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Electrodynamics with a preferred frame
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We introduce a variant of quantum and classical electrodynamics formulated on the grounds of a hypothesis
of existence of a preferred frame of reference—a formalism complementary to that regarding the structure of
the space of photonic states, presented by us recently [Phys. Rev. A 97, 062106 (2018)]. The present approach
makes a unique test theory to search for a preferred frame for photons in experiments, one of which is suggested.
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I. INTRODUCTION

One of the possible consequences of contemporary ap-
proaches to extensions of the Standard Model and quanti-
zation of gravity [1,2] is the existence of a preferred frame
(PF) of reference. Such possibility might exhibit a preferred
foliation of the space-time at its most fundamental level.
Let us mention particular Lorentz-violating extensions of the
Standard Model [3–6], approaches to classical and quantum
gravity [7–9], and the so-called doubly special relativity
theories [10] characterized by modified dispersion relations,
common for Lorentz violating models. In almost all of the
above models certain specific effects are predicted, usually
suppressed by a power of the Planck scale, like, e.g., vac-
uum birefringence. This is a consequence of asymmetry of
the modified, helicity dependent, dispersion relations for the
photon which result in a rotation of the polarization plane,
of magnitude depending on the distance between the source
and the detector [11]. References to the notion of PF in
the context of quantum theory are owed to several authors.
Referring to the concept of aether Dirac pointed out that
the ideas regarding symmetries in the classical theory could
turn out much different at the quantum level [12,13]. The
historical notion of aether was superseded by that of preferred
frame, as, e.g., in de Broglie–Bohm formulation of quantum
mechanics [14,15]. Bell suggested that it would have been
helpful to consider a PF at the fundamental level for resolving
certain incompatibilities between special relativity theory and
nonlocality of quantum mechanics [16], an opinion shared by
other authors [17,18]. This brief outlook demonstrates that the
concept of PF has been frequently referred to in the context of
Lorentz symmetry violation within numerous contemporary
theories and ideas. A discussion of the structure of photonic
states in the context of the PF hypothesis has recently been
presented by us [19] comprising suggestions for possible
experiments, one of which involves two observers in relative
motion. In the present paper we construct quantum and clas-
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sical electrodynamics founded on the hypothesis of existence
of a preferred frame in nature. The pertinent Lorentz-covariant
formalism constitutes a unique test theory for addressing the
issue of existence of a PF for photons.

II. PRELIMINARIES

In quantum electrodynamics, the Hilbert space of pho-
tonic states is the carrier space of the unitary irreducible
representation of the inhomogeneous Lorentz group. Action
of the Lorentz group on the states is achieved by means of
the Wigner-Mackey induction procedure [20] implemented on
eigenvectors of the four-momentum operator and extended by
linearity to the entire space. In our recent paper we exploited
the Wigner-Mackey induction procedure to obtain the one-
particle space of photonic states under a working hypothesis
of existence of a preferred frame of reference [19] with
preserved Lorentz covariance. This approach is equivalent to
assuming the description of photonic states be frame depen-
dent by way of the four-velocity of the preferred frame as seen
by a given observer.

Let uμ = (u0; u) be the timelike four-velocity of the PF
as seen by an inertial observer (u02 − u2 = 1); in particular
u ≡ uPF = (1; 0, 0, 0) for an observer at rest with respect to
this frame (below we assume natural units h̄ = c = 1). Let
kμ = (k0; k) denote the photon four-momentum (k02 − k2 =
0). Our working hypothesis can be nontrivially realized only
if monochromatic photonic states are frame dependent, i.e.,
are parametrized not only by kμ but also by uμ. Such one-
photonic four-momentum eigenvectors, denoted as |k, u, λ〉,
where λ = ±1 is the photon helicity, are identified with
monochromatic, circularly polarized states of the photons.
The starting point of the Wigner-Mackey induction procedure
is the determination of the little group O(2) ∼ E(2)

