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By considering a solvable driven-dissipative quantum model, we demonstrate that continuous phase transitions
in dissipative systems may occur without an accompanying symmetry breaking. As such, the underlying
mechanism for this type of transition is qualitatively different from that of continuous equilibrium phase
transitions. In our model, the transition is solely a result of the interplay between Hamiltonian and dissipative
dynamics and manifests as a nonanalyticity in the steady state ρ̂ss in the thermodynamic limit. Based on
knowledge from critical classical models we suggest that this behavior derives from a rounding of a first-order
phase transition into a continuous one due to large environment-induced fluctuations. Despite being conceptually
different from the traditional continuous transitions, we show that expectations of local observables can still be
characterized by a set of critical exponents.

DOI: 10.1103/PhysRevA.98.042113

I. INTRODUCTION

The concept of spontaneous symmetry breaking [1] plays
a central role in physics, ranging from classical thermody-
namics to the standard model of high-energy physics. In
the Landau theory of equilibrium phase transitions [2], the
symmetry-broken phase is characterized by a nonzero local
order parameter, while the unordered phase is identified by
a vanishing order parameter. This mean-field theory also
predicts that the physics in the vicinity of the critical points
is entirely described by a few critical exponents. Scale in-
variance and the renormalization group provide additional
understanding of critical behavior and especially its universal
properties; continuous phase transitions (second-order transi-
tions) can be grouped into different universality classes where
their properties depend only on macroscopic properties, i.e.,
dimensionality and symmetries [1]. However, with the discov-
ery of topological phase transitions and Kosterlitz-Thouless
transitions it was understood that not all continuous phase
transitions are accompanied with a symmetry breaking or
a local order parameter [1,3]. For classical systems, it has
also been shown that fluctuations or disorder may “melt” a
discontinuous first-order phase transition into a continuous
one [4].

Recently one type of nonequilibrium phase transitions that
occur in driven-dissipative quantum systems has especially
gained much attention due to its relevance to well-controlled
quantum optical experiments [5–7]. Here the nonanalyticity,
characteristic of the phase transition, appears in the system’s
nonequilibrium steady state (NESS) ρ̂ss rather than its ground
state as for quantum phase transitions [8]. By tailoring the
system-environment couplings and the driving, it is possi-
ble to prepare a desirable ρ̂ss [7] and, hence, also cause
behaviors reminiscent of continuous phase transitions [5].
Naturally, compared to equilibrium phase transitions very
little is known about this new nonequilibrium quantum critical
behavior. Any coupling to an environment will inevitably
introduce additional fluctuations which could alter the critical

exponents [9] and the properties of the phases [10]. In cases
it may even prohibit the build-up of long-range order in the
system [11]. One natural question arises whether fluctuations
due to the surrounding environment may even change the
type of transition, like for classical systems a first-order phase
transition can become continuous by inclusion of fluctua-
tions [4]. The situation becomes more delicate though when
the phase transition itself results from the coupling to the
environment, i.e.. it stems from the interplay between unitary
and dissipative dynamics [10,12,13]. In this scenario the state
ρ̂ss can typically not be linked to phases of the Hamiltonian,
and their properties may be very distinct from equilibrium
states.

The present paper demonstrates that for driven-dissipative
systems continuous phase transitions may occur without any
symmetry breaking. The origin of the transition can be traced
back to a first-order phase transition which turns continuous
in the so-called “bad cavity limit.” In particular we consider
a set of coherently driven two-level “atoms” coupled to a
lossy photon mode. In a strict sense the model cannot be
considered a many-body system, but nevertheless it still shows
quantum properties. More precisely, this is a paradigm setting
for optical bistability [14,15] and where the hysteresis marks
the appearance of a first-order phase transition. In recent
years, optical bistability has been put in the context of NESS
phase transitions [16,17], and especially the role played by
quantum fluctuations has been thoroughly explored [16]. Even
though quantum fluctuations are not strong in our model, we
provide insight into the bistability mechanism. By considering
the bad cavity limit, and as the photon mode is adiabatically
eliminated, one finds an effective model for the atoms with
an analytically solvable steady-state solution. Importantly the
bistability, which at the mean-field level is connected to a
first-order phase transition, turns into a continuous transition.
Thus, like for classical systems [4], our work shows how
the nature of a phase transition can change also in quantum
systems when fluctuations become extensive.
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The paper is structured as follows. In the next section we
first define what is meant with NESS criticality for quan-
tum systems, and then we introduce our model. We give a
derivation of the corresponding Lindblad master equation,
which is helpful when understanding the origin of the phase
transition. The results are presented in Sec. III. First, we
demonstrate the criticality from a mean-field analysis, and
then we switch to the full quantum problem. We show how a
continuous phase transition can result even in a system lacking
any symmetries, and we also discuss the quantum properties,
like entanglement, in the vicinity of this type of critical point.
Finally we conclude in Sec. IV.

II. MODEL SYSTEM

A. Dissipation-driven phase transitions

To date, engineered driven-dissipative systems are mainly
found in the AMO (atomic, molecular, and optical) com-
munity, and especially within trapped ions [7] and cold
atoms [18]. These experiments are well described by a
Markovian-Lindblad master equation [19]

∂

∂t
ρ̂ = L̂[ρ̂]

≡ i[ρ̂, Ĥ ] +
∑

i

γi (2L̂i ρ̂L̂
†
i − L̂

†
i L̂i ρ̂ − ρ̂L̂

†
i L̂i ), (1)

where we have defined the Liouvllian L̂. The first term on
the right represents the unitary evolution generated by Ĥ

(system Hamiltonian plus Lamb shifts), while the second
term incorporates the effects stemming from the coupling to
the environment with the decay rates γi (�0) and “jump”
operators L̂i .

