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The usual multipolar Hamiltonian for atom-light interaction features a nonrelativistic moving atom interacting
with electromagnetic fields which inherently follow Lorentzian symmetry. This combination can lead to
situations where atoms appear to experience a friction force, when in fact they only change their internal
mass-energy due to the emission or absorption of a photon. Unfortunately, the simple Galilean description of
the atom’s motion is not sufficient to distinguish between a change in momentum due to acceleration and a
change in momentum due to a change in internal mass-energy. In this work we show how a low-order relativistic
correction can be included in the multipolar atom-light Hamiltonian. We also give examples how this affects the
most basic mechanical interactions between atoms and photons.
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I. INTRODUCTION

The mechanical interaction between atoms and light is well
studied and successfully tested to high precision, yet there
is always room for puzzles and surprises. For example, we
recently demonstrated that an excited atom traveling through
empty space appears to experience a friction force connected
to its spontaneous decay [1–3]. Of course, a decaying atom
will experience a recoil, but in the atom’s rest frame one
clearly sees that this recoil averages to zero. However, a
combination of the first-order Doppler shift and aberration
leads to an average change in the atom’s momentum ˙〈P〉 =
−�h̄kA〈P〉/(Mc), where � is the atom’s decay rate, kA =
ωA/c the wave number of the atomic transition, 〈P〉 the
momentum expectation value, and M the mass of the particle.
This change in momentum is thus proportional to the recoil
of the particle and its velocity and has the form of a friction
force. At first sight this result suggests that one observes a
decelerating atom in the laboratory frame, while an observer
comoving with the atom sees no change—this result would
contradict both Galilean and Einsteinian relativity. We should
point out, for the sake of clarity, that the effect considered here
is distinct from the (quantum) frictional force experienced by
an atom or other objects moving with respect to a dielectric
plate [4–8].

The famous connection between energy and inertia, E =
mc2 [9] solves the puzzle: During the emission process the
atom loses energy, and hence the momentum changes, not due
to a deceleration, but due to a change of mass-energy. It might
seem surprising that Einstein’s famous formula is required
to discuss an effect appearing in nonrelativistic atom-light
interaction. But one can show that the first-order Doppler shift
and aberration [58], which are both correctly described in
the electric dipole Hamiltonian, are enough to obtain these
spurious friction terms due to the change in mass-energy [1,2].

Both the puzzle of this “vacuum friction” and its solution
are classical problems and appear trivial when discussed in

a relativistic framework involving four-vectors, etc. Here,
however, we are interested in the implications of this puzzle
in the context of the nonrelativistic discussion usually applied
in quantum optics. In this context the solution to the friction
puzzle had to be included “by hand.” The framework of
the Hamiltonian gave no reason to believe that the mass
M appearing in P ≈ MṘ should be understood as a time-
dependent mass-energy. Indeed, the Heisenberg equations of
motion for the velocity of the atom does not include this
correction. The solution presented in Ref. [1] is plausible and
strongly supported by classical arguments [9], but it has not
been derived. Other authors noting related effects in moving
dielectrics also had to argue similarly [4,5].

For consistency the Hamiltonian structure of nonrelativis-
tic quantum mechanics should indicate clearly if a change in
momentum Ṗ is also connected to an acceleration R̈. After
all, the canonical momentum P and the position R are inde-
pendent variables. In the example of the emitting atom [1],
however, we found M〈R̈〉 = 〈Ṗ〉, wrongly suggesting that the
spurious momentum change leads to a friction-like decelera-
tion of the atom.

It should be possible to distinguish, in principle, between
actual (friction) forces in atom-light interaction, and those
changes in momentum that originate in a change of internal
energy and do not lead to a change in the motion of the
particle. Given the ever growing precision demanded from
and delivered by quantum optics experiments, there may
come a time when such a distinction is necessary to explain
observations.

In this work we derive a modification of the usual mul-
tipolar atom-light Hamiltonian to address these issues. Usu-
ally, atom-light interactions are derived from a Lagrangian
in which the particles’ motion is fully described in a
nonrelativistic framework. Our approach starts with the Dar-
win Lagrangian (Sec. II), which gives an approximately
relativistic description of the motion of and interaction be-
tween charged particles. Canonical quantization, in Sec. III,
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followed by a Power-Zienau-Woolley (PZW) transforma-
tion [10–12] in Sec. IV will then give a multipolar description
in the center of mass frame. As the usual center of mass is
not suitable for an approximately relativistic framework we
will perform a further transformation to a central coordinate
similar to the center of energy in Sec. V. There we will
arrive at a simple and natural Hamiltonian Eq. (29), which is
still essentially nonrelativistic, but properly accounts for the
leading-order mass defect.