⋂
O(3)

of a pair of four-vectors (k, u). The pair (k, u) can be obtained
from the “standard” one (q, uPF), where q = κ (1; 0, 0, 1) and
κ > 0, by the sequence of Lorentz transformations LuRn,
where Lu is the Lorentz boost transforming uPF into u and
Rn is the rotation of q into the four-vector κ (1; n), provided
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the unit vector n is equal to [19]

n = n(k, u) = 1

uk

(
k − |k| + uk

1 + u0
u
)

,

where uk = uμkμ = κ (see Appendix A). Applying the
Wigner-Mackey procedure to the base vectors |k, u, λ〉 leads
to the unitary action of the Lorentz group of the form

U (�)|k, u, λ〉 = eiλφ(�,k,u)|�k,�u, λ〉, (1)

where eiλφ(�,k,u) is the phase factor related to the subgroup
SO(2) and the little group O(2), corresponding to the Wigner
rotation

W (�, k, u) = (L�uRn(�k,�u) )
−1�LuRn(k,u) (2)

(see Appendix B). As follows from (2), the Wigner phase
φ(�, k, u) is in general different from that calculated in the
standard theory, φS (�, k) [21]. Linearly polarized monochro-
matic states are given as usual by the following superposition
of circularly polarized states:

|θ, k, u〉 := 1√
2

(eiθ |k, u, 1〉 + e−iθ |k, u,−1〉). (3)

Thus, by means of (1), these states transform unitarily under
the Lorentz group action, according to the transformation law

U (�)|θ, k, u〉 = |θ + φ(�, k, u),�k,�u〉.

III. QUANTUM ELECTRODYNAMICS
AND PREFERRED FRAME

We construct the free quantum electrodynamics assuming
the existence of a preferred frame (PF QED) in close analogy
to the standard formalism. In this case the base vectors are
obtained by action of creation operators a

†
λ(k, u) on the vac-

uum vector |0〉, normalized to unity, defined by the condition
aλ(k, u)|0〉 = 0, namely

|k, u, λ〉 = a
†
λ(k, u)|0〉.

Creation and annihilation operators fulfill the standard canon-
ical commutation relations. The only nonzero commutators
satisfy

[aλ(k, u), a†
σ (p, u)] = 2k0δλσ δ3(k − p) (4)

so the scalar product of the base vectors reads

〈k, u, λ|p, u, σ 〉 = 2k0δλσ δ3(k − p).

In order to reproduce (1), creation and annihilation operators
should transform under the Lorentz group action according to
the rule

U (�)a†
λ(k, u)U †(�) = eiλφ(�,k,u)a

†
λ(�k,�u). (5)

The electromagnetic four-potential operator, Âμ(x, u), is de-
fined as the Fourier transform

Âμ(x, u) = 1

(2π )3/2

∫
d3k
2k0

[eikxeμλ(k, u)a†
λ(k, u)

+ e−ikxe∗μλ(k, u)aλ(k, u)] (6)

obeying the Lorentz covariant transformation rule

U (�)Âμ(x, u)U †(�) = �−1μ
νÂ

ν (�x,�u). (7)

We note that, in contrast to the standard case, no inhomo-
geneous gauge term appears on the right-hand side of the
above equation, owing to the natural reduction of the Wigner
little group to the compact O(2) group. Next, we obtain the
Weinberg consistency condition [22] of (5) and (7) in the form

eμλ(�k,�u) = �μ
νe

νλ(k, u)eiλφ(�,k,u). (8)

Replacing the pair (k, u) by (q, uPF) in (8) and � by rotation
about the z axis, Rz(ϕ), as well as taking into account that
φ(Rz(ϕ), q, uPF ) = ϕ follows from (2), we obtain (up to a
nonzero factor)

e0λ(q, uPF) = e3λ(q, uPF) = 0; e1λ(q, uPF) = 1/
√

2;

e2λ(q, uPF) = −iλ/
√

2. (9)