Equilibrium quantum phase transitions can be attributed
nonanalyticity to the ground state for some critical coupling
gc in the thermodynamic limit. For a dissipative system the
ground state is replaced by the steady state ρ̂ss of Eq. (1), and a
phase transition is again marked by a nonanalyticity emerging
in the thermodynamic limit. As for the standard equilibrium
classification of phase transitions, for a continuous (second-
order) NESS phase transition the expectation values of local
observables O = Tr[Ôρ̂ss] should be continuous but with
possible discontinuous first-order derivatives.

For any Hermitian jump operators L̂i = L̂
†
i , the maximally

mixed state ρ̂ss = I/D with D the Hilbert space dimension
is clearly a steady state. If further [Ĥ , L̂i] = [L̂i, L̂j ] =
[L̂i, L̂

†
j ] = 0 ∀i, j the steady states are diagonal in the energy

eigenbasis, i.e., 〈εn|ρ̂ss|εm〉 = pnδnm for some weights pn and
with |εn〉 the nth eigenstate of Ĥ . In particular, the ground
state |ε0〉 is a “dark state” that is transparent to the effect of the
environment. Such a model describes dephasing in the energy
basis, and criticality does not derive from environmental
fluctuations. As an alternative to the above, criticality driven
by the environment stems from noncommutability among Ĥ

and the jump operators [20]. In this scenario, ρ̂ss is not nec-
essarily a simultaneous dark state of the jump operators and
an eigenstate of the Hamiltonian. Regardless of the situation,
the existence and especially the uniqueness of steady states
of Lindblad master equations are relevant questions that have
been explored [21]. It is only recently, however, that general

properties of ρ̂ss in terms of phase transitions and novel phases
of matter have been explored.

B. Derivation of the microscopic model

When understanding how a continuous phase transition,
which is not supported by a symmetry breaking, may arise,
it is insightful to go back to the full Hamiltonian system that
incorporates the full system and its environment. Namely, we
aim at tracing the origin of the transition in the full model and
explore its character in that setting.

We have in mind a set of K two-level atoms that couple
identically to a single-photon mode. The collective atomic
dissipation is generated by photon losses to a zero temperature
environment (an alternative system is considered in Ref. [22]).
The full microscopic Hamiltonian is then decomposed into
three subsystems and their interactions: the atoms, the cavity
photon mode, and the environment,

Ĥ = Ĥat + Ĥcav + Ĥenv + Ĥat−cav + Ĥcav−env. (2)

The environment is as usual taken as a set of modes of the
electromagnetic field

Ĥenv =
∑

k

νkb̂
†
kb̂k (3)

with νk the mode frequencies and b̂
†
k (b̂k) the corresponding

bosonic creation (annihilation) operators. In the rotating wave
approximation (RWA), the cavity-environment coupling is
taken as

Ĥcav−env =
∑

k

λk (b̂†kâ + â†b̂k ), (4)

where â† (â) is the creation (annihilation) operator for a
cavity photon, and λk are the coupling strengths. Following
the standard procedure, i.e., assuming the Born-Markov ap-
proximation and a moderate atom-field coupling, the Lindblad
equation for the atom-cavity system is [19]

∂

∂t
ρ̂ = i[ρ̂, Ĥat + Ĥcav + Ĥat−cav]

+ γ (2âρ̂â† − â†âρ̂ − ρ̂â†â) (5)

Here we have assumed that the environment is at zero temper-
ature T = 0, and γ is the effective photon decay rate.

The idea next is to integrate out the cavity field under
suitable conditions to arrive at an effective model for the set
of two-level atoms. In order to achieve this we envision the
coupling setup schematically presented in Fig. 1. All atoms
are identical and couple identically to all light fields, i.e., we
disregard spatial variations of the fields. Two stable Zeeman
levels |1〉 and |2〉 are Raman coupled with two classical lasers
with amplitudes �1 and �2 via a largely detuned excited
Zeeman level. In addition, another Raman coupling between
the same stable atomic electronic levels is realized with one
classical laser with amplitude �3 and the quantized cavity
model with vacuum Rabi frequency g. This transition is also
assumed off-resonant with the intermediate excited atomic
state. After adiabatically eliminating of the largely detuned
excited states [23] and imposing the RWA, the bare atomic
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FIG. 1. Atomic-level scheme and coupling configuration demon-
strating the two Raman processes; the first is driven resonantly with
two classical lasers, marked by �1 and �2, inducing an effective
direct coupling between the two stable lower atomic levels |1〉 and
|2〉, and the second, also resonant, combines a classical laser �3

with a cavity mode g. After eliminating the excited, far detuned,
atomic hyperfine Zeeman levels we achieve in the RWA two types
of couplings between levels |1〉 and |2〉, one directly proportional
to �1�2 and one proportional to g�3 that is mediated by a cavity
photon emission and absorption.

