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Determination of weak values of quantum operators using only strong measurements
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Weak values have been shown to be helpful especially when considering them as the outcomes of weak
measurements. In this paper we show that, in principle, the real and imaginary parts of the weak value
of any operator may be elucidated from expectation values of suitably defined density, flux, and Hermitian
commutator operators. Expectation values are the outcomes of strong (projective) measurements, implying that
weak values are general properties of operators in association with pre- and postselection and they need not
be preferentially associated with weak measurements. They should be considered as an important measurable
property which provides added information compared with the “standard” diagonal expectation value of an
operator. As the first specific example we consider the determination of the real and imaginary parts of the weak
value of the momentum operator employing projective time-of-flight experiments. Then the results are analyzed
from the point of view of Bohmian mechanics. Finally, we consider recent neutron interferometry experiments
used to determine the weak values of the neutron spin.
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I. INTRODUCTION

Weak values naturally appear as a result of weak measure-
ment when one considers pre- and postselected systems [1].
For an initial preselected state |�〉 and postselected state |�〉,
the weak value of the operator Â at the time t is defined as
[1,2]

〈Â〉w(t ) = 〈�(t )|Â|�(t )〉
〈�(t )|�(t )〉 . (1)

The relation between weak measurement and weak values
was derived by using a linear approximation to unitary time
evolution when the coupling of the measurement apparatus
to the pre- and postselected system is weak enough [1,3,4].
This is the source of the nomenclature of “weak values.” It is
therefore not surprising that, subsequently, weak values have
commonly been measured using weak measurements (see,
e.g., [5–7]).

The introduction of the weak value concept has had a
profound impact on our understanding of quantum mechan-
ics. It led to the development of new phenomena such as
quantum random walks [8] and superoscillations [9,10]. It
has influenced recent theoretical [11–16] and experimental
[17–20] studies of quantum foundations. The weak value
has been an important tool in the development of precision
measurements [21–25], as well as state [26,27] and process
[28,29] tomography.

Yet the concepts of a weak value and the related weak
measurement are controversial to this very day [30–32]. It has
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been claimed that the definition of a weak value is a mere
generalization of the notion of an expectation value to the
case of differing pre- and postselected states but that it does
not provide much insight into physical reality, e.g., [33–35].
Others note that weak values and weak measurements have
provided and continue to provide interesting physical insights
[3,36–40], going beyond the notion of a generalized expec-
tation value [41]. Yet it is still claimed that since the weak
value is inevitably linked to a weak measurement involving a
“meter,” it depends not only on the measured quantum system
but also on the measuring meter [42].

There has been a growing number of works in recent years
[43–47] which consider inferring weak values using (strong)
projective measurements [48,49], yet not with full generality.
In this paper we prove via a new and general protocol that
both the real and the imaginary parts of weak values can be
obtained in principle through strong projective measurements.
We thereby disconnect the concept of weak value from the
concept of weak measurement, enhancing the validity and
applicability of the former.

The paper is organized as follows. We present in Sec. II the
general formalism for inferring the weak value of any opera-
tor. Then, in Secs. III–VI we consider in detail the special case
of obtaining the weak value of the momentum from projective
measurements of the density and flux operators. We utilize in
our analysis the concept of the transition path time distribution
[50,51], as well as time-of-flight experiments. As the first ap-
plication of our results we revisit in Sec. VII the role of weak
values in Bohmian mechanics. As the second application of
our formalism we analyze in Sec. VIII recent experiments
employing neutron interferometry [48,49]. We end in Sec. IX
with a discussion of the implications of these results for the
general weak value formulation of quantum mechanics.
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We stress that the aim of this work is not to dismiss the
physical origin of weak values as being associated with a
shift of a pointer weakly coupled to a pre- and postselected
system. We find this traditional understanding interesting and
profound. We rather wish to broaden the meaning of weak
values and extend the measurement techniques commonly
used for inferring them.