In view of the vanishing phase φ(LuPFRn(q,uPF ), k, u) = 0 we
conclude that

eμλ(k, u) = (LuRn(k,u) )
μ

νe
νλ(q, uPF). (10)

Now, it is a matter of simple calculations that (9) and (10) im-
ply the following covariant transversality and normalization
relations:

kμeμλ(k, u) = 0; uμeμλ(k, u) = 0;

e∗μλ(k, u)eσ
μ(k, u) = −δλσ ;∑

λ

e∗μλ(k, u)eνλ(k, u)

= −
(

ημν − 1

uk
(uμkν + kμuν ) + 1

(uk)2
kμkν

)
. (11)

Therefore considering the definition of the four-potential op-
erator (6) we see that the following covariant relations hold
for Âμ(x, u) in PF QED:

Massless Klein-Gordon equation: ∂2Âμ(x, u) = 0, (12)

Lorenz condition: ∂μÂμ(x, u) = 0, (13)

PF transversality condition: uμÂμ(x, u) = 0. (14)

We can now define the electromagnetic tensor operator F̂ μν

by means of Âμ,

F̂ μν (x, u) = ∂μÂν (x, u) − ∂νÂμ(x, u), (15)

with the following identification of the electric and magnetic-
field operators:

Êl (x, u) = F̂ 0l (x, u); B̂l (x, u) = 1

2
εlij F̂ ij (x, u). (16)

The Maxwell equations are obtained from the definition of the
four-potential (6), the electromagnetic tensor (15), as well as
by means of the transversality condition kμeμλ = 0 (11) and
the spectral condition k2 = 0,

∂μF̂ μν (x, u) = 0,

∂μ
ˆ̃Fμν (x, u) = 0.

Here ˆ̃F is dual to F̂ .
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IV. POLARIZED STATES AND POLARIZATION
OPERATORS

Linearly polarized states (3) are generated from the vac-
uum state by the action of creation operators,

|θ, k, u〉 = a
†
θ (k, u)|0〉,

where

a
†
θ (k, u) := 1√

2
(eiθa

†
+1(k, u) + e−iθ a

†
−1(k, u)),

and analogously for orthogonally polarized states,

|θ⊥, k, u〉 = a
†
θ⊥ (k, u)|0〉,

where θ⊥ = θ + π
2 . Evidently 〈θ, k, u|θ ′, p, u〉 = 2k0 cos(θ

− θ ′)δ3(k − p). The operators a
†
λ can be expressed in terms

of a
†
θ and a

†
θ⊥ as follows:

a
†
λ(k, u) = e−iλθ

√
2

(a†
θ (k, u) − iλa

†
θ⊥ (k, u)).

The four-potential operator (6) can be expressed in terms of
the operators a

†
θ and a

†
θ⊥ and their Hermitian conjugates,

Âμ(x, u) = 1

(2π )3/2

∫
d3k
2k0

[
eikx

(
e
μ
θ (k, u)a†

θ (k, u)

+ e
μ
θ⊥ (k, u)a†

θ⊥ (k, u)
) + e−ikx

(
e
∗μ
θ (k, u)aθ (k, u)

+ e
∗μ
θ⊥ (k, u)aθ⊥ (k, u)

)]
, (17)

where

e
μ
θ (k, u)=

∑
λ

(
eμλ(k, u)

e−iλθ

√
2

)
= (LuRn(k,u) )

μ
νe

ν
θ (q, uPF),

(18)

are obtained using (9) and (10). Here the coefficients
eν
θ (q, uPF) are as follows:

e0
θ (q, uPF) = 0; e1

θ (q, uPF) = cos θ ;

e2
θ (q, uPF) = − sin θ ; e3

θ (q, uPF) = 0;

e0
θ⊥ (q, uPF) = 0; e1

θ⊥ (q, uPF) = − sin θ ;

e2
θ⊥ (q, uPF) = − cos θ ; e3

θ⊥ (q, uPF) = 0. (19)