Hamiltonian reads

Ĥat =
K∑

i=1

ω
1

2
(σ̂+

i + σ̂−
i ) =

K∑
i=1

ωσ̂ x
i ≡ ωŜx, (6)

with σ̂ x
i (= |1〉〈2| + |2〉〈1|) the x-Pauli matrix for atom i,

Ŝα = ∑K
i=1 σ̂ (i)

α with σ̂ (i)
α , α = x, y, z, the collective spin op-

erators, and the Rabi frequency ω ∼ �1�2. The atom-cavity
interaction is of the Jaynes-Cummings type,

Ĥat−cav = G

N∑
i=1

(â†σ̂−
i + âσ̂

†
i ), (7)

and G ∼ �3g and σ̂±
i raising and lowering operators for atom

i. Finally, the bare cavity Hamiltonian is

Ĥcav = νâ†â, (8)

where ν is the photon frequency. In the bad cavity limit,
γ → ∞, the characteristic timescale for the photons is much
shorter than that of the atoms, and we may adiabatically elim-
inate it to derive an effective model for the atoms alone [23].
The steady-state solution for the boson annihilation operator,
considering a zero temperature bath, is [19]

âss = − iG

γ + iν
Ŝ−, (9)

with Ŝ− = ∑N
i=1 σ̂−

i . In the bad cavity limit we may substitute
the photon operators of Eq. (5) with their steady states and
thereby recover an equation containing only atomic operators.
One finds that there is one term ∼(Ŝ2

x + Ŝ2
y ) that scales with

the loss rate as 1/γ , which describes cavity-induced spin flips:
one atom emits a photon that is reabsorbed by a second atom.
However, this term vanishes as γ → ∞, in agreement with
that there is no time for the second atom to reabsorb the
photon before it is lost to the environment. When neglecting
such a photon-induced coupling we arrive at our final model

for the atoms

∂ρ̂

∂t
= iω[ρ̂, Ŝx] + κ

S
(2Ŝ−ρ̂Ŝ+ − Ŝ+Ŝ−ρ̂ − ρ̂Ŝ+Ŝ+). (10)

Here we also introduced the total spin S = K/2. Note that the
strength of the Lindblad coupling κ ∼ G can be controlled (as
can the Rabi frequency ω) by the amplitudes of the driving
lasers, and in particular it does not scale with the photon
loss rate in the bad cavity limit. We also note that a very
similar scheme as the one proposed above has been realized
experimentally [24]. In that experiment a high-Q cavity was
considered, and consequently to realize the dissipative transi-
tion discussed here one would need a larger photon loss rate γ .
Too large of a γ may, however, soften the well-defined cavity
mode frequencies, and the atoms could couple to multiple cav-
ity modes. This is most likely not a severe drawback since we
need not care about the details of the cavity after eliminating
it. Of course, this would probably renormalize the coupling
parameter κ . Furthermore, including counter-rotating terms
in the atom-cavity coupling will result in additional atomic
Lindblad terms, but these should be negligible in the optical
regime where we expect the RWA to be justified.

We end this subsection with a general remark about fully
connected models like the one of Eq. (10). We note that the
ideas of scale invariance and local order parameters rely on
local Hamiltonians, e.g., tight-binding models. At the critical
point the characteristic length diverges as ξ−1 ∼ |g − gc|λ and
the energy gap closes as � ∼ |g − gc|zλ for the dynamical
critical exponent z [8]. For “fully connected models,” i.e.,
all particles are connected, locality is in a strict sense lost.
Nevertheless, it is still possible to show scale invariance and
also to introduce a counterpart of ξ that has been termed the
“coherence number” [25]. In addition, we can still talk about
local observables provided that it can be expressed as a sum
Ô = ∑

i ôi where ôi is restricted to act on particle i. For a
continuous phase transition we thereby require that all local
Ô’s are continuous.

C. Steady-state solution

The model of Eq. (10) was frequently discussed in the
late 1970s in terms of cooperative emission of radiation and
how this relates to optical bistability [26,27]. The model is
analytically solvable in the sense that the (unique) steady
state is obtainable [28]. The Hamiltonian alone, Ĥ = ωŜx , is
trivial, and likewise is the Lindblad part of Eq. (10) on its own.
Energetically the Hamiltonian supports the state |S,−S〉x (the
spins pointing down along the x direction), while the dissi-
pation pushes the state towards |S,−S〉z (the spins pointing
down along the z direction). Any phase transition between
these limiting states is a result of the interplay between the
unitary and dissipative parts of the model; note especially that
[Ŝx, Ŝ−] 	= 0.

The total spin is preserved for Eq. (10), and its unique
steady state can be expressed in terms of the spin operators
as [28]

ρ̂ss = η̂η̂†, (11)
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FIG. 2. Mean-field (a) and full quantum steady-state solutions
(b) as a function of λ. For the mean-field expectations, Sx , Sy , and Sz

are marked in the plot with blue, green, and black, respectively; the
solid lines represent stable solutions and the dashed ones unstable.
The two phases, magnetized and paramagnetic, are marked by I
and II (gray shaded), respectively. In (b) the different curves give
the magnetization Sz for different spins: S = 50, S = 100, S = 200,
S = 400, and S = 1600. The inset shows a closeup of Sz in the
vicinity of the critical coupling, and the arrow indicates the growing
spin sizes S.

where η̂ = 1√
D

∑2S
n=0 ( Ŝ−

g∗ )
n

, g = iωS/κ , and the
normalization

D =
2S∑

m=0

(2S + m + 1)!(m!)2

(2S − m)!(2m + 1)!
|g|−2m. (12)

Various expectations for these exact quantum solutions are
shown in Fig. 2 for different system sizes. In particular, they
are compared to the mean-field solutions derived in the next
section. We may note that the model possesses the dual spec-
tral “symmetry” ω → −ω and Ŝ− ↔ Ŝ+ with corresponding
steady state as (11) with the raising and lowering operators
interchanged.