II. INFERRING WEAK VALUES FROM STRONG
MEASUREMENTS

Consider the operator Â and its weak value as defined in
Eq. (1) for the preselected state |�〉 at time ti and a posts-
elected state |�〉 at time t . The Hermitian density operator
related to the postselected state is by definition

D̂(�) = |�〉〈�|. (2)

We then define a generalized Hermitian “flux” operator asso-
ciated with the postselected state and the operator Â as the
(Hermitian) anticommutator of the operator Â and the density
operator

F̂ (�) = 1
2 {Â, D̂(�)} ≡ 1

2 (ÂD̂(�) + D̂(�)Â†). (3)

We also define the Hermitian commutator operator

Ĉ(�) = 1

2
[iÂ, D̂(�)] ≡ i

2
(ÂD̂(�) − D̂(�)Â†). (4)

It is then a matter of straightforward calculation to prove that

〈�|F̂ (�)|�〉
〈�|D̂(�)|�〉 = Re〈Â(�; �)〉w (5)

and

〈�|Ĉ(�)|�〉
〈�|D̂(�)|�〉 = Im〈Â(�; �)〉w. (6)

We have thus demonstrated in very general terms that the
real and imaginary parts of the weak value of an operator
can be obtained through at most three strong projective mea-
surements. The practical question of how one implements
them for the relevant operators depends on the identity of the
operator Â, as well as the pre- and postselected states, and is
not necessarily trivial. However, any weak value associated
with the operator Â may be inferred in principle from strong
measurements. We now consider the specific example of the
weak value of the momentum operator; this example also
explains why we relate to the anticommutator [Eq. (3)] as a
generalized “flux” operator.

III. MOMENTUM WEAK VALUES THROUGH STRONG
MEASUREMENTS

We limit ourselves to a one-dimensional particle, with mass
M , whose time evolution is determined by the Hamiltonian

Ĥ = p̂2

2M
+ V (q̂ ), (7)

where q̂ and p̂ are the coordinate and momentum operators,
respectively. The density and flux Hermitian operators at point

x are defined, as usual, as

D̂(x) = δ(q̂ − x), (8)

F̂ (x) = 1

2M
[p̂δ(q̂ − x) + δ(q̂ − x)p̂]. (9)

Note the parallelism between these standard definitions and
their generalizations as expressed in Eqs. (2) and (3).

We are interested in the weak value of the momentum at a
postselected point x using the preselected (normalized) state
|�〉:

〈p̂(x; �)〉w = 〈x|p̂|�〉
〈x|�〉 . (10)

It is a matter of straightforward calculation, using Eqs. (2)–(6)
to derive the following three identities:

〈�|D̂(x)|�〉 = |〈x|�〉|2, (11)

〈�|F̂ (x)|�〉
〈�|D̂(x)|�〉 = Re〈p̂(x; �)〉w

M
, (12)

1

2

〈�|[ip̂,D̂(x)]|�〉
〈�|D̂(x)|�〉 = Im〈p̂(x; �)〉w. (13)

This shows explicitly that the real and imaginary parts of the
weak value of the momentum may be determined with only
strong measurements. We now demonstrate, using a transition
path time distribution approach, how one may in principle
measure the flux and Hermitian commutator operators using
strong measurements.

IV. A TRANSITION PATH TIME DISTRIBUTION

We consider a scattering experiment, such that the potential
goes to constant values as x → ±∞. The particle is prepared
initially at time t = 0 to be in state |�0〉 localized around an
initial position y and (positive) momentum py , say to the left
of the potential. The preselected state |�0〉 may, for example,
be the coherent state:

〈q|�0〉 =
(

�

π

)1/4

exp

[
−�

2
(q − y)2 + i

py

h̄
(q − y)

]
. (14)

We then postselect a position x to the right of the potential and
measure the time t at which the particle reaches this position.
In this scenario the weak value of the operator Â at the time t

is defined as

Â = 〈�|Â|�(t )〉
〈�|�(t )〉 . (15)

