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Exceptional points in the Riesz-Feller Hamiltonian with an impenetrable rectangular potential
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The number of bound states in a standard rectangular potential well depends on the potential depth and width.
In an impenetrable one-dimensional rectangular potential well, there are infinite bound states. In this work we
study a non-Hermitian Riesz-Feller kinetic energy; i.e., the second-order derivative of the standard kinetic energy
operator is replaced by a fractional, αth-order derivative. We show that for α < 2 a particle in an impenetrable
one-dimensional rectangular potential well contains a finite number of bound states and an infinite number of
metastable decaying states. The transitions from bound states to metastable decaying states occur at α values that
correspond to exceptional points, for which two bound states coalesce. Our findings indicate that one can describe
a transition of highly excited bound states to metastable decaying states, for example due to the interactions of
atoms and molecules with the environment, by using the Riesz-Feller kinetic energy operator rather than the
standard one.
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I. INTRODUCTION

The quantum well has important applications and theo-
retical value. In a quantum well semiconductor, a very thin
layer of a small band gap material is sandwiched between
two layers of a larger band gap material. Potential wells are
established for electrons, at the top of the valence band and
for the holes, at the bottom of the conduction band. Due to
the electron and hole confinement in these potential wells
and since the semiconductor dimension is comparable to the
electron and hole de Broglie wavelength, energy levels of
electrons and holes show very marked quantum-size effects.
Semiconductor quantum wells, of either strained or unstrained
type, have become the most widely used semiconductor-laser
materials [1]. To calculate the energy levels of both electrons
and holes in the corresponding quantum well, one uses the
simplified assumption of infinite well depth. The Bloch wave
functions, in both the conduction and valence bands, can then
be written as eigenfunctions of the infinite square well. The
improvement in optical properties obtained upon going from
bulk material to the corresponding quantum well material is
essentially due to a quantum confinement effect arising from
the fact that one dimension of the semiconductor has become
comparable to the de Broglie wavelength.

It was therefore natural to expand this idea to consider the
other two possible cases of quantum confinement, namely,
quantum wires and quantum dots (extremely small, on the
scale of nanometers, semiconductors), where two or all three
dimensions become comparable to the de Broglie wavelength
[1]. Another application of a one-dimensional particle in a box
is in conjugated polyene systems. The size of the box is taken
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equal to bond distance from one terminus of the polyene to
the other [2].

The number of bound states in a rectangular potential well
in quantum mechanics depends on the potential depth and
width. In particular, if the potential well is finite, the number
of bound states is finite and is accompanied by other kinds of
states, such as antibound and metastable decaying states. At
particular values of the parameters, exceptional points (EPs)
are encountered [3,4]. Very near these exceptional points,
bound states are transformed into antibound states. When
inspecting gradually lower energies below some threshold
energy, it was found [4] that two antibound states suddenly
coalesce, resulting in capture resonances. These nonsmooth
transitions are not typical to other potentials and were consid-
ered nonphysical.

In this work we show that with a non-Hermitian Riesz-
Feller kinetic energy (i.e., with fractional derivative), the
impenetrable one-dimensional rectangular potential well con-
tains a finite number of bound states and an infinite number of
metastable decaying states. More background and references
on the Riesz-Feller derivative are in Sec. II A below. The
problem to determine the eigenfunctions and eigenvalues of
the one-dimensional time-independent fractional Schrödinger
equation with the impenetrable one-dimensional rectangular
potential well is intriguing and possibly still open [5]. In
this work we solve this problem using the impenetrable
one-dimensional rectangular potential well eigenfunctions as
a basis set. By doing so, we assure the same boundary
conditions for the fractional impenetrable one-dimensional
rectangular potential well problem, i.e., that the wave func-
tions vanish on the edges of the box. Matrix elements of
the Riesz-Feller Hamiltonian are calculated with this basis
set in closed form and the resulting matrix Hamiltonian is
diagonalized numerically. We discover that the Riesz-Feller
fractional impenetrable one-dimensional rectangular poten-
tial well possesses exceptional points. Exceptional points
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are spectral singularities that occur generically in eigenvalue
problems depending on a parameter [6–9]. Exceptional points
are featured in quantum phase transitions and quantum chaos,
and they produce dramatic effects in multichannel scatter-
ing, specific time dependence, and more. In nuclear physics
they are associated with instabilities and affect approximation
schemes. Exceptional points could be of interest for weakly
bound states such as halos and nuclei along the drip line
[10]. The special situation of exceptional points is associ-
ated with a branch point in the complex energy plane. With
respect to the c-product defined for non-Hermitian opera-
tors (matrices), the degenerate eigenstate is self-orthogonal
[7].

As a branch point in the spectrum is removed by any
infinitesimally small external perturbation, it seems to be
inaccessible experimentally and may be considered just as
a mathematical object rather than a physical one. However,
as shown in [11,12], varying the potential parameters reveals
the existence of a branch point in time-independent as well
as in time-dependent measurements of state exchanges in
microwave experiments. Moreover, sufficiently close to the
branch point, the eigenfunctions of the coalescing eigenvalues
are nearly self-orthogonal [7]. By normalizing these nearly
degenerate states to unity, the amplitudes of the wave function
become enormously large sufficiently close to the exceptional
point. In [13] the terminology “self-orthogonality” was first
presented, in order to emphasize the coalescence of the eigen-
states near exceptional points.

As reported in the results (Sec. III) of this paper, we
observe all these effects near the exceptional points of the
Riesz-Feller impenetrable one-dimensional rectangular poten-
tial well.

