Hermitian
Hamiltonians incorporate the environment-system interaction
by allowing the eigenvalues to be complex [4,5], where the
imaginary part reflects the dissipation from the system to the
environment [6,7]. The basic assumption of non-Hermitian
formalism (a system embedded in a continuum of scattering
wave functions to which the states of the system are coupled
and into which they can decay) has been experimentally
verified [8].

Examples that illustrate the utility of non-Hermitian quan-
tum theory approaches include phase lapses in mesoscopic
systems [9–11] where quantum phase transitions are experi-
mentally observed in the transmission process in Aharonov-
Bohm rings containing a quantum dot. This phenomenon
can only be explained by considering from the start a non-
Hermitian Hamiltonian [12] which demonstrates resonance
trapping caused by feedback from the environment.

Another counterintuitive example is of dynamical phase
transitions (DPTs). These are phase transitions observed in
open quantum systems between nonanalytically connected

states with respect to some external control parameter. These
transitions are related to the existence of singular points
in non-Hermitian formalism and cannot be explained by a
Hermitian formalism. Near exceptional points, phase rigidity
(see Sec. III) reduces and nonlinearities appear in the system,
which leads to strong mixing of states [13]. In a two-level
system this corresponds to width bifurcation in the vicinity
of exceptional points while for a higher-level system this
means a global spectroscopic redistribution takes place to
dynamically stabilize the system. This results in one state (in
a single-channel case) being strongly coupled to the environ-
ment while all other states are strongly decoupled from the
environment [14,15] and is similar to Dicke superradiance
in optics [16,17]. As reported in Ref. [14], Fermi’s golden
rule is violated in the vicinity of the exceptional point where
a dynamical phase transition happens and is replaced by an
anti–golden rule [17,18].

Some aspects of non-Hermitian quantum mechanics

We now outline a few key properties of non-Hermitian
quantum mechanics which we use in the rest of the paper. For
a thorough introduction to non-Hermitian quantum mechanics
please see Refs. [19,20].

In standard Hermitian quantum mechanics, orthogonality
of the inner product (〈φi |φj 〉 = δi,j , where |φj 〉 are the right
eigenvectors of the Hamiltonian) plays a central role in con-
necting operators to physical observables. In non-Hermitian
quantum mechanics the definition needs to be generalized as
the right eigenvectors no longer form an orthogonal basis.
This generalised inner product is defined as 〈ψi |φj 〉 = δi,j ,
where 〈ψi | are the left eigenvectors of the Hamiltonian. This
formalism is based on biorthogonality, i.e., the orthogonal
relationship between the eigenstates of the operator and its
self-adjoint. This means the eigenstates of an operator are not
necessarily orthogonal to each other but they are orthogonal
to the states of the self-adjoint of the operator. This definition
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also facilitates a smooth transition between conventional
quantum theory and non-Hermitian quantum mechanics in the
limit of vanishing non-Hermiticity. A detailed derivation of
the biorthogonal quantum mechanics formalism is presented
in Ref. [21].

Degeneracy in Hermitian Hamiltonians is different than
non-Hermitian degeneracy, where eigenvectors as well as
eigenvalues coalesce at the degeneracy and thus provide
an incomplete set of basis functions. The Hamiltonian at
these non-Hermitian degeneracies is nondiagonalizable and
known as a defective Hamiltonian in mathematics. These
points in parameter space are called exceptional points after
the pioneering work of Kato [22]. For specific parameter
values, systems containing exceptional points (EPs) exhibit
interesting physics including the divergent Petermann fac-
tor [23,24], loss-induced revival of lasing [25], single-mode
lasers [26,27], dark-state lasers [28], coherent absorption [29],
and unidirectional light propagation [30–32]. It has also been
shown that in addition to the first-order pole in the Green’s
function due to the resonances, at the EP a second-order
pole emerges due to the coalescence of eigenstates which
leads to patterns resembling Fano-Feshbach resonances [33].
In an open quantum system embedded in the continuum of
scattering wave functions it is possible for the states to couple
via the environment thus causing the external mixing of states.
The observable effects of such external mixing and associated
non-Hermitian degeneracies on the resonance structure had
been explored in two- and three-level systems [34]. It is
shown that while the exceptional points do not influence the
dynamics of an open quantum system in a one-channel case
it does lead to observable effects for cases with two or more
channels [34].