The probability density ρ(x|t ) for the particle to reach the
position x at the time t is

ρ(x|t ) = |〈x|�t 〉|2, (16)

where

|�t 〉 = exp

(
− i

h̄
Ĥ t

)
|�0〉 (17)

is the time-evolved preselected state. The distribution ρ is
normalized, ∫ ∞

−∞
dxρ(x|t ) = 1. (18)
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One may also define the probability density ρ(t |x) for
the distribution of times at which the particle will reach the
postselected point x. It is given by the transition path time
distribution [50,51]

ρ(t |x) = |〈x|�t 〉|2∫ ∞
0 dt |〈x|�t 〉|2

≡ |〈x|�t 〉|2
N (x)

, (19)

and by definition,

∫ ∞

0
dtρ(t |x) = 1. (20)

ρ(t |x) is termed the transition path time probability distri-
bution associated with the preselected state |�0〉 and the
postselected position x. This time distribution is in principle
measurable by sufficient repetition of a single-atom time-of-
flight apparatus [52], which measures the time t = 0 at which
a particle, prepared in state |�0〉, exits a source [53] and then
the time t at which it reaches the detector located at x.

To measure ρ(t |x) at any point x, one may place a detector
at x and divide a reasonably long time interval T into N equal
steps tn = n�T , where n ∈ N, such that N�T = T . This will
enable one to obtain in a coarse-grained fashion the spatial
derivative ∂ρ(t |x)

∂x
of the transition path time distribution using

finite differences �x in space.
Aharonov et al. [54] have shown that the time of arrival

cannot be measured more accurately than �t ≈ h̄/Ek , where
Ek is the initial kinetic energy of the particle. Current detec-
tors of massive particles typically have a temporal resolution
of picoseconds [55], so for a kinetic energy higher than
10−22 J, this temporal resolution can be met. For neutrons, this
implies a nonrelativistic velocity of (at least) v ≈ 350 m/s,
which is not extremely high.

V. INFERRING THE IMAGINARY PART OF THE WEAK
VALUE OF THE MOMENTUM

Consider, then, a time-of-flight measurement of the dis-
tribution, once at x − �x/2 and then at x + �x/2. Noting
that the coordinate representation of the momentum operator
is such that

〈x|p̂|�〉 = −ih̄
∂

∂x
〈x|�〉, (21)

one readily finds that

ρ
(
t |x + �x

2

) − ρ
(
t |x − �x

2

)
�x

	 −∂ ln N (x)

∂x
− 2

h̄
ρ(t |x)Im

[ 〈x|p|�t 〉
〈x|�t 〉

]
+ O(�x). (22)

In most scattering cases, if the postselected position x is
sufficiently far out in the asymptotic region, the normalization

N (x) becomes independent of x [56] so that measuring the
transition path time distribution at the postselected positions
x − �x

2 , x and x + �x
2 allows the direct determination (with-

out invoking weak measurements) of the imaginary part of the
weak value of the momentum at position x,

Im

[ 〈x|p|�t 〉
〈x|�t 〉

]
	 − h̄

2

∂ ln ρ(t |x)

∂x
= − h̄

2

∂ ln ρ(x|t )

∂x
, (23)

and this is identical to the result given in Eq. (13). The time-
of-flight measurement therefore provides an experimentally
implementable protocol for obtaining the imaginary part of
the weak value of the momentum. Even if the normalization
is a function of x it is of course time independent so that it just
serves as a constant baseline which may be subtracted out.