Indeed, in this work we show that at each exceptional
point of the Riesz-Feller impenetrable one-dimensional rect-
angular potential well, the number of bound states is in-
creased (decreased) by two, and thereby the number of
metastable decaying states is decreased (increased) by two.
At the exceptional point the highest two bound states are
degenerate.

II. THEORY

A. Fractional calculus and the Riesz-Feller derivative

A recent historical survey [14] attributes the birth of
fractional calculus to N. H. Abel. In his article [15] Abel
introduced fractional order integration in the form that is cur-
rently known as the Riemann-Liouville fractional integral, and
fractional-order differentiation in the form that is currently
known as the Caputo fractional derivative. A comprehensive
account of the field is covered in [16] with an early survey
of applications in chapter 10 therein. Fractional calculus was
shown to describe physical phenomena where conventional
approaches have been unsatisfactory. Recent progress in the
theory and mathematical aspects in the field of fractional
calculus have appeared in a series of papers, a special issue
of the Journal of Fractional Calculus and Applied Analysis
[17]. The special issue contains both survey and research
papers on special functions and integral transforms, both very
valuable to the field of fractional calculus. Another collection
of very recent papers encompasses most of the important

areas of fractional calculus research and applications [18]. A
comprehensive and thorough book on the subject can be found
in [19] and the relevance to physics is covered in [20].

Definition of the Riesz-Feller fractional derivative

We use the following convention for the Fourier transform:

f (k) ≡ F {f (x); k} =
∫ ∞

−∞
eikxf (x)dx, k ∈ R, (1)

and the inverse Fourier transform:

f (x) ≡ F−1{f (k); x}

= 1

2π

∫ ∞

−∞
e−ikxf (k)dk, x ∈ R.

(2)

For a sufficiently well-behaved function f (x) the Riesz-Feller
fractional derivative xD

α
θ is defined through [21]

F
{

x
Dα

θ f (x); k
} = −ψθ

α (k)f (k), (3)

where

ψθ
α (k) = |k|αei[sgn(k)]θπ/2, 0 < α � 2,

|θ | � min{α, 2 − α}. (4)

We note further that

xD
α
θ f (x) = F−1{F {x ′Dα

θ f (x ′); k}, x}

= − 1

2π

∫ ∞

−∞
dke−ikxψθ

α (k)
∫ ∞

−∞
eikx ′

f (x ′)dx ′.

(5)

The allowed region for the parameters α and θ turns out to be
a diamond in the plane {α, θ} with vertices in the points (0, 0),
(1, 1), (1,−1), (2, 0) that are called the Feller-Takayasu dia-
mond [22]. Thus, one recognizes that the Riesz-Feller deriva-
tive is a pseudo-differential operator whose symbol ψθ

α (k) is
the logarithm of the characteristic function of a general Lévy
strictly stable probability density with index of stability α and
asymmetry parameter θ (also called skewness). The values
that the index of stability and the asymmetry parameter can
take on have been studied by Takayasu; see the Feller-Takaysu
diamond diagram below:

Feller-Takayasu diamond.

We note the following particular cases of the Riesz-Feller
derivative, namely the standard derivatives, α = 2 and α = 1:

F
{

x
D2

0f (x); k
} = −ψ0

2 (k)f (k) = −|k|2f (k)

= −k2f (k), (6)
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consistent with [F { dn

dxn f (x); k} = (ik)nf (k)]
n=2

,

F
{

xD
1

−1f (x); k
} = −ψ−1

1 (k)f (k) = −|k|e−i[sgn(k)]π/2f (k)

= −|k|{cos[−(sgn k)π/2]

+ i sin[−(sgn k)π/2]}f (k)

= ikf (k), (7)

consistent with [F { dn

dxn f (x); k} = (ik)nf (k)]
n=1

.
Finally, for the special case θ = 0, the Riesz-Feller deriva-

tive reduces to the Riesz derivative. Laskin [23] showed
the Hermiticity of the fractional Hamilton operator based
on the Riesz derivative. As we confirm in this work the
Hamiltonian operator based on the Riesz-Feller derivative is
non-Hermitian, apart from the special cases θ = 0 (the Riesz
derivative) and α = 2 (the standard second-order derivative).
We remark that in this paper we use Eq. (3) as the definition of
the Riesz-Feller derivative, and therefore the Riesz derivative
too. A different definition of the Riesz derivative through
a principal value integral exists in the literature [19]. The
two definitions are equivalent in cases where the argument
of the Fourier transform is infinitely differentiable (belongs
to a Schwartz space), which is not the case for the im-
penetrable one-dimensional rectangular potential well. This
nonequivalence may be one of the origins of the debate, see
[24–26] and references therein, regarding the form of the
eigenvalues and eigenfunctions of the fractional impenetrable
one-dimensional rectangular potential well with the Riesz
derivative. Other aspects of the debate relate to the influence
of using local versus nonlocal boundary conditions. Further
considerations regarding this debate are beyond the scope of
this paper.