The form of e
μ
θ⊥ (k, u) follows from (18) by replacing θ with

θ + π
2 . The terms e

μ
θ and e

μ
θ⊥ are real and obey the following

transversality, normalization, and Minkowski orthogonality
relations:

kμe
μ
θ (k, u) = 0; uμe

μ
θ (k, u) = 0;

eθ μe
μ
θ = eθ⊥ μe

μ
θ⊥ = −1; eθ μe

μ
θ⊥ = 0.

The Lorentz group transformation of e
μ
θ (and analogously

for e
μ
θ⊥ ), by means of the Weinberg consistency condition (8),

can be written as

e
μ

θ+φ(�,k,u)(�k,�u) = �μ
νe

ν
θ (k, u). (20)

It should be stressed that the rule (20), together with (2)
defining the phase φ(�, k, u), can also be obtained from (18)
by means of an analogon of the Wigner procedure.

Now, the electromagnetic field operator (15) takes the form

F̂ μν (x, u) =
∫

d3k
2k0

[
ieikx

(
f

μν
θ (k, u)a†

θ (k, u)

+ f
μν
θ⊥ (k, u)a†

θ⊥ (k, u)
) + H.c.

]
, (21)

where the real polarization tensor f
μν
θ reads

f
μν
θ (k, u) = kμeν

θ (k, u) − kνe
μ
θ (k, u). (22)

The transformation rule (20) and the definition (21) imply the
following transformation law for the polarization tensor:

f
μν

θ+φ(�,k,u)(�k,�u) = �μ
α�ν

βf
αβ

θ (k, u). (23)

Furthermore, by means of (21) and (22), equations for the
electric- and magnetic-field operators (16) become

Êl (x, u) = 1

2(2π )3/2

∫
d3k

[
ieikx

(
f l

θ (k, u)a†
θ (k, u)

+ f l
θ⊥ (k, u)a†

θ⊥ (k, u)
) + H.c.

]
, (24)

B̂l (x, u) = 1

2(2π )3/2

∫
d3k

[
ieikx

(
gl

θ (k, u)a†
θ (k, u)

+ gl
θ⊥ (k, u)a†

θ⊥ (k, u)
) + H.c.

]
, (25)

where

f l
θ (k, u) = 1

k0
f 0l

θ (k, u); gl
θ (k, u) = 1

2k0
εlij f

ij

θ (k, u).

After some calculations one obtains the following form of
the electric and magnetic polarization vectors f θ and gθ by
means of which the classical electromagnetic field can be
conveniently expressed:

f θ = f 0 cos θ + f 0 × k̂ sin θ ; gθ = − f θ⊥ , (26)

where f 0 = f θ=0. Moreover, the following conditions are
fulfilled for arbitrary θ :

f 2
θ = g2

θ = 1; k f θ = kgθ = 0; f θ gθ = 0.

V. CLASSICAL ELECTROMAGNETIC FIELD

Let us define a general normalized monochromatic state as

|ε, k, u〉 = εμ(k, u)
∑

λ

eμλ(k, u)|k, u, λ〉, (27)

where εμ denotes an arbitrary covariant four-vector. The com-
plex forms of the electric and the magnetic fields are identified
in the usual way as follows:

E ≡ Ee−ikx = 〈0|Ê(x, u)|ε, k, u〉, (28)

B ≡ Be−ikx = 〈0|B̂(x, u)|ε, k, u〉. (29)

Using (24), (25), and (27), making use of the reality of the po-
larization tensor components f

j

θ , as well as the commutation
relations (4), one obtains for the complex electric field E

E (k, u) = −ik0

(2π )3/2
(ε(k, u) − k̂ε0(k, u))

= f θ (k, u)Eθ + f θ⊥ (k, u)Eθ⊥ , (30)
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where

Eθ = −ik0

(2π )3/2

(
εμ(k, u)eμ

θ (k, u)
)
;

Eθ⊥ = −ik0

(2π )3/2

(
εμ(k, u)eμ

θ⊥ (k, u)
)

(31)

and in analogy for the complex magnetic field B

B(k, u)= −ik0

(2π )3/2
k̂×ε(k, u)= f θ (k, u)Eθ⊥ − f θ⊥ (k, u)Eθ .