Further notes regarding the imaginary part of the
momentum weak value

One of the challenges posed by weak values is that they are
complex, leading to discussion of the significance of the imag-
inary part. Here, we show how one may relate the imaginary
part of the momentum weak value to a physically measurable
velocity. For this purpose we consider time averaging, for
example, the mean time it takes the particle to reach the
postselected position x:

〈t (x)〉 ≡
∫ ∞

0
dttρ(t |x). (24)

This is an experimentally measurable quantity; it implies
placing a “screen” at position x and then measuring the time
of flight of particles exiting a source and reaching the screen.
The mean time is just 〈t (x)〉 . We can repeat this measurement
at two successive values of x which are close to each other and
in this way also measure how this mean time changes with the
position of the screen. Specifically,

∂〈t (x)〉
∂x

=
∫ ∞

0
dtt

∂

∂x
ρ(t |x)

= − 1

N (x)

∂N (x)

∂x
〈t (x)〉

+ 1

N (x)

∫ ∞

0
dtt

∂|〈x|�t 〉|2
∂x

, (25)

where N (x) has been defined in Eq. (19). On the other hand,
the imaginary part of the weak value of the momentum as seen
from Eq. (22) is

Im〈p̂(x; �t )〉w = − h̄

2|〈x|�t 〉|2
∂|〈x|�t 〉|2

∂x
(26)

so that its time-averaged value is

〈
Im〈p̂(x; � )〉w

〉 ≡
∫ ∞

0
dtρ(t |x)Im〈p̂(x; �t )〉w

= − h̄

2

∫ ∞

0
dt

[
∂ρ(t |x)

∂x
+ ρ(t |x)

∂ ln N (x)

∂x

]

= − h̄

2

∂ ln N (x)

∂x
. (27)
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We thus find that
∂〈t (x)〉

∂x
= 2

h̄
〈Im〈p̂(x; � )〉w〉〈t (x)〉

− 2

h̄

∫ ∞

0
dttρ(t |x)Im〈p̂(x; �t )〉w, (28)

which shows how the imaginary part of the weak value of
the momentum determines ∂〈t (x)〉

∂x
, and this in turn may be

considered as the inverse of a mean velocity of the particle
at the point x.

VI. INFERRING THE REAL PART OF THE WEAK VALUE
OF THE MOMENTUM

Instead of measuring the transition path time distribution as
defined above, one may also measure the number of particles
per unit time arriving at the postselected point x at the time
t . The experiment one has in mind is the following. Initially,
one prepares particles described by the initial wave function
as before. They will escape from the source. The shutter of
the source is opened for a time Dt which is much shorter
than the time it takes them to arrive at the postselected point
x. During this time Dt we assume that Ni particles came
out of the source. This means that, initially, around t = 0 the
number of particles per unit time exiting the source is Ni/Dt .
Now one postselects point x in the asymptotic product region
(to the right of the potential) and measures the number of
particles per unit time crossing this point at time t . This is
the flux of particles at x at time t . Different particles will
arrive at x at different times so that one can measure the
flux distribution at x at time t . In principle, not all particles
will be transmitted. The transmission probability for particles
reaching the postselected point x is by definition the ratio of
the number of particles reaching the screen located at x (Nf )
to the total number of incident particles exiting the source
located at xi (Ni),

T = Nf

Ni

≡
∫ ∞

0 dt〈�t |F̂ (x)|�t 〉∫ Dt/2
−Dt/2 dt〈�t |F̂ (xi )|�t 〉

, (29)

where F̂ (x) is the flux operator defined in Eq. (9).
The analog of the transition path time distribution is

then the normalized flux time distribution at the postselected
point x,

f (t |x) = 〈�t |F̂ (x)|�t 〉
T

∫ Dt/2
−Dt/2 dt〈�t |F̂ (xi )|�t 〉

= 〈�t |F̂ (x)|�t 〉∫ ∞
0 dt〈�t |F̂ (x)|�t 〉

≡ 〈�t |F̂ (x)|�t 〉
Nf

, (30)

and we note that Nf is independent of x due to the conserva-
tion of flux.

Using the definition of the flux operator as in Eq. (9) and
the momentum operator as in Eq. (21), the normalized flux
time distribution may be rewritten as

f (t |x) = N (x)

MNf

ρ(t |x)Re

[ 〈x|p̂|�t 〉
〈x|�t 〉

]
, (31)

and this is identical to the formal result given in Eq. (12). In
words, the real part of the weak value of the momentum at the

postselected point x is proportional to the ratio of the flux and
density time distributions. Hence there is also no need to use
weak measurement to obtain the real part of the weak value of
the momentum.