B. The Riesz-Feller impenetrable one-dimensional
rectangular potential well

1. Standard square well basis functions

As mentioned in Sec. I, we handle the Riesz-Feller impen-
etrable one-dimensional rectangular potential well problem
using the complete basis set of the standard square well
potential, namely via the eigenvalues and eigenfunctions, see
Appendix A,

〈x|λn〉 = C sin (λnx), λn = nπ

a
, C =

√
2√
a
. (8)

These functions form a complete orthonormal basis set
on the interval [0, a], with the inner product reviewed in
Appendix A,

〈λn′ |λn〉 =
∫ a

0
dx〈λn|x〉〈x|λn〉 = δn′,n. (9)

2. Impenetrable one-dimensional rectangular potential well
with Riesz-Feller fractional derivative

We calculate matrix elements 〈λn′ |Hα|λn〉 of the following
fractional Hamiltonian:

Hα = −FαDα
θ + V (x), (10)

V (x) =
⎧⎨
⎩

∞, x < 0,

0, 0 � x � a,

∞, x > a,

(11)

where Fα is the “quantum diffusion constant” with units
of [ergs1−α cmα sec−α], and Dα

θ is the Riesz-Feller deriva-
tive defined above in Eq. (5). Fα := − 1

2mc2( h̄
imc

)
α

[27], Eq.
(14.11) therein, where m is the “mass” and c is the speed of
light. Using the above square well basis functions of Eq. (8)
ensures boundary conditions in which the wave functions
(eigenfunctions of the fractional hamiltonian Hα ) vanish at
x = 0 and x = a, just as those of the standard impenetrable
one-dimensional rectangular potential well. The problem of
fractional differential equations, such as fractional diffusion,
on bounded domains is nontrivial and was studied for example
in [28,29] and references therein.

The closed form matrix elements in the 〈x|λn〉 basis, as
obtained in Appendix B, Eq. (B14), are

〈λn′ |Hα|λn〉 = Bα (nπ )α

×

⎧⎪⎨
⎪⎩

sin
(
θ π

2

)
2
π

{
1

(n′+n) + 1
(n′−n)

}
; n′ 	= n, n′ + n = odd;

0; n′ 	= n, n′ + n = even;
cos

(
θ π

2

)
; n′ = n;

(12)

where

Bα =
(

1

a

)α

Fα, Fα = −1

2
mc2

(
h̄

imc

)α

. (13)

Clearly, the Riesz Hamiltonian, namely the case θ = 0, is di-
agonal in this basis and obviously Hermitian. Non-Hermitian
behavior is caused by the asymmetry parameter θ 	= 0 of the
Lévy strictly stable probability density. It is instructive to
analyze the units of Bα , namely, Bα in cgs:[

g cm2 s−2

(
g cm2 s−1

g cm s−1

)α] 1

cmα
= [g cm2 s−2(cm)α]

1

cmα

= [g cm2s−2] = [ergs], (14)

Bα in atomic units:[
mebohrs2+α

(
h̄

hartrees

)−2
]

1

bohrsα

=
[
mebohrs2

(
h̄

hartrees

)−2
]

= [hartrees].

(15)

In atomic units h̄ = 1,m is expressed in multiples of the
electron mass me = 1, and the speed of light c ≈ 137.

Bα and 〈λn′ |Hα|λn〉 possess energy units, so that
〈λn′ |Hα|λn〉/Bα is a real nonsymmetric matrix with dimen-
sionless units.

In [30], it was claimed that as the Hamiltonian with the
Riesz-Feller derivative is non-Hermitian, it is not suitable for
describing physical problems. As mentioned above, this is
also the outcome of the present calculation; i.e., the Hamil-
tonian Hα is non-Hermitian. However, this does not mean
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nonphysical, as is emphasized for example in the seminal
review in Ref. [31] and in other recent publications [32,33].

The Feynman path integral approach to quantum mechan-
ics [34] utilizes integration over Brownian-like quantum me-
chanical paths. The Brownian motion is a special case of the
Lévy-stable random process, which corresponds to the Riesz-
Feller derivative defined in Eq. (3). The above model may
serve to describe one-dimensional integration over Lévy-like
quantum mechanical paths of a particle in a box.

C. Exceptional points

As mentioned in the introduction, exceptional points (EPs)
are featured in quantum phase transitions and quantum chaos,
and they produce dramatic effects in multichannel scattering,
specific time dependence, and more. In physics they are
associated with instabilities and affect approximation schemes
[7,8]. Let us denote the eigenvalues of 〈λn′ |Hα|λn〉 in Eq. (12)
by Eα and EαEP at the EP. As we show in the results section,
Sec. III, EPs occur when one gradually increases the value
of α in the range 0 < α � 2. At each EP, the two highest
eigenvalues are degenerate. Furthermore, as the value of α is
increased, more purely real eigenvalues occur, approaching
infinitely many for α → 2, as it should for the standard
impenetrable one-dimensional rectangular potential well. We
expand Eα around EαEP to calculate the following approxima-
tion:

Eα ≈ EαEP + a1
√

α − αEP + a2(
√

α − αEP)2

+ a3(
√

α − αEP)3 + a4(
√

α − αEP)4. (16)

In Eq. (16) the unknowns are a1, a2, a3, a4. We denote the
known values in the above square root expressions by yi :=√
αi − αEP, i = 1, 2, 3, 4, and the corresponding exact eigen-

values by Eαi
, i = 1, 2, 3, 4 (taken to be known in this con-

text) and then collect the latter in a known vector E and the
unknowns in a vector A, namely in

E =

⎛
⎜⎝

Eα1

Eα2

Eα3

Eα4

⎞
⎟⎠, EEP =

⎛
⎜⎝

EαEP

EαEP

EαEP

EαEP

⎞
⎟⎠, A =

⎛
⎜⎝

a1

a2

a3

a4

⎞
⎟⎠. (17)

Using Eq. (16), we obtain the following four equations:

Eα1 ≈ EαEP + a1y1 + a2y
2
1 + a3y

3
1 + a4y

4
1 ,

Eα2 ≈ EαEP + a1y2 + a2y
2
2 + a3y

3
2 + a4y

4
2 ,

Eα3 ≈ EαEP + a1y3 + a2y
2
3 + a3y

3
3 + a4y

4
3 ,

Eα4 ≈ EαEP + a1y4 + a2y
2
4 + a3y

3
4 + a4y

4
4 .