(32)

According to the standard description of polarization the
classical electromagnetic field can be expressed as ε(k, u) ≡
(b1 + ib2)eiα under the conditions b1b2 = 0 and b2

1 − b2
2 � 0,

where α stands for the phase. By comparing with (30)–(32),
we can rewrite (28) and (29) in the following form:

E = ( f θ (k, u)|Eθ | + i f θ⊥ (k, u)|Eθ⊥|)e−i(kx−α),

B = (i f θ (k, u)|Eθ⊥| − f θ⊥ (k, u)|Eθ |)e−i(kx−α).

The physical electric and magnetic fields are defined as real
parts of E and B, respectively. Thus

E = ReE = f θ (k, u)|Eθ | cos(kx − α)

+ f θ⊥ (k, u)|Eθ⊥| sin(kx − α)

≡ f θ (k, u)Eθ + f θ⊥ (k, u)Eθ⊥ , (33)

B = ReB = f θ (k, u)|Eθ⊥| sin(kx − α)

− f θ⊥ (k, u)|Eθ | cos(kx − α)

≡ f θ (k, u)Bθ + f θ⊥ (k, u)Bθ⊥ . (34)

In consequence, the polarization equations are obtained in the
form

E2
θ

|Eθ |2 + E2
θ⊥

|Eθ⊥|2 = 1;
B2

θ

|Eθ |2 + B2
θ⊥

|Eθ⊥|2 = 1.

Hence, if |Eθ | 
= |Eθ⊥| the light is polarized elliptically, if
|Eθ | = |Eθ⊥|, circularly, and if Eθ⊥ = 0, linearly. In the latter
case, one has for the electromagnetic vectors

Eθ = E(θ ; k, u, x) = f θE cos(kx − α);

Bθ = B(θ ; k, u, x) = − f θ⊥E cos(kx − α), (35)

where E = |Eθ |. Now, with the help of (18), we can derive the
form of the linearly polarized electromagnetic field by means
of (26) and (35),

Eθ = E cos(kx − α)( f 0 cos θ + f 0 × k̂ sin θ ), (36)

Bθ = E cos(kx − α)( f 0 sin θ − f 0 × k̂ cos θ ). (37)

It should be noted that the above results regarding the PF
classical electrodynamics may be obtained in an alternative
way which consists in adopting (12)–(14) as natural postulates

for the classical four-potential, which transforms under the
Lorentz group as a usual four-vector, supplemented with the
classical variant of (15) and (16) which allow us to reconstruct
the physical electric and magnetic fields, E and B, respec-
tively, in the form given by (33) and (34). Let us also bring to
attention the fact that the formalism presented above resolves
into the standard quantum or classical electrodynamics in the
limit u → (1; 0, 0, 0) or equivalently u → 0, which besides
corresponds to a transition to the standard relativity, valid in
the PF.

Let us note the following transformation rules for vectors
f θ and gθ which follow from (23) for � = �, where �

denotes a rotation,

f θ+φ(�,k,u)(�k,�u) = � f θ (k, u);

gθ+φ(�,k,u)(�k,�u) = �gθ (k, u).