VII. BOHMIAN TRAJECTORIES AND WEAK
MOMENTUM VALUE TIME EVOLUTION

We now revisit the role of weak values within Bohmian
mechanics in the context of their determination via strong
measurements. We consider a particle with mass M moving
under the influence of a potential energy V (x). In Bohmian
mechanics the time-dependent wave function of the particle is
represented as

〈x|ϕt 〉 =
√

r (x, t ) exp

[
i
S(x, t )

h̄

]
, (32)

where r (x, t ) is a positive function, the density, and S(x, t ) is
a real-valued phase. It is well known that the time-dependent
Schrödinger equation may be written in terms of the time-
dependent density and phase as

∂S(x, t )

∂t
+ 1

2M

[
∂S(x, t )

∂x

]2

+ Veff (x, t ) = 0, (33)

∂r (x, t )

∂t
+ 1

M

∂

∂x

[
r (x, t )

∂S(x, t )

∂x

]
= 0, (34)

where the effective potential is

Veff (x, t ) = V (x) − h̄2

2M
√

r (x, t )

(
d2

dx2

√
r (x, t )

)
. (35)

In Bohmian mechanics the time-dependent momentum is
identified as the spatial derivative of the phase

pB (x, t ) ≡ ∂S(x, t )

∂x
= Re

[ 〈x|p|ϕt〉
〈x|ϕt〉

]
(36)

and this connects the real part of the weak value of the
momentum with the Bohmian momentum. Note, though, that
with this formulation the coordinate x does not vary with time;
it is our postselected point.

One may, however, “measure” the real part of the momen-
tum at different values of the coordinate. Bohmian trajectories
are defined by allowing the coordinate to change with time by
using the classical equation of motion for its time derivative.
One then has the coupled set of equations

M
dx

dt
= pB, (37)

dpB

dt
= −dVeff (x)

dx
, (38)

and these define the Bohmian trajectory x(t ), pB (t ).
If, however, one keeps the postselected coordinate x fixed

in time, one finds that

dpB (x, t )

dt
= d

dt
Re

[ 〈x|p|ϕt〉
〈x|ϕt〉

]
(39)

= − ∂

∂x

(
Veff (x, t ) + p2

B (x, t )

2M

)
, (40)
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and this differs from the time evolution of the Bohmian
momentum. The time evolution of the real part of the weak
value of the momentum at the fixed postselected state |x〉 is
not identical to the time evolution of the momentum of the
Bohmian trajectory.

Suppose, though, that we allow the coordinate to be a
function of time, such that indeed M dx

dt
= pB (x, t ). Then we

have that

dpB (x, t )

dt
= ∂

∂t
Re

[ 〈x|p|ϕt〉
〈x|ϕt〉

]
+ pB(x, t)

M

∂

∂x
Re

[ 〈x|p|ϕt〉
〈x|ϕt〉

]

= − ∂

∂x
Veff (x, t ) (41)

and we have regained the Bohmian trajectory equation. In this
case, the evolution of the coordinate is not through the prop-
agator. If we define the time dependence of the momentum
using the Heisenberg time evolution operator so that

P (x, t ) = Re

[ 〈x|pt|ϕ〉
〈x|ϕ〉

]

= Re

[
〈x| exp

(
i
h̄ Ht

)
p exp

(− i
h̄ Ht

)|ϕ〉
〈x|ϕ〉

]
, (42)

then

dP (x, t )

dt
= Re

[
i

h̄

〈x| exp
(

i
h̄ Ht

)[
H, p

]
exp

(− i
h̄ Ht

)|ϕ〉
〈x|ϕ〉

]

= −Re

⎡
⎣ 〈x| exp

(
i
h̄ Ht

) dV(q)
dq exp

(− i
h̄ Ht

)|ϕ〉
〈x|ϕ〉

⎤
⎦,

(43)

which is just the Ehrenfest equation. When considering the
transition path time distribution we are “measuring” the weak
momentum value at a fixed postselected coordinate x and a
fixed time t . From the Bohmian point of view the transition
path time distribution will then involve contributions from
different Bohmian trajectories. However, one does not need
to determine them to obtain the distribution.