III. RESULTS AND DISCUSSIONS

A. Mean-field analysis

1. Mean-field solutions

The thermodynamic limit S → ∞ is usually associated
with the classical limit of the spin, and we thereby expect
mean-field methods to correctly predict, for example, critical
exponents. Hence, quantum fluctuations alone cannot cause
the destabilization of the different phases, which is indeed not
uncommon for fully connected models [29].

In the simplest mean-field picture, quantum correlations
are fully discarded, and we treat operators as commuting
quantities. By normal ordering the equations, this is equivalent
to assigning a coherent state ansatz of the state. The resulting
equations of motion follow from ∂tO ≡ ∂t 〈Ô〉 = Tr[Ô∂t ρ̂]
for any operator Ô, e.g., for the spin variables

∂Sx

∂t
= 2

κ

S
SxSz,

∂Sy

∂t
= −ωSz + 2

κ

S
SySz, (13)

∂Sz

∂t
= ωSy − 2

κ

S

(
S2

x + S2
y

)
.

The steady-state solutions (fixed points) for λ ≡ ω/2κ � 1,
taking into account that the total spin is preserved, are

(Sx, Sy, Sz) = S(0, λ,±
√

1 − λ2). (14)

In this regime the system builds up a finite magnetization,
and we thereby call the phase magnetized. The solution Sz =
−√

1 − λ2 turns out stable and with the other unstable (see
the next subsection). In the parameter regime λ � 1 where the
magnetization vanishes, i.e., a paramagnetic phase, the steady
states are

(Sx, Sy, Sz) = S(±
√

1 − 1/λ2, 1/λ, 0). (15)

Here, however, the solutions are not stable (again, see the next
subsection). In fact, neither of the above bifurcations agrees
with the more familiar ones, e.g., pitchfork or Hopf bifurca-
tions [30]. For example, the branches Sx = ±

√
1 − 1/λ2 have

purely imaginary eigenvalues, but this is still not representing
a Hopf bifurcation in the sense that the solutions do not
approach limit cycles. At this level of mean-field study, the
absence of a stable steady state for λ > 1 is clearly in contrast
to the full quantum solution (11). Similar observations have
been found for optical bistability, where on a mean-field
level the solutions form a saddle-node bifurcation, while the
full quantum solution does not show the typical hysteresis
behavior [17]. The steady-state solutions (14) and (15) and
their stabilities are depicted in Fig. 2(a), while in Fig. 2(b) we
depict the corresponding finite system size quantum solutions.

2. Mean-field stability analysis

The stability of the steady-state solutions, Eqs. (14) and
(15), is given by linearizing around these solutions and ex-
ploring the eigenvalues of the corresponding Jacobian [30].
Since the total spin is preserved, it is convenient to turn
to the canonical variables (z, φ) = (cos θ, φ), for which the
equations of motion become

∂z

∂t
= −2κ (1 − z2) + ω

√
1 − z2 sin φ,

(16)
∂φ

∂t
= −ω

z√
1 − z2

cos φ.

θ and φ are the polar and azimuthal angels, and note that z

is identical to the magnetization Sz. In the canonical variables
the fixed points (14) and (15) are

(θ, φ) = (±
√

1 − z2, π/2), (17)

for 0 � λ � 1, and

(θ, φ) = (π/2,±
√

1 − z−2), (18)

for λ � 1.
The Jacobian corresponding to solutions (17) is given by

J =
[±2κ

√
1 − λ 0

0 ±2κ
√

1 − λ

]
, (19)

and it is clear that only the second solution gives negative
eigenvalues and is thereby stable. Thus, while the solutions are
symmetric under the reflection Sz ↔ −Sz, the results from the
stability analysis show that the two solutions are qualitatively
different, which prohibits any such parity symmetry.
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FIG. 3. A schematic figure demonstrating the idea of one “re-
pulsive” (unstable) one “attractive” (stable) fixed point on the phase
space of the spin. This plot corresponds to a coupling λ = 0.35 where
the fixed points are somewhere between the north (south) and east
poles. The system approaches the stable fixed point in a finite time
regardless of its initial state. On a flat phase space there would be a
small set of initial states that would not reach the stable fixed point
in a finite time.

The remaining two solutions, Eq. (18), give the Jacobian

J =
[

0 ±ω
√

1 − λ−1

∓ω
√

1 − λ−1 0

]
(20)

with purely imaginary eigenvalues. This is reminiscent of a
Hopf bifurcation, but contrary to a Hopf here the trajectories
do not approach limit cycles [30]. The appearance of periodic
solutions for λ > 1 was already predicted in Ref. [26] using
a Fokker-Planck method for the Glauber distribution. But the
actual steady states were not identified in that reference.

The equations for z and φ cannot be put on a “potential
form,” i.e., ∂z

∂t
= ∂V (z,φ)

∂φ
and ∂φ

∂t
= − ∂V (z,φ)

∂z
. This, of course,

derives from the dissipative nature of the problem. We may,
however, schematically think of the fixed points as attractors
or repellers on the phase space. Since the phase space is
a sphere, in the magnetized phase we should envision one
repulsive and one attractive point in the sphere along the
yz meridian, as illustrated in Fig. 3. Numerically we have
verified that for random initial states, in a rather short time, the
state approaches the stable fixed point. This fast relaxation of
general states is possible only due to the geometry of the phase
space. On the plane, with one attractive and one repulsive
fixed point, one would most likely find some states that relax
infinitely slowly. The phase space geometry together with that
the model is dissipative most likely explain that the bifurcation
is not one of the standard ones found in textbooks.