The topological properties of the exceptional points have
been studied before [35]. It has been shown that by adia-
batically encircling the exceptional point in parameter space
the eigenvalues and eigenvectors can be permuted; i.e., the
eigenvalues do not traverse in a closed curve in this case. This
only happens when encircling the exceptional point.

All of the studies described above make use of symmetric
(H = H T) non-Hermitian Hamiltonians. In this paper we in-
vestigate an open two-level system interacting with circularly
polarized light which leads to an asymmetric non-Hermitian
Hamiltonian. We find a ring of exceptional points in pa-
rameter space, phase jumps, and divergence of wave-vector
coefficients in the natural basis at the exceptional point. We
study the differences between a symmetric and asymmetric
Hamiltonian with the same coupling intensity, particularly
their dynamics and the stability of solutions in gain-loss
systems. We also find that the definition of phase rigidity has
to be modified to generalize to asymmetric Hamiltonians; i.e.,
the numerator should be replaced by the biorthogonal product.

II. MODEL SYSTEM

The coherent time evolution of a two-level system under
external perturbations can be described by the optical Bloch
equations. There are many systems where the selection rule
for excitation is �Jz = ±1 and these transitions are driven by
elliptically (or circularly) polarized light. We study a two-level
system interacting with a circularly polarized light which can
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FIG. 1. Schematic of a two-level system interacting with left
circularly polarized light (�r − i�i). Decays out of the system are
captured by γ1,2.

be described in the rotating frame by the Hamiltonian [36]

Hh = h̄

[
0 �r − i�i

�r + i�i �

]
, (1)

where � is the detuning between the transition and laser
energies and �r and �i are the real and imaginary parts of the
dipole (Rabi) coupling. This Hamiltonian is self-adjoint, thus
Hermitian, and therefore has real spectrum. Adding diagonal
decay (or gain) to this Hamiltonian leads to an asymmetric
non-Hermitian Hamiltonian,

Hnh = h̄

[ −iγ1 �r − i�i

�r + i�i � − iγ2

]
, (2)

where γ1 and γ2 are the (positive or negative) interactions with
the external bath as indicated in Fig. 1. The Bloch equations
for this system can be derived as usual from the quantum
Liouville equation as⎡

⎢⎢⎣
ṅ1

ṅ2

Ṗr

Ṗi

⎤
⎥⎥⎦ = −

⎡
⎢⎣

2γ1 0 2�i 2�r

0 2γ2 −2�i −2�r

−�i �i γ1 + γ2 �

−�r �r −� γ1 + γ2

⎤
⎥⎦

⎡
⎢⎣

n1

n2

Pr

Pi

⎤
⎥⎦, (3)

where n1(2) are the populations in the ground and excited
states and Pr (i) are the real and imaginary parts of the polar-
ization. The remaining terms are as defined in the Hamiltonian
above. As expected, population decays appear in the diagonal
elements of the equations of motion, in the same way as if
they had been introduced phenomenologically. In contrast to
the optical Bloch equations with linearly polarized light, we
see that both the real and imaginary parts of the polarization
directly drive the populations.

We now explore the exceptional points and excitation dy-
namics of Hnh and make comparisons with symmetric cases.

III. EXCEPTIONAL RING AND PHASE RIGIDITY

The eigenvalues of Hnh are complex and given by

ε± = � − i(γ1 + γ2)

2

±
√

(� − i(γ2 − γ1))2 + 4
(
�2

r + �2
i

)
2

. (4)
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FIG. 2. Real (left) and imaginary (right) parts of one of the
eigenvalues of Hnh plotted in (�r , �i ) parameter space with � = 0
THz and γ1 = 0.3 THz and γ2 = −0.3 THz. We can clearly see the
exceptional ring at |�| = (γ2 − γ1)/2.