Osmotic velocity and Bohmian potential

In analogy with the Bohmian momentum associated with
the real part of the weak momentum value we may define an
“osmotic” momentum associated with its imaginary part,

pO (x, t ) ≡ − h̄

2r (x, t )

∂r (x, t )

∂x
= Im

[ 〈x|p|ϕt〉
〈x|ϕt〉

]
. (44)

The velocity vO ≡ pO/m is often called the “osmotic”
[60,61] or “diffusive” [62] velocity, as it is related to
changes in the density rather than the phase. Furthermore,
the resulting prefactor D ≡ ih̄/2m is often interpreted as
an imaginary diffusion coefficient within stochastic quantum
mechanics [60].

The kinetic term of the total energy may be defined as
TB = p2

B/2M . Similarly, one may define a nonnegative inter-
nal energy IO = p2

O/2M [63]. This definition is meaningful

because one finds that the mean of the total energy is

〈H 〉 =
∫

�∗(x, t )

(
− h̄2

2M

∂2

∂2x
+ V (x)

)
�(x, t )dx

= 〈TB + IO + V 〉 = const., (45)

which is a conserved quantity. By its definition, the internal
energy IO is related to the quantum potential Q = − h̄2

2mr
∂2r
∂x2 ,

since 〈Q〉 = 〈I 〉. The quantum potential in turn affects the
dynamics of the Bohmian momentum pB :(

∂

∂t
+ pB

∂

∂x

)
pB = − ∂

∂x
(Q + V ). (46)

The imaginary part of the weak momentum value thus reveals
the dynamics underlying the Bohmian trajectories which is
expressed by the real part. Therefore, both real and imaginary
parts of the momentum weak value play important roles in
Bohmian mechanics, and as shown, both can be strongly
inferred.

VIII. NEUTRON INTERFEROMETRY EXPERIMENTS

The purpose of this section is to show the connection
between our formal results and the recent neutron interfer-
ometry experiments reported in Refs. [48] and [49], which
also demonstrate how a strong measurement may be used
to infer weak values. The experiments employ a combined
system and measuring device. The interferometer creates the
neutron “paths” whose two possible “states” are denoted P .
The neutron spin, denoted S, is used as a probe or meter. A
preselected state is prepared as

|�i〉 = |Pi〉|Si〉, (47)

where |Pi〉 are the initial path spin states and |Si〉 the spin
states. In the experiments the initial spin state was chosen to
be positive in the x direction:

|Si〉 = |Sx ; +〉. (48)

The magnetic field is applied in the z direction with a
field strength given by α. After the scattering event is over,
considering only the interaction Hamiltonian, which is linear
in the path and spin operators, they show that the initial
preselected state changes to

|�i (α)〉 = cos
(α

2

)
|Pi〉|Sx ; +〉 − iσ̂ P

z sin
(α

2

)
|Pi〉|Sx ; −〉,

(49)
where σ̂ P

z is the path spin operator in the z direction. The
postselected state in the path direction is denoted |Pf 〉 and
the weak value of interest is

〈
σ̂ P

z

〉
w

= 〈Pf |σ̂ P
z |Pi〉

〈Pf |Pi〉 . (50)

The postselected state of the path and probe can take six
forms,

|�f (j ; ±)〉 = |Pf 〉|Sj ; ±〉, j = x, y, z; (51)

that is, the probe may be strongly measured in any of the
x, y, z directions and may point either up or down.
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Following the notation as in Eqs. (4)–(6), the density
operator associated with the postselected state is