(18)

We further define the matrix

Y =

⎛
⎜⎜⎜⎜⎝

y1 y2
1 y3

1 y4
1

y2 y2
2 y3

2 y4
2

y3 y2
3 y3

3 y4
3

y4 y2
4 y3

4 y4
4

⎞
⎟⎟⎟⎟⎠ (19)

to cast Eq. (18) in matrix form as

E − EEP ≈ YA. (20)

FIG. 1. Neigen, the number of real eigenvalues, is shown as a
function of the fractional derivative order α. At the limit α → 2, the
number of bound states goes to infinity, i.e., Neigen → ∞. The jumps
take place when the two largest real eigenvalues become degenerate.
These degeneracies of the non-Hermitian Hamiltonian when α is
not equal to an integer are exceptional points, EPs, in the spectrum.
As we show later, the corresponding degenerate eigenfunctions
coalesce and the number of linearly independent eigenfunctions and
eigenvectors is smaller than the dimension of the Hamiltonian matrix
constructed with the square well basis functions. Here the number of
square well basis functions is 250, and the size of the square well box
a = 1. The number of real eigenvalues is even for an even number of
basis functions and odd for an odd number of basis functions.

Therefore, the unknown vector A is obtained from

A ≈ Y−1(E − EEP). (21)

Equation (16) is used in the results section, Sec. III, with the
calculated values of the elements of the matrix A in Eq. (21)
to approximate the eigenvalues near the EPs, and then these
approximate values are compared to the exact eigenvalues of
〈λn′ |Hα|λn〉 in Eq. (12).

III. RESULTS

In this section we investigate the properties of the Riesz-
Feller impenetrable one-dimensional rectangular potential
problem using the closed form Eq. (12) for the non-Hermitian
Hamiltonian matrix 〈λn′ |Hα|λn〉. We calculate numerically
the dimensionless eigenvalues Eα/Bα , and the left and right
eigenfunctions of this matrix, 〈ψL

α |x〉 and 〈x|ψR
α 〉, respec-

tively. In the series of Figs. 1–8, we demonstrate the prop-
erties of these eigenvalues and eigenfunctions. In particular,
we show the existence of a finite number of purely real
eigenvalues, in contradistinction to the classical impenetrable
one-dimensional rectangular potential well with the integer
derivative in the kinetic energy term, for which there is an
infinite number of real eigenvalues. We show the dependence
of these eigenvalues and eigenfunctions on the value of the
fractional order α of the derivative in the kinetic energy term.
For gradually increased values of α, in the range 0 < α � 2,
more eigenvalues become real. Furthermore, we prove the
existence of exceptional points (EP) at particular values of
α = αEP. The number of real eigenvalues is abruptly increased
by two at each EP. It is shown that at the EP the highest two
real eigenvalues are degenerate, resulting in enhancements of
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FIG. 2. Imaginary part of low-lying eigenvalues, Im(Eα/Bα )
in dimensionless units, as a function of the real part of these
eigenvalues, Re(Eα/Bα ) in dimensionless units, for α = αEP =
1.68961520687. For this value of α there are 12 real eigenvalues,
the highest two of which are degenerate, at the exceptional point.
The red arrow points to the exceptional point (EP). The number of
square well basis functions is 250, and the size of the square well box
a = 1.

the value of the eigenfunction amplitudes. The consequences
of this enhancement are discussed later in the discussion
section. In passing, the accuracy of the algebraic expansion
near the EP, Eq. (16), is studied.

The number of real eigenvalues Neigen is dependent on
the value of the fractional derivative order α as shown in
Fig. 1. Jumps in this number take place for values of the
derivative order α for which the two largest real eigenvalues
become degenerate. These degeneracies of the non-Hermitian
Hamiltonian matrix 〈λn′ |Hα|λn〉 in Eq. (12), when α is not
equal to an integer, are typical for exceptional points (EPs)
in the spectrum. As we show later, the corresponding de-
generate eigenfunctions coalesce and the number of linearly
independent eigenfunctions and eigenvectors is smaller than
the dimension of the Hamiltonian matrix constructed with the
square well basis functions.

The appearance of an exceptional point is apparent when
displaying the imaginary part Im(Eα/Bα ) as a function of the
real part Re(Eα/Bα ), both in dimensionless units, obtained
from the diagonalization of 〈λn′ |Hα|λn〉/Bα of Eq. (12) [with
Bα of Eq. (13)]. This is shown in Fig. 2 at an exceptional
point value of α = αEP = 1.68961520687. For this value of
α there are 12 real eigenvalues, of which the highest two
are degenerate. The arrow in Fig. 2 points to the exceptional
point degenerate eigenvalues. The eigenvalues to the left of
this point are real (12 bound states for this value of αEP)
and to the right of this point they are complex (metastable
decaying states). The infinite number of metastable decaying
states occur in complex conjugate pairs. Only three of the
metastable decaying state eigenvalues are displayed in Fig. 2.