Exceptional points arise for parameters for which the term
under the square root goes to zero, i.e.,

� = 0 and �2
r + �2

i = (γ2 − γ1)2

4
. (5)

These conditions correspond to on-resonance excitation and a
matching of the optical Rabi coupling (�) and the differential
gain/loss rate from the two levels. For these parameter values,
the two eigenvectors coalesce into each other and the matrix
is nondiagonalizable, having only one eigenvector. For a fixed
γ1 and γ2 Eq. (5) describes a circle in the (�r ,�i ) parameter
space of radius |γ2 − γ1|/2, also known as an exceptional
ring. Figure 2 shows that inside the ring the real part of the
eigenvalues is zero but the imaginary part varies, while outside
the ring the imaginary part is constant and the real part varies,
consistent with Eqs. (4) and (5).

One of the interesting properties of exceptional points
is that encircling the exceptional point once, in a three-
dimensional parameter space (�,�r ,�i) with either �r or
�i fixed, leads to the swapping of eigenvalues. This is due
to the fact that the instantaneous eigenbasis of non-Hermitian
systems is not single valued when there is an exceptional point
inside the loop [37].

At every fixed value of (�r ,�i ), Hnh has two exceptional
points depending on whether γ2 − γ1 is positive or negative.
The eigenvectors at these two exceptional points are given
by Vnh:

Vnh = 1√
2

[± (�i+i�r )√
�2

r +�2
i

1

]
. (6)

It has been shown that any real symmetric two-level system
will have chiral eigenvalues [38], at the exceptional point, of
the form

Vh = 1√
2

[±i

1

]
. (7)

We notice that while Vnh depends on the ellipticity of the light,
Vh is independent of that. This parameter independence of
the eigenvector is a property of any symmetric non-Hermitian
two-level system. Vnh becomes equivalent to Vh when �i = 0
THz as the Hamiltonian becomes symmetric in this case.
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FIG. 3. The phase rigidity for H ′
nh (top) and for Hnh (bottom).

Parameters are �i = 1 THz, γ2 = 4.4721 THz, and γ1 = 0 THz. The
exceptional points are at �r = ±2 THz. The phase rigidity in red and
blue is calculated using each eigenvector using Eq. (9). The phase
rigidity in black is calculated using a biorthogonal product definition
of phase rigidity [Eq. (8)]. The figure is explained in the text below.

Far from an exceptional point, the states are almost or-
thogonal but as the states approach the exceptional point
they become increasingly linearly dependent and hence their
relative phase changes. This property is quantitatively defined
by the phase rigidity,

ri = 〈ψi |φi〉
〈ψ∗

i |φi〉 , 0 < ri < 1, (8)

which measures the ratio of the c-product and inner product of
a wave function. This ratio can be used to pinpoint the location
of exceptional points in a system as it tends to zero as the sys-
tem approaches the exceptional points. We can see that ri = 1
everywhere for Hermitian systems. In Ref. [14], the analytical
and numerical results of eigenfunctions and eigenvalues of a
non-Hermitian Hamiltonian, phase rigidity, biorthogonality,
and the influence of exceptional points on physical observ-
ables are discussed. For symmetric (non-Hermitian) systems
the conventional definition of phase rigidity is

ri = 〈φ∗
i |φi〉

〈φi |φi〉 , 0 < ri < 1. (9)

We now compare the two phase-rigidity measures, Eqs. (8)
and (9), for Hnh [Eq. (2)] and a comparator-symmetrized
version, namely,

H ′
nh = h̄

[ −iγ1 |�r − i�i |
|�r + i�i | � − iγ2

]
. (10)

This Hamiltonian has exactly the same energy spectrum as
Hnh; i.e., the eigenvalues and EPs are identical in parameter
space. As H ′

nh is symmetric its eigenvectors correspond to Vh

in Eq. (7) at the EP.
As can be seen in the upper panel of Fig. 3, both definitions