D̂(j ; ±) = |�f (j ; ±)〉〈�f (j ; ±)|, j = x, y, z. (52)

The “flux” operator associated with the density and with the
operator whose weak value is to be determined is

F̂ (j ; ±) = 1

2

[
σ̂ P

z D̂(j ; ±) + D̂(j ; ±)σ̂ P
z

]
, (53)

and finally, the “Hermitian commutator” operator takes the
form

Ĉ(j ; ±) = i

2

[
σ̂ P

z D̂(j ; ±) − D̂(j ; ±)σ̂ P
z

]
. (54)

The strong value of the density in the x direction with pos-
itive spin, using the “time”-evolved preselected state |�i (α)〉
is found, after a bit of algebra, to be

〈�i (α)|D̂(x; +)|�i (α)〉 = cos2
(α

2

)
|〈Pi |Pf 〉|2 ≡ Ix+,

(55)

and this is precisely Eq. (10a) in the paper by Sponar et al.
[49]. The strong value of the flux operator with the probe in
the x direction with positive spin is, similarly, found to be

〈�i (α)|F̂ (x; +)|�i (α)〉 = |〈Pi |Pf 〉|2 cos2
(α

2

)
Re

〈
σ̂ P

z

〉
w
,

(56)

and the Hermitian commutator operator is

〈�i (α)|Ĉ(x; +)|�i (α)〉 = |〈Pi |Pf 〉|2 cos2
(α

2

)
Im

〈
σ̂ P

z

〉
w
.

(57)

Equations (5) and (6) are thus specified to

〈�i (α)|F̂ (x; +)|�i (α)〉
〈�i (α)|D̂(x; +)|�i (α)〉 = Re

〈
σ̂ P

z

〉
w

(58)

and

〈�i (α)|Ĉ(x; +)|�i (α)〉
〈�i (α)|D̂(x; +)|�i (α)〉 = Im

〈
σ̂ P

z

〉
w
. (59)

The experimental setup made it possible to measure only
densities, as given in Eqs. (10a)–(10f) in Ref. [49], not fluxes.
They extracted the real and imaginary parts and the absolute
value of the weak value from a combination of the six den-
sities as given in their Eqs. (11a)–(11c). Specifically, their
Eqs. (10c) and (10d) are (in their notation)

Iy+ − Iy− = sin α|〈Pi |Pf 〉|2Re
〈
σ̂ P

z

〉
w
, (60)

Iz+ − Iz− = sin α|〈Pi |Pf 〉|2Im
〈
σ̂ P

z

〉
w
, (61)

from which we extract

|〈Pi |Pf 〉|2Re
〈
σ̂ P

z

〉
w

= Iy+ − Iy−
sin α

= 〈�i (α)|F̂ (x; +)|�i (α)〉
cos2

(
α
2

) (62)

and

|〈Pi |Pf 〉|2Im
〈
σ̂ P

z

〉
w

= Iz+ − Iz−
sin α

= 〈�i (α)|Ĉ(x; +)|�i (α)〉
cos2

(
α
2

) . (63)

We then have that

〈�i (α)|F̂ (x; +)|�i (α)〉 = 1

2
cot

(α

2

)
(Iy+ − Iy−) (64)

and

〈�i (α)|Ĉ(x; +)|�i (α)〉 = 1

2
cot

(α

2

)
(Iz+ − Iz−), (65)

so that

Re
〈
σ̂ P

z

〉
w

= 〈�i (α)|F̂ (x; +)|�i (α)〉
〈�i (α)|D̂(x; +)|�i (α)〉

= 1

2
cot

(α

2

)Iy+ − Iy−
Ix+

, (66)

Im
〈
σ̂ P

z

〉
w

= 〈�i (α)|Ĉ(x; +)|�i (α)〉
〈�i (α)|D̂(x; +)|�i (α)〉

= 1

2
cot

(α

2

)Iz+ − Iz−
Ix+

, (67)

and these are Eqs. (11a) and (11b) in Ref. [49]. It thus
becomes evident that the real and imaginary components of
the weak spin values which they inferred are obtained through
a strong measurement of the generalized density, flux, and
Hermitian commutator operators.