It is instructive to inspect the largest eigenvalues as a
function of the derivative order α. In Fig. 3, the largest
three real eigenvalues are shown with a full line for each α.
At α = αEP = 1.68961520687 the eigenvalues are real and
degenerate; i.e., this is an exceptional point indicated by the
arrow. The dashed lines indicate the two complex eigenvalues

FIG. 3. Largest 3 real eigenvalues, Re(Eα/Bα ) in dimension-
less units, in blue (dimensionless units) for each α. At α = αEP =
1.68961520687 the eigenvalues are degenerate, i.e., an exceptional
point (EP) indicated by the red arrow. The red dashed lines indicate
the two complex eigenvalues above the largest real eigenvalue; as
can be seen, they possess the same real part in the α range below
the exceptional point. The number of real eigenvalues increases by 2
when increasing α just above αEP. The number of square well basis
functions N = 250, and the size of the square well box a = 1.

just above the largest real eigenvalue. As can be seen, they
possess the same real part in the α range below the EP and
the imaginary parts coalesce to zero above the EP. Clearly, the
number of real eigenvalues increases by 2 when increasing α

just above αEP as was shown also in Fig. 1.
The eigenfunctions of the Riesz-Feller impenetrable one-

dimensional rectangular potential well can be calculated
with the eigenvectors of the the matrix 〈λn′ |Hα|λn〉/Bα

of Eq. (12), In Fig. 4, the top panels display the right
eigenfunctions ψR (x) corresponding to the 12th real eigen-
value of this matrix 〈λn′ |Hα|λn〉/Bα , and the middle pan-
els display the left eigenfunctions ψL(x) corresponding
to the 12th real eigenvalue (using the right eigenvector
of the transposed matrix). The bottom panels display the
products ρ(x) = ψL(x)ψR (x) of these eigenfunctions. The
left-hand bottom panel, α = αEP = 1.68961520687, displays
the exceptional point product ψL

EP(x)ψR
EP(x), for which the

left and right eigenvectors of the matrix are orthogonal,
i.e., the matrix element 〈ψL

αEP
|ψR

αEP
〉 = 2.80111 × 10−08, and

therefore is non-normalizable. The center bottom panel dis-
plays the product ψL(x)ψR (x), for which 〈ψL(x)|ψR (x)〉 =
0.0011524, nonzero and normalizable. The right-hand bottom
panel, α = 2, displays the product ψL(x)ψR (x) for which
〈ψL(x)|ψR (x)〉 = 1, also of course nonzero and normaliz-
able. Note that the eigenfunctions are far from being trigono-
metric in their functional form except for α = 2.

As mentioned earlier, the left and right eigenfunctions,
ψL(x), ψR (x), respectively, are self-orthogonal at the excep-
tional point. This feature is demonstrated in Fig. 5, where
the matrix element 〈ψL(x)|ψR (x)〉 is shown as a function
of α. At the exceptional point αEP = 1.68961520687, the
product 〈ψL

αEP
|ψR

αEP
〉 ∼= 0 meaning that ψL

EP and ψR
EP are or-

thogonal and the corresponding eigenvalues are degenerate.
The two linearly independent solutions are (ψL

αEP
, ψR

αEP
) and

(iψL
αEP

, iψR
αEP

). The left and right eigenfunctions are obtained

042110-5



MICHAEL BERMAN AND NIMROD MOISEYEV PHYSICAL REVIEW A 98, 042110 (2018)

FIG. 4. The top panels display the right eigenfunctions ψR (x )
corresponding to the 12th real eigenvalue of the matrix, and the
middle panels display the left eigenfunctions ψL(x ) corresponding
to the 12th real eigenvalue (right eigenvalue of the transposed ma-
trix). The bottom panels display the products ρ(x ) = ψL(x )ψR (x ).
The left-hand bottom panel, α = αEP = 1.68961520687, displays
the product ψL

EP(x )ψR
EP(x ), for which the left and right eigen-

vectors of the matrix are orthogonal, i.e., the matrix element
〈ψL

αEP
|ψR

αEP
〉 = 2.80111 × 10−08 and therefore is non-normalizable.

The center bottom panel displays the product ψL(x )ψR (x ) for which
〈ψL(x )|ψR (x )〉 = 0.0011524, nonzero and normalizable. The right-
hand bottom panel, α = 2, displays the product ψL(x )ψR (x ) for
which 〈ψL(x )|ψR (x )〉 = 1, also of course nonzero and normalizable.
Note that the eigenfunctions are far from being trigonometric in their
functional form except for α = 2. The number of square well basis
functions N = 250, and the size of the square well box a = 1.

by expanding them in the particle-in-a-box basis functions
where the corresponding coefficients are respectively ob-
tained from the diagonalization of the Hamiltonian matrix
〈λn′ |Hα|λn〉/Bα of Eq. (12) and its transpose.

In Sec. II C an approximate formula for the eigenvalues
near an exceptional point was suggested. This approximation
is demonstrated in Fig. 6, where the largest two real eigen-
values are displayed as a function of α with a thick line. The
approximate calculation for the highest eigenvalue using the
algebraic expansion of Eq. (16) is displayed in dashed curves.
The thin dashed (red) line is with one term in the expansion,
i.e., up to order

√
α − αEP in Eq. (16). The thick dashed

(white) line is the calculated eigenvalue with the four terms
of Eq. (16), i.e., up to order (

√
α − αEP)4. As can be seen,

the latter approximation coincides with the exact largest real
eigenvalue.