B. Critical exponents

The theory of phase transitions predicts universal critical
behavior that can be ascribed a few critical exponents [1]. For
a symmetry-breaking continuous phase transition we expect
that sufficiently close to the critical point any local observable

〈Ô〉 ∝ |λ − λc|β± , (21)

where β± is the exponent depending on if the critical point
is approached from above or below, i.e., the behavior need
not be symmetric. It is unclear whether our phase transi-
tion should obey the same universality, even if it is likely

that the found nonanalyticity also has an algebraic structure
like (21). As pointed out above, by “local” in our model
we mean that Ô = ∑

i ôi with ôi a single-particle operator
acting on atom i. In more general terms, for operators Ĉ =∑

i

∑
j · · · ∑k âi b̂j · · · ĉk expanded in single-particle opera-

tors we define “locality” by the number of single-particle
operators in the product âi b̂j · · · ĉk .

It is clear that the critical point of our model occurs for
λc = 1, and that the mean-field critical exponent for the mag-
netization Sz δ = 1/2. Furthermore, the negative eigenvalues
of the Jacobian (19) define the timescale for relaxing to the
steady state (in the validity regime for the linear expansion).
This tells us that the gap � of the Liouvillian L̂ closes as � ∝
κ
√

1 − λ, i.e., the characteristic timescale T ∝ (1 − λ)−1/2.
The inset of Fig. 2(b) shows a closeup of the magnetization
around the critical point for different system sizes. It suggests
that the mean-field exponent δ = 1/2 becomes exact in the
thermodynamic limit as expected (we have checked this more
systematically via a scaling analysis and indeed found the
critical exponent δ = 1/2).

The spin variances

�Sα = 〈
Ŝ2

α

〉 − 〈Ŝα〉2, α = x, y, z (22)

are examples of the most weakly nonlocal operators, con-
taining only products of single-particle operators. The three
variances for different S are displayed in Fig. 4(a), and the
corresponding exponents in Fig. 4(b). By extrapolating the
results to S = ∞ the three exponents seem to attain different
values and in particular not simple fractional values (see
the figure caption). Normally for fully connected models the
mean-field results are correct, and one could expect simple
fractions for the exponents. In the present model we have seen,
however, that in the paramagnetic phase the mean-field results
do not agree with the full quantum ones; we find different
steady states. Note that to derive the mean-field exponents
for the variances one would need to go beyond the simple
factorization of operators to include products of operators.

We may also consider maximally delocalized observables,
which do not need to be continuous at the critical point. In
Fig. 5(a) the purity [31]

P = Tr
[
ρ̂2

ss

]
(23)

is plotted. The purity is a measure of how mixed the state
is, with P = 1 representing a pure state and P = 1/(2S + 1)
representing the fully mixed state (i.e., the density operator
proportional to the identity matrix). We may alternatively
interpret the purity as the expectation of the state itself, P =
〈ρ̂ss〉. As we see in the figure, when S → ∞ P becomes
discontinuous and jumps from P = 1 in the magnetized phase
to P = 0 in the paramagnetic phase. This is thereby an exam-
ple of an extrinsic quantity that is not continuous across the
critical point. Similar examples can be found in equilibrium
quantum phase transitions like the fidelity susceptibility [32].
If we would instead consider the purity Pq for a single qubit
[see Eq. (27) below], this is a local operator, and we should
not encounter a discontinuity. This is confirmed in Fig. 5(b),
and we in particular see the characteristic cusplike behavior
for a continuous phase transition as S → ∞. This purity is
defined similarly; Pq = Tr[ρ̂2

q ] with ρ̂q the reduced density
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FIG. 4. The spin variances �Sα (α = x, y, z, dotted blue,
dashed green, and solid black, respectively) (a) and their respective
exponents (b) as a function of λ. The different curves in (b) are
the results for S = 50, 100, 200, 400, 1600, and in (a) S = 400.
By extrapolating the results of (b) to S = ∞ one finds βx ≈ 0.54,
βy ≈ 0.48, and βz ≈ 0.46 at the critical point.

operator for a single qubit. A similar behavior is also found
for the purity for a two-qubit state (not shown here), but with
a slightly “sharper” emerging discontinuity.

C. Quantum properties of ρ̂ss

It has been shown that the scaling of entanglement prop-
erties for continuous phase transitions is universal [33]. In
particular, the entanglement is maximized at the critical point,
for both short and infinite range models. For fully connected
models, where mean-field predictions give the correct expo-
nents, nontrivial quantum correlations may exist away from
the critical point also in the thermodynamic limit [34]. In the
present model, where the continuous phase transition emerges
from a first-order phase transition, it is not known how en-
tanglement will depend upon approaching the critical point.
Moreover, the ciriticality itself derives from large fluctuations
from the system’s intrinsic open character, and one could
therefore expect them to completely demolish any quantum
correlations in the thermodynamic limit.