(as expected) produce identical results for symmetric Hamil-
tonians with all curves precisely overlapping. In the lower
panel, we can see that the biorthogonal product definition
of phase rigidity [Eq. (8)] leads to the correct calculation of
phase rigidity and thereby correctly identifies the EP location
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at �r = ±2 THz. In contrast the original definition [Eq. (9)]
leads to an incorrect identification of the EP as well as asym-
metry when calculated using each eigenvector. In the symmet-
ric case, the phase rigidity as defined in Eq. (9) reaches zero
when �r = γ2/2; i.e., it in effect ignores the contribution of
�i thus failing to correctly identify the exceptional points in
the system. The asymmetric nature of phase rigidity (blue and
red) in the lower panel of Fig. 3 is due to the asymmetry of
the Hamiltonian which leads to different relationships among
the eigenvectors for parameters in between and outside the
exceptional points (±2 THz). Between the exceptional points
the eigenvectors are complex conjugate of each other, thus
leading to an identical measure of phase rigidity. Outside the
exceptional point region, the eigenvectors are different and
not conjugate pairs which leads to different behavior on either
side of the exceptional points. This problem does not arise
for symmetric Hamiltonians as can be seen from the upper
panel in Fig. 3. We conclude that the biorthogonality-based
definition of phase rigidity [Eq. (9)] works well in all cases
and is an appropriate metric for the identification of EPs.

IV. DYNAMICS

In this section, we present the effects of the exceptional
ring on the dynamics and stability of the system.

A. Comparison between symmetric and asymmetric systems

We first compare the dynamics produced by Hnh and H ′
nh,

two systems with identical spectra and EPs with potentially
different dynamics induced by the asymmetric nature of the
coupling in Hnh. From H ′

nh we obtain the Bloch equations,⎡
⎢⎢⎢⎣

ṅ′
1

ṅ′
2

Ṗ ′
r

Ṗ ′
i

⎤
⎥⎥⎥⎦ = −

⎡
⎢⎢⎢⎣

2γ1 0 0 2|�|
0 2γ2 0 −2|�|
0 0 γ1 + γ2 �

−|�| |�| −� γ1 + γ2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

n′
1

n′
2

P ′
r

P ′
i

⎤
⎥⎥⎥⎦,

(11)

which should be compared to Eq. (3). We solve the Bloch
equations numerically in both cases. The dynamics are shown
in Fig. 4 and clearly the dynamics of both Hamiltonians
are different even though they have the same eigenvalues.
This difference arises as the basis states for the two matrices
are different even though their eigenspectra are identical.
Interestingly, when the initial condition is [1 0] or [0 1], i.e., if
we start with full population in one of the states, the dynamics
are the same in both cases. The origin of this can be found by
comparing the relevant Bloch equations of motion [Eqs. (3)
and (11)] since for such initial conditions the driving terms
are (and remain) identical.

B. Instability ring

In this section we show the existence of an instability ring
inside an exceptional ring in an optical gain-loss system. In
this ring, however small the gain/loss ratio is, the system
always runs away driven by the small gain. This has potential
application in systems with high decay rates. We perform a
linear stability analysis of the Schrödinger equation to find
the instability ring in our system. For the non-Hermitian
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FIG. 4. Populations and polarization dynamics obtained from the
solution of the Bloch equations for the initial conditions (n1 =0.7,
n2 =0.3, PR =0.4583, PI =0). The parameters are �=0 THz, γ1 =
0.025 THz, γ2 = 0.1 THz, �r = 0.08 THz, and �i = 0.25 THz. Blue
and red curves are for H ′

nh while green and black are for Hnh.
Population in ground state (blue, black) and excited state (red, green).
Polarization: real (blue, black) and imaginary (red, green).