For the purpose of demonstrating the behavior and effects
of exceptional points, it is instructive to inspect the ratio
Pα = |〈ψL(x)|ψL(x)〉〈ψR (x)|ψR (x)〉/〈ψL(x)|ψR (x)〉|2 as a
function of α. This is demonstrated in Fig. 7, where the
logarithm of the ratio Pα is shown as a function of α. We note
that in our case the individual states are chosen normalized
to unity, i.e., 〈ψL(x)|ψL(x)〉 = 1 and 〈ψR (x)|ψR (x)〉 = 1.
At the exceptional point α = αEP = 1.68961520687, the ratio
Pα diverges, which is a consequence of the non-normalizable

FIG. 5. The matrix element 〈ψL(x )|ψR (x )〉 as a function of α.
At the exceptional point (EP) αEP = 1.68961520687, the product
〈ψL

αEP
|ψR

αEP
〉 ∼= 0 meaning that ψL

EP and ψR
EP are orthogonal and the

corresponding eigenvalues are degenerate. The two linearly inde-
pendent solutions are (ψL

αEP
, ψR

αEP
) and (iψL

αEP
, iψR

αEP
). The left and

right eigenfunctions are obtained by expanding them in the particle-
in-a-box basis functions where the corresponding coefficients are
respectively obtained from the diagonalization of the Hamiltonian
matrix and its transpose. Here the number of square well basis
functions N = 250, and the size of the square well box a = 1.

product 〈ψL
αEP

|ψR
αEP

〉. As done in the previous figure, the left
and right eigenfunctions are obtained by expanding them in
the particle-in-a-box basis functions where the correspond-
ing coefficients are obtained from the diagonalization of
the Hamiltonian matrix 〈λn′ |Hα|λn〉/Bα of Eq. (12) and its
transpose.

FIG. 6. Largest two real eigenvalues, Re(Eα/Bα ) in dimension-
less units, as a function of α displayed with a thick blue line. The
approximate calculation for the highest eigenvalue using an algebraic
expansion is displayed in dashed white and dashed red curves. The
dashed red line is with one term in the expansion, i.e., up to order√

α − αEP. The dashed white line is the calculated eigenvalue with
four terms, i.e., up to order (

√
α − αEP )4. The latter coincides with

the largest real eigenvalue. The number of square well basis functions
N = 250, and the size of the square well box a = 1.
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FIG. 7. The logarithm of the ratio Pα =
|〈ψL(x )|ψL(x )〉〈ψR (x )|ψR (x )〉/〈ψL(x )|ψR (x )〉|2 as a
function of α. We note that in our case the individual states
are chosen normalized to unity, i.e., 〈ψL(x )|ψL(x )〉 = 1
and 〈ψR (x )|ψR (x )〉 = 1. At the exceptional point (EP)
α = αEP = 1.68961520687, the ratio Pα diverges, which is a
consequence of the non-normalizable product 〈ψL

αEP
|ψR

αEP
〉. The

left and right eigenfunctions are obtained by expanding them
in the particle-in-a-box basis functions where the corresponding
coefficients are respectively obtained from the diagonalization of
the Hamiltonian matrix and its transpose. Here the number of square
well basis functions N = 250, and the size of the square well box
a = 1.

Finally, for the sake of further demonstrating the appear-
ance and behavior of exceptional points, we collect in Fig. 8
the separate real and imaginary values of the first 10 eigenval-
ues and show them as a function of α. The top panel shows
that for each eigenvalue, there is a large enough value of
α, in which the real value splits, reflecting a transition from
complex eigenvalues (where one is a complex conjugate of
the other one) into two distinct real eigenvalues. The splitting
takes place at the exceptional point. The bottom panel shows
the imaginary part of the eigenvalues as a function of α,
showing the fact that the eigenvalues are complex conjugates
of each other and that from a large enough value of α (the EP
point), the imaginary part vanishes.

IV. DISCUSSION AND CONCLUDING REMARKS

In this work we showed that with a non-Hermitian Riesz-
Feller kinetic energy, the impenetrable one-dimensional rect-
angular potential well problem contains a finite number of
bound states and an infinite number of metastable decaying
states. Exceptional points for the Riesz-Feller impenetrable
one-dimensional rectangular potential well problem are iden-
tified. Furthermore, we show physically viable abrupt tran-
sitions from bound states into metastable decaying states as
the order α of the Riesz-Feller derivative is changed. These
exceptional points are a consequence of the non-Hermitian
nature of the Hamiltonian Hα .

We further mention that this non-Hermitian feature re-
sults when the asymmetry parameter θ of the Riesz-Feller

FIG. 8. The real and imaginary values of the first 10 eigenvalues
as a function of α. The top panel shows that for each eigenvalue, there
is a large enough value of α, in which the real value splits, reflecting
a transition from complex eigenvalues (where one is a complex
conjugate of the other one) into two distinct real eigenvalues. The
splitting takes place at the EP. The bottom panel shows the imaginary
part of the eigenvalues as a function of α, showing the fact that the
eigenvalues are complex conjugates of each other and that from a
large enough value of α (the EP point), the imaginary part vanishes.
The number of square well basis functions N = 250, and the size of
the square well box a = 1.

derivative is nonzero. Such asymmetry should be measurable
in applications such as the semiconductor-laser materials and
the conjugated polyene systems mentioned in the introduc-
tion. Our findings show that one can describe a transition
of highly excited bound states of atoms or molecules to
metastable decaying states, as occur for example due to the
interactions with the environment, by using the Riesz-Feller
kinetic energy operator rather than the standard one. We be-
lieve that our approach might open new directions of research
where interaction of bound systems with the environment
can be taken into consideration. Such applications of our
method are phenomenological, in the same manner as are
other approaches, such as the Lindblad approach [35–37].

APPENDIX A: THE STANDARD SQUARE WELL

The Schrödinger equation for the standard nonsymmetric
square well is

H = − h̄2

2m

∂2

∂x2
+ V (x), (A1)

V (x) =
⎧⎨
⎩

∞, x < 0,

0, 0 � x � a,

∞, x > a.