By fully characterizing the entanglement of a multipartite
state we would need to partition it in all possible ways and
calculate the corresponding entanglement between its con-
stituents. Here we focus on qubit-qubit entanglement mea-

0

0.5

1

P

0.9 0.95 1 1.05 1.1

0.8

0.9

1

λ

P q

(b)

(a)

FIG. 5. Purities for the full state ρ̂ss (a) and the single-qubit
reduced state ρ̂q (b) for the same spin sizes S as in Fig. 4 (the arrow
again points in the direction of growing S). In the thermodynamic
limit S → ∞, the purity of the state ρ̂ss shows a steplike behavior
going from a pure to a maximally mixed state. In the same limit
the reduced single-particle state stays continues with, however, a
cusplike behavior.

sured by the negativity [35]

N =
∑

i

|μi | − μi

2
, (24)

where μi is the ith eigenvalue of the partially transposed
reduced density operator ρ̂

TA

2q for the two qubits. Negativity is
both a necessary and sufficient condition to quantify entangle-
ment for pairwise mixed qubit states. As a symmetric state, N
is numerically easy to calculate [36]. In particular the reduced
state becomes

ρ̂2q =

⎡
⎢⎣

v+ x∗
+ x∗

+ u∗
x+ w w x∗

−
x+ w w x∗

−
u x− x− v−

⎤
⎥⎦, (25)

with the elements expressed in the collective spin expectations

v± = S2 − S + 〈
Ŝ2

z

〉 ± 2〈Ŝz〉(S − 1/2)

4(S − 1/2)
,

x± = 2(S − 1/2)〈Ŝ+〉 ± 〈[Ŝ+, Ŝz]+〉
8(S − 1/2)

,

(26)

w = S2 − 〈
Ŝ2

z

〉
4S(S − 1/2)

,

u = 〈Ŝ2
+〉

4S(S − 1/2)
.

From Eq. (25) one also directly obtains the single-qubit re-
duced density operator

ρ̂q =
[

w + v+ x∗
+ + x∗

−
x+ + x− w + v−

]
. (27)

The result for the scaled negativity N = N /max(N ) is shown
in Fig. 6(a) for different system sizes. Away from the critical
point (λ < 1), the negativity scales as N ∼ S−1 with the sys-
tem size, while for the maximum max(N ) ∼ S−0.9 such that
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FIG. 6. Normalized negativity N = N /max(N ) (a) as a measure
of qubit-qubit entanglement and full state spin x-squeezing (b). The
spin sizes are the same as Fig. 5, with the arrow indicating growing
spin sizes. As S → ∞ the entanglement peaks at the critical point
λ = 1. For smaller values of λ the negativity goes asymptotically to
zero. The squeezing is also maximum at the critical point λ = 1 as
S → ∞, and all squeezing is lost beyond the critical point λ > 1 in
the paramagnetic phase.

it actually vanishes identically in the thermodynamic limit.
The inverse scaling ∼S−1 demonstrates the phenomenon of
“shared entanglement,” which states that a large entangle-
ment cannot be obtained among all constituents simultane-
ously [37].

From Fig. 5(b) it is seen that in the thermodynamic limit
the reduced density operators are pure in the magnetized
phase and continuously become more and more mixed in the
paramagnetic phase. At the same time, we saw in Fig. 6(a) that
qubit-qubit entanglement vanishes in the paramagnetic phase
for any S. The fact that Pq = 1 in the thermodynamic limit
in the magnetized phase indicates that there are no quantum
correlations surviving as S → ∞. To explore this further we
consider the spin squeezing [38]

ξ 2 = 2S�S2
n1〈

Ŝn2

〉2 + 〈
Ŝn3

〉2 . (28)

Here n1, n2, and n3 could in principle be any three orthogonal
vectors, but we restrict ourselves to x, y, and z. Whenever
ξ 2 < 1 the state is squeezed, and since spin squeezing acts as
an entanglement witness, the state must be entangled [38,39].

That means that if ξ 2 < 1, the state cannot be composed as
a product state, and hence it embodies some sort of quantum
correlations. For n1 = y, z one finds that ξ 2 > 1 for any S and
λ. However, as demonstrated in Fig. 6(b), for n1 = x ξ 2 <

1 whenever λ < 1 and for all S, and the state is indeed
entangled. In the thermodynamic limit maximum squeezing
is obtained at the critical point, and for smaller couplings λ

the dependence on S is very weak, meaning that the number
of multipartite correlations in the state remains when S is
increased. At first this seems to contradict the results of
Fig. 5(b). However, it must be remembered that ξ 2 says
something about the total number of quantum correlations,
while the purity is for single qubits, and thus even though the
state factorizes in the limit S → ∞, as long as S is finite the
state is not an exact product state, and it comprises the finite
full state entanglement. The fact that both the negativity, and
the squeezing, have a peak at the critical point [22,40] is in
agreement with the general behavior of continuous quantum
phase transitions [33].

D. Absence of symmetry breaking

It is found that Sz obeys the typical behavior for a contin-
uous phase transition; it has a discontinuous first derivative,
and close to the critical point it is determined by a critical
exponent. In fact, any local observable will be continuous.
As a continuous phase transition, and if the system would
obey the Landau paradigm, we expect an accompanying
symmetry breaking. In contrast to Hamiltonian systems, for
an irreversible master equation such as the Lindblad one, a
symmetry does not automatically define a preserved quantity.
More precisely, a symmetry for a Lindblad master equation is
defined as invariance of the Liouvillian L̂ under some unitary
Û , i.e., L̂ is not altered by Ĥ → ÛĤ Û and L̂i → Û L̂iÛ

[41]. The steady-state solutions (14) and (15) are symmetric
under a π rotation around Sy , Sx ↔ −Sx and Sz ↔ −Sz.
This is exactly the aforementioned dual “symmetry,” but it
is evidently not a true symmetry since the two solutions
have different stability properties. In fact, our model lacks
symmetries.