These equations, together with (36) and (37), lead to the fol-
lowing form of passive transformations for linearly polarized
electric and magnetic fields:

E′
θ = E cos(kx − α)[ f 0 cos[θ + φ(�, k, u)]

+ f 0 × k̂ sin[θ + φ(�, k, u)]], (38)

B′
θ = E cos(kx − α)[ f 0 sin[θ + φ(�, k, u)]

− f 0 × k̂ cos[θ + φ(�, k, u)]]. (39)

The phase φ(�, k, u) can be calculated from the Wigner
rotation (2) which takes the following simple form for � = �:

W (�, k, u) = R−1
�n(k,u) � Rn(k,u). (40)

As mentioned in Sec. II, the u-dependent Wigner phase
φ(�, k, u), appearing in a theory with a PF differs from the
standard one, φS (�, k) [21]. Therefore, Eqs. (38) and (39)
imply a u-dependent rotation of the polarization plane of
linearly polarized light under a passive transformation, �.
This is a purely geometrical consequence derived from the
properties of the space of photonic states [19]. Contrary to
common expectations regarding similar phenomena, this par-
ticular effect would be evidently independent of the distance
between the source and the detector.

VI. TESTING THE PF SCENARIO FOR PHOTONS

It has been shown in our recent paper [19] that existence
of a PF at the quantum level could lead to modification of
the quantum Malus law [23,24]. Now, it follows from (38)
and (39) that a similar phenomenon might be expected at the
classical level. In order to demonstrate this, let us consider
a case when the beam of linearly polarized light, with the
polarization angle chosen as zero (θ = 0), passes through
an analyzer perpendicular to the wave vector, as depicted in
Fig. 1. When the slit of the analyzer is rotated by an angle δ

about the beam direction (passive transformation) the phase
φ(δ, k, u) derived from (40) is given by

φ(δ, k, u) = 2 arctan

√
1 − V 2 + [(1 − √

1 − V 2) cos χ − V ] cos χ

(1 − V cos χ ) cot(δ/2) + [(1 − √
1 − V 2) cos χ − V ] sin χ

, (41)
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FIG. 1. Schematic presentation of a polarization experiment, in-
volving the source and the detector at rest, to search for departures
from the classical Malus law according to the PF electrodynamics,
presented in this paper. Rotation of the analyzer slit by an angle
δ (passive transformation) results in a change of intensity of light
according to (42).

where V = u/u0 is the velocity vector of the preferred frame
(in units of c) and χ is the angle between k and V . Note that
it also follows from (41) that in the limit V → 0 one has
φ(δ, k, u) → φS (δ, k) = δ, i.e., the standard phase is equal
just to the angle of rotation. Now, from the experimental point
of view the consequence of (41) is as follows. If the slit of
the analyzer is parallel to f̂ 0 (i.e., δ = 0) then the intensity
of light, measured in the detector, reaches the maximum and
equals I0. However, if the slit of the analyzer is rotated by an
angle δ, the intensity of light, according to the PF scenario, is
a function of the phase φ(δ, k, u),

IPF(δ, k, u) = I0 cos2 φ(δ, k, u), (42)

rather than of δ alone as in the standard case, IS (δ) =
I0 cos2 δ. Thus the Malus law takes a different form if exis-
tence of a PF is assumed. In particular, the condition for van-
ishing intensity of light, φ(δ, k, u) = π/2, would be satisfied
by values of δ in general different than π/2. An illustration of
the above phenomenon is shown in Fig. 2 where the relative
difference (IPF − IS )/I0 is plotted vs angle δ for χ = 90◦
(maximum effect) for two choices of PF velocities, including
|V | = 0.001 23 (368 km/s) which corresponds to the veloc-
ity of Earth with respect to a frame in which the cosmic
microwave background radiation (CMBR) is isotropic—an
intriguing candidate for a PF. Thus it is tempting to test
the preferred frame scenario for light by making use of an
experimental implementation of (41) and (42).