(A2)

The well-known eigenvalues and eigenfunctions of this
Hamiltonian are

〈λn′ |H |λn〉 = h2

8ma2
n2δn′,n, (A3)

〈x|λn〉 = C sin (λnx), λn = nπ

a
, C =

√
2√
a
. (A4)
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These eigenfunctions form a complete orthonormal set. For
completeness we review the orthonormality as follows:

〈λn′ |λn〉 =
∫ a

0
dx〈λn′ |x〉〈x|λn〉

=
∫ a

0
dx C sin (λn′x)C sin (λnx).

(A5)

This integral is calculated via the following identities:

sin (λnx) = sin
(nπ

a
x
)
, (A6)

C sin

(
n′π
a

x

)
C sin

(nπ

a
x
)

= C2

×
{

1
2 [cos( n′π

a
x − nπ

a
x) − cos( n′π

a
x + nπ

a
x)], n′ 	= n,

1
2 [1 − cos(2 nπ

a
x)], n′ = n.

(A7)

Therefore, the integral in Eq. (A5) is∫ a

0
dx C sin

(
n′π
a

x

)
C sin

(nπ

a
x
)

= C2

×
{

a
2 [ sin(n′π−nπ )

n′π−nπ
− sin(n′π+nπ )

n′π+nπ
], n′ 	= n,

1
2 [a − sin(2nπ )], n′ = n,

(A8)

or, as sin(nπ ) = 0 for all n, Eq. (A5) becomes

〈λn′ |λn〉 =
∫ a

0
dxC sin

(
n′π
a

x

)
C sin

(nπ

a
x
)

= 2

a

×
{

0, n′ 	= n
a
2 , n′ = n

= δn′,n. (A9)

The resolution of the identity operator Î (completeness of
the eigenfunctions set) reads

Î =
∞∑
i=1

|λi〉〈λi |. (A10)

APPENDIX B: THE FRACTIONAL SQUARE WELL

1. The Riesz-Feller derivative with the momentum variable

We now move to using the momentum p, through k =
p/h̄. The Fourier transform and its inverse, Eqs. (1) and (2),
respectively take the form

f (p/h̄) ≡ F {f (x); p/h̄}

=
∫ ∞

−∞
ei

p

h̄
xf (x)dx, p/h̄ ∈ R, (B1)

F−1{f (p/h̄); x} = 1

2πh̄

∫ ∞

−∞
e−i

p

h̄
xf (p/h̄)dp,

x ∈ R,

(B2)

and the Fourier transform of the Riesz-Feller derivative of
Eq. (3) takes the form

F
{

xD
α
θ f (x); p/h̄

} = −ψθ
α

(p

h̄

)
f
(p

h̄

)
, (B3)

where
ψθ

α (k) = |k|αei[sgn(k)]θπ/2,

0 < α � 2, |θ | � min {α, 2 − α}, (B4)
or

ψθ
α (p/h̄) = |p/h̄|αei[sgn(p)]θπ/2. (B5)

Therefore,

xD
α
θ f (x) = − 1

2π

∫ ∞

−∞
d(p/�)e−i

p

�
xψθ

α

(p

�

)

×
∫ ∞

−∞
dx ′ ei

p

�
x ′
f (x ′)

= − 1

2π

∫ ∞

−∞
d(p/�)e−i

p

�
x |p/�|αei[sgn(p)]θπ/2

×
∫ ∞

−∞
dx ′ ei

p

�
x ′
f (x ′). (B6)

Note that for λ > 0 and using the Fourier transform of f (x) =
sin(λx),

xD
α
θ sin(λx) = −(λ)α sin

(
λx + θ

π

2

)
.

2. Fractional Riesz-Feller Hamiltonian

The Riesz-Feller hamiltonian was defined in Eq. (10) and
is repeated here for conciseness as

Hα = −FαDα
θ + V (x), V (x) =

⎧⎨
⎩

∞, x < 0,

0, 0 � x � a,

∞, x > a,

(B7)
where Fα is the “quantum diffusion constant” with units
of [ergs1−α cmα sec−α], and recalling that Dα

θ is the Riesz-
Feller derivative defined above. Fα := − 1

2mc2( h̄
imc

)
α

[27], Eq.
(14.11) therein, where m is the “mass” and c is the speed of
light.

3. Matrix elements of the fractional Riesz-Feller Hamiltonian

Here we calculate the matrix elements 〈λn′ |Hα|λn〉 of the
fractional Hamiltonian of Eq. (10) [or (B7)], with the basis
functions 〈x|λn〉 of Eq. (8) [or (A4)]. We use the following
identity for the addition of arguments of the sine function,

sin
(
λnx + θ

π

2

)
= sin (λnx) cos

(
θ
π

2

)
+ cos (λnx) sin

(
θ
π

2

)
. (B8)

Using the above identity [Eq. (B8)], we obtain the following
matrix elements of the Riesz-Feller derivative of Eq. (B6),

〈λn′ |Dα
θ |λn〉 =

∫ a

0
dxC sin (λn′x) ×

[
−C(λn)α sin

(
λnx + θ

π

2

)]

= −(λn)α
∫ a

0
dxC sin (λn′x) ×

{
C sin (λnx) cos

(
θ
π

2

)
+ C cos (λnx) sin

(
θ
π

2

)}
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= −(λn)α cos
(
θ
π

2

)
〈 λn′ |λn〉 − 1

h̄
(λn)α sin

(
θ
π

2

)
×

∫ a

0
dxC sin (λn′x)C cos (λnx)

= −(λn)α cos
(
θ
π

2

)
〈 λn′ |λn〉 − (λn)α sin

(
θ
π

2

)
× C2

∫ a

0
dx

1

2
[sin (λn′x + λnx) + sin (λn′x − λnx)]. (B9)

The last term of Eq. (B9) is calculated as follows:

C2
∫ a

0
dx

1

2
× [sin (λn′x + λnx) + sin (λn′x − λnx)] =

⎧⎪⎨
⎪⎩

C2

2

{
− cos [(λn′+λn)x]

(λn′+λn) − cos[(λn′−λn )x]
(λn′−λn )

}x=a

x=0
, λn′ 	= λn,

C2

2

{
− cos [(2λn )x]

2λn

}x=a

x=0
, λn′ = λn.