Symmetries are naturally also reflected in the phase space
distributions. For a Z2 symmetry, for example, one finds for
the ground state two blobs with interferences in between.
Thus, by mapping out the phase space distributions as a func-
tion of λ one can identify the phase transition and visualize
possible accompanying symmetry breaking. In NESS phase
transitions where a symmetry breaking occurs one typically
encounters the same qualitative behavior; see, for example,
Ref. [42]. On the other hand, without any symmetries one
should only find a single blob in the phase space distribution
regardless of the phase. However, once crossing the critical
point from the magnetized phase, fluctuations should greatly
set in and start to smear out the distribution. As a demonstra-
tion, we consider the SU (2) Q function defined as [43]

Q(z) = 〈z|ρ̂|z〉, (29)

with the spin coherent state [44]

|z〉 = 1

(1 + |z|2)j

S∑
m=−S

√(
K

S + m

)
zS+m|S,m〉, (30)
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FIG. 7. The Husimi Q function for λ = 0.05 (a, b) and λ = 1.05
(c, d). For the left panel S = 10, and S = 100 for the right panel.
In the first two plots, in the magnetized phase, the state is approx-
imately pure and the fluctuations are quantum. This is particularly
demonstrated in the decreasing number of fluctuations for increasing
S: in the thermodynamic (classical) limit S → ∞ the distribution
would collapse to a single point on the phase space. The last two plots
depict the distributions in the paramagnetic phase, and evidently the
number of fluctuations is considerably larger. These stem from the
openness of the model, and in particular as λ → ∞ or S → ∞ the
state is maximally mixed and the corresponding Q function will be
smeared out entirely over the sphere. The z axis has been flipped in
order to better visualize the distribution.

where z = eiφ tan θ
2 and |S,m〉 is the spin angular momen-

tum state with z-quantum number m. The results for the Q

function for two different spins are shown in Fig. 7 (see
also Ref. [40]). We indeed see no indications of a symmetry
breaking, and it confirms the picture of fluctuations blowing
up in the incoherent paramagnetic phase. In particular, to a
good agreement the size of S determines only the number of
fluctuations in the magnetized phase where we know that in
the classical limit S → ∞ the distribution collapses into a
single point.

Let us now present a picture of how the contin-
uous transition emerges despite no symmetry breaking.
The full system, discussed in Sec. II B, resemblances the
open Dicke model [9], with an additional pump term that
breaks the Z2 parity symmetry characteristic for the Dicke
model [29,45,46]. This leaves a system lacking any symme-
tries, and what one finds is instead a first-order phase transi-
tion that can be identified with optical bistability [14,15]. Op-
tical bistabiity manifests as two stable coexisting mean-field
steady-state solutions for a given pump strength. However, at
a quantum level fluctuations cause an inherent self-averaging
of the two solutions such that a single unique steady state is
found which shows a sudden jump for some critical pump,
i.e., it realizes a NESS first-order phase transition [15,17].
The mean-field solutions survive dynamically as long-lived
metastable states in which the system can jump between due
to the fluctuations. In our situation, even at a mean-field level
the bistability is quenched into a continuous transition, and
it is thereby conceptually different from earlier results on
optical bistability, not only from the fact that it is continu-

ous rather than discontinuous. We note that for equilibrium
classical phase transitions, the passage between first-order and
continuous phase transitions can result from fluctuations or
disorder [4]. For the Potts model or the classical XY model, it
is also known that the order of the phase transition can depend
on system variables, changing from first to second order [47],
and moreover that the emergent continuous transitions can
be characterized by critical exponents. In the bad cavity
limit, environment-induced fluctuations vastly increase, and
it seems that this is what is causing the transition to turn from
a first-order to a continuous one.

Returning to the Dicke model, at the mean-field level it is
known that the Dicke model is critical also for finite photon
losses γ . However, in the bad cavity limit γ → ∞, the critical
coupling becomes infinite [29,45]. This is understood from
the fact that the term describing photon-mediated atom-atom
coupling vanishes in this limit, and it is this term driving the
Dicke phase transition. There is, however, one important point
to be clarified: in the Dicke model there is a term �Ŝz/2
which vanishes in our model as we assume a resonant Raman
coupling between the two levels |1〉 and |2〉 (see Sec. II B).
The critical coupling of the Dicke model is [29,45]

Gc = 1

2

√
�

ν
(ν2 + γ 2), (31)

such that for G < Gc the photon field is in an approximate
vacuum and the spin points to the south pole, and for G >

Gc, the superradiant phase, both the field and the atoms get
macroscopically excited. Note that if we artificially impose
the scaling � → �/γ 2, the critical coupling stays finite in
the bad cavity limit.

When we let the Rabi frequency ω = 0 in our model, i.e.,
turning off one of the Raman couplings, the Hamiltonian
possesses a global continuous U (1) symmetry corresponding
to particle conservation. Even when giving up the RWA, there
is a Z2 parity symmetry that emerges for ω = 0. This sym-
metry is spontaneously broken in the Dicke phase transition,
regardless of whether it is an open or closed model. We may
think of the pump term ωŜx as a transverse field that breaks
this symmetry such that the total Hamiltonian is left with
no symmetries. As a result, we are left with a Hamiltonian
lacking any symmetries, and we thereby cannot expect a
continuous symmetry breaking to occur. So how is it that we
can see a continuous phase transition at all in our effective
model for the atoms?