IX. DISCUSSION

At first, the result that weak measurements are not needed
to obtain weak values might seem surprising. Part of the
motivation for introducing weak measurements was to reveal
information regarding pre- and postselected systems without
changing them much during the process. On the other hand,
strong measurement, almost by definition, alters the system.
However, the strong measurement protocol proposed here
allows us to accurately infer the weak value of the unper-
turbed system because it is executed exactly at the time of
postselection. In a given run of an experiment, this strong
measurement coincides with the projective measurement used
for performing the postselection and hence does not disturb
the initial or final states of the system.

Our protocol is not only consistent with recent experiments
[48,49] employing neutron interferometry, but in fact general-
izes these schemes from discrete operators to any operator.
The comparison with neutron interferometry determination of
weak spin values demonstrates the experimental feasibility
of our protocol. The methods presented in Refs. [46,48,49]
indicate also the possible advantage over the weak measure-
ment technique in terms of precision and accuracy. The pro-
posed protocol still bears some similarity to the case of weak
measurements, as it does necessitate accumulating enough
statistics over a large ensemble of similarly prepared pre- and
postselected states.
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Although appearing ever more frequently in the physics
literature, weak values are still controversial. The question
whether or not they can be strongly measured is still under
debate [57], reflecting on earlier discussions regarding their
conceptual meaning and practical significance. The theorem
derived in this paper provides a new approach for strongly
inferring the weak value of operators based on time-of-flight
measurements. The protocol needs only projective measure-
ments, thus strengthening the status of weak values as pro-
found quantities in the quantum mechanical description of
pre- and postselected systems. The fact that the proposed
protocol also accords well with neutron interferometry ex-
periments [48,49], which showed that strong measurements
of weak values can outperform weak measurements, further
demonstrates the generality of the result and its practical
relevance.

Previously, it was shown using the von Neumann
measurement scheme that the imaginary part of the weak
value arises from the disturbance due to coupling with the
measuring pointer. This part thus reflects how the initial state
is unitarily disturbed by the measured observable [58]. On the
one hand, Eq. (6), which depends on the commutator, accords
with this view, but on the other hand, it suggests an alternative
way to understand the imaginary part in a manner which
does not require an auxiliary measuring pointer. Equations
(5) and (6) show that both the real and the imaginary parts
of the weak value are physically significant and that both
are amenable to direct, strong inference. The experimental
significance of the imaginary part of the momentum weak
value was also discussed.

The importance of the weak value, especially of the
momentum operator, cannot be overstressed. The real and
imaginary parts of the momentum weak value allow the
reconstruction of the wave function since they contain the

necessary information regarding the phase and amplitude
of the wave function, respectively. Specifically, representing
the wave function as �(x, t ) = √

ρ(x, t ) exp [iS(x, t )/h̄], the
phase may be reconstructed from Eq. (12),

S(x, t ) =
∫

Re

[ 〈x|p̂|�t 〉
〈x|�t 〉

]
dx, (68)

and the density from Eq. (13),

ρ(x, t ) = e
− 2

h̄

∫
Im[ 〈x|p|�t 〉

〈x|�t 〉 ]dx
. (69)

The more general Eqs. (5) and (6) allow us in principle to
reconstruct the wave function in any other basis.

Weak values have been also used for reconstructing
Bohmian trajectories, since the real part of the weak value
of the momentum is identical to the Bohmian momentum
[18,59]. The Bohmian approach is also a somewhat different
route towards reconstructing the wave function.

To conclude, we have shown in this paper that weak
values need not be considered only in the context of weak
measurement; they may be inferred directly from a strong
measurement protocol. These results will hopefully pave the
way to a better understanding of weak values, as well as to
feasible strong-measurement-based methods for inferring and
using them in practical applications.
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