(B10)

Substituting the limits x = 0 to x = a one gets

C2
∫ a

0 dx 1
2 [sin (λn′x + λnx) + sin (λn′x − λnx)] =

⎧⎨
⎩

C2

2

{
− cos[(λn′+λn)a]

(λn′+λn ) − cos [(λn′−λn)a]
(λn′−λn) + 1

(λn′+λn) + 1
(λn′−λn)

}
, λn′ 	= λn,

C2

2

{
− cos [(2λn )a]

2λn
+ 1

2λn

}
, λn′ = λn.

(B11)

Therefore, the matrix elements read

〈λn′ |Dα
θ |λn〉 = −(λn)α cos

(
θ
π

2

)
〈λn′ |λn〉 − (λn)α sin

(
θ
π

2

)

×
⎧⎨
⎩

C2

2

{
− cos [(λn′+λn)a]

(λn′+λn) − cos [(λn′−λn)a]
(λn′−λn) + 1

(λn′+λn) + 1
(λn′−λn)

}
, λn′ 	= λn,

C2

2

{
− cos [(2λn )a]

2λn
+ 1

2λn

}
, λn′ = λn.

(B12)

Consequently,

〈λn′ |Hα|λn〉 = Fα (λn)α ×
⎧⎨
⎩

sin
(
θ π

2

)
C2

2

{
− cos [(λn′+λn)a]

(λn′+λn) − cos [(λn′−λn)a]
(λn′−λn) + 1

(λn′+λn) + 1
(λn′−λn)

}
, λn′ 	= λn,

cos
(
θ π

2

) + sin
(
θ π

2

)
C2

2 ×
{
− cos [(2λn )a]

2λn
+ 1

2λn

}
, λn′ = λn.

(B13)

Limit cases of Eq. (B13):

[〈λn′ |Hα|λn〉]α=1,θ=−1 = F1λn

⎧⎨
⎩

−C2

2

{
− cos [(λn′+λn)a]

(λn′+λn) − cos [(λn′−λn)a]
(λn′−λn) + 1

(λn′+λn) + 1
(λn′−λn)

}
, λn′ 	= λn,

−C2

2

{
− cos[(2λn )a]

2λn
+ 1

2λn

}
, λn′ = λn,

where F1 = − h̄
2i

c.

[〈λn′ |Hα|λn〉]α=2,θ=0 = cos (0)F2λ
2
nδn′,n = h̄2

2m
λ2

nδn′,n = h̄2

2m

(nπ

a

)2
δn′,n = h2

8ma2
n2δn′,n,

where F2 = h̄2

2m
and we have substituted the values of the eigenvalues and normalization constant of the basis set functions:

λn = nπ
a

and C =
√

2√
a

.
Using these values in Eq. (B13) we arrive at

〈λn′ |Hα|λn〉 = Fα

(nπ

a

)α

×
{

sin
(
θ π

2

)
1
π

×
{
− cos[(n′+n)π]

(n′+n) − cos[(n′−n)π]
(n′−n) + 1

(n′+n) + 1
(n′−n)

}
, n′ 	= n,

cos
(
θ π

2

) + sin
(
θ π

2

)
1
π

× {− cos (2nπ )
2n

+ 1
2n

}
, n′ = n.

(B14)

As cos (2nπ ) = 1 and

cos[(n′ + n)π ] =
{

1, n′ + n = even,

−1, n′ + n = odd,

we finally get

〈λn′ |Hα|λn〉 = Bα (nπ )α ×

⎧⎪⎨
⎪⎩

sin
(
θ π

2

)
2
π

{
1

(n′+n) + 1
(n′−n)

}
; n′ 	= n, n′ + n = odd;

0; n′ 	= n, n′ + n = even;
cos

(
θ π

2

)
; n′ = n;

(B15)

where Fα = − 1
2mc2( h̄

imc
)
α
, Bα = Fα ( 1

a
)
α
.
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Bα in cgs: [
g cm2 s−2

(
g cm2 s−1

g cm s−1

)α] 1

cmα
= [g cm2 s−2(cm)α]

1

cmα
= [g cm2 s−2] = [ergs].

Bα in atomic units: [
mebohrs2+α

(
h̄

hartrees

)−2
]

1

bohrsα
=

[
mebohrs2

(
h̄

hartrees

)−2
]

= [hartrees].

In atomic units h̄ = 1,m is expressed in multiples of the electron mass me = 1, and c ≈ 137. Bα and 〈λn′ |Hα|λn〉 are with energy
units, so that 〈λn′ |Hα|λn〉/Bα is a real nonsymmetric matrix with dimensionless units. We note again that for α = 2,

〈λn|H2|λn〉 = B2(nπ )2 = F2

(
1

a

)2

(nπ )2 = −1

2
mc2

(
h̄

imc

)2(1

a

)2

(nπ )2 = h2

8m

(n

a

)2
, (B16)

the well known result of the standard impenetrable one-dimensional rectangular potential well problem; see also Eq. (A3).
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