It has long been known that the closed Dicke model with
a pump term still supports a phase transition [48], but it is no
longer second order but first order. Thus, upon chancing the
pump amplitude the system’s steady state may make a sudden
jump manifested, for example, in a discontinuity in the cavity
field amplitude. Let us analyze the open pumped Dicke model
with the scaling discussed above:

ĤDicke = νâ†â + �

2γ 2
Ŝz + ωŜx + G√

K
(â† + â)Ŝx . (32)

In the quadrature representation, x̂ = (â† + â)/
√

2 and
p̂ = i(â† − â)/

√
2, the mean-field equations of motion
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λ

S z

FIG. 8. Simplified illustration how bistability (first-order phase
transition) turns into a continuous phase transition. For weak photon
losses γ there is a one-to-one mapping between λ and the magne-
tization Sz. Beyond some coupling the system builds up multiple
solutions, and by varying λ the system would show hysteresis.
The larger γ gets, the more close the two solutions, and finally in
the limit γ → ∞ the curves merge and a nonanalyticity appears at
the critical point. We point out that the figure is only for an informa-
tive description and should not be taken as a faithful representation
of our system.

read [29,45]

∂x

∂t
= νp − γ x,

∂p

∂t
= −νx − 2G√

K
Sx − γp,

∂Sx

∂t
= − �

2γ 2
Sy, (33)

∂Sy

∂t
= �

2γ 2
Sx −

(
2Gx√

K
+ ω

)
Sz,

∂Sz

∂t
=

(
2Gx√

K
+ ω

)
Sy.

The analytic expressions for the steady-state solutions are
lengthy and not very informative. Nevertheless, for finite γ

one typically finds hysteresis behavior (optical bistability)
that is often taken as the mean-field precursor of first-order
phase transitions. It is interesting, however, that in the bad
cavity limit, γ → ∞, the two stable solutions merge and the
first-order transition transforms into a continuous one just as
found in our effective model [Eq. (2)].

The above mean-field analysis suggests that the absence of
symmetry breaking in our continuous phase transition derives
from the fact that the transition is a remnant of a first-order
phase transition. More precisely, in the bad cavity limit the
first-order phase transition turns into a continuous one. This
is schematically depicted in Fig. 8; as γ increases the curve
begins to tilt over, and above a certain γc one finds three
solutions for the magnetization signaling hysteresis, and as γ

gets even larger the distance between the two curves narrows
down and the curves stretch out to mimic more a continuous
phase transition. However, it should be stressed that both the
figure and the above analysis are rather simplified. Indeed, the
analysis does not quantitatively reproduce the expectations of
our model (Fig. 1). This is particularly clear when substituting
the steady state x = −2G/

√
K (ν + γ 2/ν) into the last two

equations of (33). The resulting equations of motion for the
spin do not have the same structure as those of the actual

model, Eq. (10). In fact, up to order O(K−1) such a substi-
tution generates an infinite range Ising type interaction ∼Ŝ2

x ,
and the resulting effective spin dynamics is Hamiltonian [49].
Thus, such an approach does not take dissipative evolution
into account and one should instead consider the scheme
explained in Sec. II B, i.e., substitute the photon steady states
into the master equation instead of the mean-field equations
of motion.

IV. CONCLUSION

In this work we considered a driven-dissipative quantum
system that shows evidence of a continuous phase transition
in terms of emergent nonanalytic behaviors in the thermody-
namic limit in both the system state and local observables.
Still the transition cannot be tied to a symmetry breaking as
in the Landau theory of continuous phase transitions. This
is in contrast to the related dissipative Lipkin-Meshkov-Glick
model, which supports a NESS phase transition that breaks a
parity symmetry [40,50]. We argued that the transition stems
from a first-order phase transition that dissolves into a con-
tinuous transition in the bad cavity limit; large environment-
induced fluctuations smear out the discontinuous phase tran-
sition. Indeed, the crossover between discontinuous and con-
tinuous phase transitions is known from classical systems and
derives from large fluctuations. Thus, our results indicate that
similar behavior can also be envisioned in nonequilibrium
quantum phase transitions. In addition, it also predicts a type
of optical bistability that would not manifest as sudden jumps
in the cavity output field.

In order to characterize the properties of the transition, we
introduced a “local” order parameter in the magnetization,
but it should not be taken as an order parameter in the strict
sense since it cannot be associated to a symmetry in the
first place. Recently the physics behind symmetry breaking
in dissipation-driven phase transitions has been explored [51].
Why the present model does not belong to their rather general
results is because it does not support a symmetry to start
with, i.e., one can observe continuous NESS phase transitions
even in systems lacking symmetries. Our critical behavior
is conceptually different from other classical systems where
nonequilibrium phase transitions may take place without
breaking of any symmetry as there the transitions are typically
dynamical, which means that the system evolution can display
nonanalytic behavior upon changing some parameter [52].
As a next step, our results should be tested on more general
grounds, e.g., not for a fully connected model but a local one,
for example, those of Ref. [12]. Due to similarities with the
present model we believe that the same type of behavior will
be recovered also in those models.

The physical realization of our model was discussed in
Sec. II B, and with the present experiments with cold atomic
condensates loaded in optical resonators [53] or Raman cou-
pled cold atomic gases [24,54] it should indeed be possible
to reach the critical point with these setups. Moreover, the
magnetization Sz is directly measurable via either time-of-
flight detection or fluorescence detection in the two respec-
tive experiments. Measuring other local observables follows
directly from applying the desirable pulses first [55].
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