Hamiltonian, Hnh [Eq. (2)], expressing the dynamics in the
eigenbasis we obtain for the amplitudes C1 and C2[

Ċ1

Ċ2

]
= −i

[ −iγ1 �r − i�i

�r + i�i −iγ2

][
C1

C2

]
. (12)

Since the Schrödinger equation is linear, the Jacobian can be
written as

J =
[ −γ1 −i�r − �i

−i�r + �i −γ2

]
,

and its eigenvalues are

λ± = −(γ1 + γ2)

2
±

√
(γ2 − γ1)2 − 4

(
�2

r + �2
i

)
2

. (13)

For the system to be stable, all the eigenvalues of the Jacobian
should be negative. Where at least one of the eigenvalues of
the Jacobian is positive, i.e., when

�2
r + �2

i < −γ1γ2, (14)

the solution will be unstable to small perturbations. For this
inequality to be valid, γ1 and γ2 must have opposite signs; i.e.,
it should be a gain-loss system. So the instability ring exists
only in a gain-loss system. This instability ring exists similarly
in the symmetric Hamiltonian H ′

nh with |�| couplings and the
stability condition remains the same as the asymmetric case.

Comparing Eq. (14) with the exceptional ring equality
[Eq. (5)], we can see that the exceptional ring is always larger
than the instability ring. Both rings exactly coincide when the
system has balanced gain and loss (γ1 = −γ2). Figure 5 shows
the ground-state population (the energy level connected to the
sink) of the system inside and outside the instability ring. In
this figure, the loss parameter (γ1) is ten times greater than the
gain parameter (γ2). The instability ring in this case exists at
�r = 0.0316 THz. We can see that inside the ring (blue) the
state ends up gaining exponentially as time passes while for
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FIG. 5. Population of the ground state with time for a gain-loss
system. The parameters are as follows: Initial condition [C1 = 1,
C2 = 0], �i = 0.001 THz, γ1 = 0.1 THz, and γ2 = −0.01 THz. The
instability ring is at �r = 0.0316 THz. Top: Far inside the boundary
of the stability ring (�r = 0.01 THz) and far outside the ring bound-
ary (�r = 0.05 THz). Bottom: Close inside the boundary of the ring
(�r = 0.031 THz) and just outside the ring (�r = 0.032 THz). Note
the difference in time scales in upper and lower panels.

parameters outside the ring the system decays. We can also
see that the farther we move inside the ring, the faster the gain
rate is. This can be seen by comparing blue curves in the lower
and upper panels. The lower panel shows that outside the ring
the population decays exponentially with time. Here, too, the
farther we move outside the ring, the faster the decay is. Thus
even in a case such as this when the decay rate is ten times
larger than the gain rate, the system can exhibit a runaway
unstable behavior.

V. EXPERIMENTAL VALIDATION

This system can be experimentally investigated using a
two-level atom and circularly polarized light. Fixing �r and
setting � = 0 THz, i.e., resonant excitation, and varying �i

within the exceptional ring (e.g., by changing the intensity
of that component) will lead to no changes in the positions

of the absorption spectrum peaks as the real parts of the
eigenvalues do not change within the exceptional ring (see
Fig. 2). The measured absorption peaks will get broadened,
however, as the imaginary part of the eigenvalues do change
within the exceptional ring. So small changes in intensity will
not affect the spectrum until a critical value is reached. After
that point, further increases will lead to splitting of the peaks
but no further broadening as the real parts of the eigenvalues
split outside the exceptional ring but the imaginary parts
there become constant. Whether this is observable obviously
depends on finding a system with sharp enough peaks to
resolve the splitting. Another experiment might be encircling
the exceptional point in �r ,� space, i.e., intensity of light
and the detuning space. Extracting the eigenvalues from the
spectrum [39] generated by this experiment will show the
switching of the eigenvalues.

VI. CONCLUSIONS

We investigated a simple yet rich asymmetric non-
Hermitian model system that can be experimentally verified
using circularly polarized light interacting with a two-level
system. We studied properties of phase rigidity and self-
orthonormality and topological properties around the excep-
tional points. We showed, by comparing with similar symmet-
ric non-Hermitian Hamiltonians, that, so long as the correct
general definition of phase rigidity is used, it can always
correctly identify the location of EPs. We also described an
instability ring inside the exceptional ring where gain always
wins regardless of a large loss channel present in the system.
This has potential applications in systems with high decay
rates because even a small gain can compensate for huge
losses in the system, thus controlling the dynamics.
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