VII. CONCLUSIONS

In our recent paper [19] we presented a quantum de-
scription of free photons, formulated on the grounds of the
hypothesis that a preferred frame, affecting the photonic field,
exists in nature. Now we have developed and laid down in
detail a related approach regarding the quantum and classical
electrodynamics. The main result of the present work is the
following: when a classical, linearly polarized electromag-
netic wave undergoes a passive Lorentz transformation, the

FIG. 2. Relative difference of intensities measured in the detec-
tor, �I/I0 = cos2 φ(δ, k, u) − cos2 δ, predicted for the PF scenario,
as a function of δ for χ = 90◦ (maximum effect), assuming the
CMBR frame for PF (|V | = 0.001 23), solid line, and for comparison
|V | = 0.0001, dashed line.

phase of the polarization angle is predicted on these grounds
to differ from that in the standard case. A departure from the
Malus law is expected and a method of experimental verifi-
cation suggested. The presented formalism can be treated as
a unique test theory for the preferred frame hypothesis with
regard to light.
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APPENDIX A: DERIVATION OF THE RELATION
(k, u) = ((Lu Rn )q, (Lu Rn )uPF)

The Lorentz boost Lu is defined by the relation LuuPF = u,
where

uPF =

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ ≡

(
1
0

)
, u =

⎛
⎜⎜⎝

u0

u1

u2

u3

⎞
⎟⎟⎠ ≡

(
u0

u

)
,

u02 − u2 = 1, (A1)

and has the form

Lu =
(

u0 uT

u I + uuT

1+u0

)
. (A2)

The rotation Rn, defined by the relation

Rnq = κ

(
1
n

)
,

where

q = κ

⎛
⎜⎝

1
0
0
1

⎞
⎟⎠
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JAKUB REMBIELIŃSKI AND JACEK CIBOROWSKI PHYSICAL REVIEW A 98, 042107 (2018)

and n is a unit vector, takes the form

Rn =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 − (n1 )2

1+n3
−n1n2

1+n3 n1

0 −n1n2

1+n3 1 − (n2 )2

1+n3 n2

0 −n1 −n2 n3

⎞
⎟⎟⎟⎠. (A3)

Notice that RnuPF = uPF. We see that (LuRn)uPF = LuuPF =
u as well as

(LuRn)q = κLu

(
1
n

)
= κ

(
u0 + un

u
(

1+u0+un
1+u0

) + n

)
. (A4)

To fulfill the relation (k, u) = ((LuRn)q, (LuRn)uPF ) we de-
mand (LuRn)q = k. Consequently,

(u0 + un)κ =k0 = |k| and

[
u
(

1 + u0 + un
1 + u0

)
+ n

]
κ = k

so

κ = u0k0 − uk = uk and n = 1

uk

[
k −

(
uk + k0

1 + u0

)
u
]
.

Concluding, (k, u) = ((LuRn)q, (LuRn)uPF ) provided

n = n(k, u) = 1

uk

[
k −

(
uk + |k|
1 + u0

)
u
]
.

APPENDIX B: WIGNER-MACKEY DERIVATION OF THE
UNITARY ACTION OF THE LORENTZ GROUP

Using the above result, we can define the four-momentum
eigenvectors as follows:

|k, u, λ〉=|(LuRn)q, (LuRn)uPF, λ〉=U (LuRn)|q, uPF, λ〉.
Therefore

U (�)|k, u, λ〉 = U (L�uRn(�k,�u) )U
†(L�uRn(�k,�u) )

×U (�)U (LuRn)|q, uPF, λ〉
= U (L�uRn(�k,�u) )U [(L�uRn(�k,�u) )

−1

×�(LuRn)]|q, uPF, λ〉
= eiλφ(�,k,u)U (L�uRn(�k,�u) )|q, uPF, λ〉
= eiλφ(�,k,u)|�k,�u, λ〉,

where eiλφ(�,k,u) is the phase factor related to the subgroup
SO(2) of the little group O(2), corresponding to the Wigner
rotation W (�, k, u) = (L�uRn(�k,�u) )−1�LuRn(k,u).
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