The individual steps used in this work have been published
before, either in textbooks [13–15] or as individual articles
(we are mostly indebted to the work in Refs. [16,17]) but,
to our knowledge, there has not yet been a comprehensive
work combining all these aspects and focusing on the role of
internal energy in an atom’s equations of motion.

Of course, relativistic extensions and corrections have long
been part of atomic and molecular physics [18–20]. To our
knowledge, however, these corrections usually consider a
static nucleus providing a central potential for the electrons,
with the atom as a whole at rest. One reason for this is that
the Currie-Jordan-Sudarshan No-Go Theorem states that a
fully relativistic canonical description of a set of interacting
point particles is impossible, unless one works in a frame with
vanishing total momentum P = 0 [21,22]. For the problem
discussed here it is necessary to give a framework where the
total atom is moving. This is possible because our discussion
is not fully relativistic but only a lowest-order post-Newtonian
extension for which it is possible to construct a Hamiltonian
formalism.

During the completion of the present work we noticed a
series of publications by David Alba and coworkers who ex-
haustively address the issue of relativistic atomic physics; see
Refs. [23–25] and references therein. The low-energy limits
of their results also contain modifications to the total kinetic
energy of the atom similar to those derived here, cf. Sec. I A
or Eq. (29). The quantum-optics-inspired approach presented
here complements earlier and more rigorous mathematical
treatments.

Recently, there has been new interest in studying the
coupling between gravity and quantum mechanics in light
of Einstein’s equivalence principle [26–30]. Using arguments
such as the one given in Sec. I A or based on low-energy limits
of the Klein-Gordon equation [29,31], one can show that the
gravitational field couples not only to the bare mass of an
atom, but also to its internal energy state. This coupling is
comparable to the corrected Hamiltonian derived in this work,
although anomalous friction due to changes in internal energy
has not been studied previously.

At the end of this work we shall explore various examples
to study the implications of this modification in Sec. VI.

A. Expected form of an approximately relativistic Hamiltonian

Even without a formal derivation it is not difficult to
anticipate the type of Hamiltonian we should find later. The
classical relativistic Hamiltonian for a free spinless particle of
mass M and momentum P is given by

Hfree =
√

P2c2 + M2c4 ≈ Mc2 + P2

2M
. (1)

TABLE I. Comparison of energy scales for a (hydrogen) atom
interacting with a radiation field (M ∼ proton mass, reduced mass
μ ∼ electron mass). The strength of the atom-light interaction is
chosen such that the interaction energy of the laser field h̄� is of
the same order as a typical atomic decay rate � ∼ � ∼ MHz.

Masses: Mc2 ∼ GeV, μc2 ∼ 0.5 MeV

Atomic energies: HA ≈ p2

2μ
− e2

4πε0r
∼ eV

Atom-light interaction: HAL ≈ −d · E = h̄� ∼ 10−9eV

We are searching for a Hamiltonian where inertia depends on
the internal energy of the particle. Hence, we replace M →
M + Eint/c

2 such that

Hfree → H ≈ Mc2 + Eint + P2

2M

(
1 − Eint

Mc2

)
. (2)

If Q denotes the position of the particle, then this gives Q̇ =
∂
∂P H or P ≈ Q̇(M + Eint/c

2). A change of momentum can
thus be due to an acceleration or a change in internal energy.

For an atom interacting with an external light field this
suggests a Hamiltonian of a form

H = P2

2M

(
1 − HA

Mc2

)
+ HA + HL + HAL, (3)

where HA describes the internal atomic degrees of freedom,
HL is the energy of the radiation field, and HAL gives the atom
light-interaction and the constant mass term has been dropped.
In the following sections we shall derive this Hamiltonian.

As mentioned in the introduction, several works on the
coupling between internal energy states and gravitational
fields use similar arguments [26–30,32]. But this short deriva-
tion considers the atom as a single entity and thus cannot
incorporate the subtleties that arise in the microscopic descrip-
tion following below.

B. Hierarchy of energy scales

Before we begin to derive our Hamiltonian, let us briefly
discuss the energy scales involved in this problem. The biggest
energies by far are the total mass and relative mass of the
system, M = m1 + m2 and μ = m1m2/M , respectively. Next
are the internal transition energies of the atom which are much
larger than the energies involved in the atom-light coupling.
Table I gives an overview of these energies for a hydrogen-like
setup (particle 1 is an electron, particle 2 the proton).

Table I does not include the total kinetic energy of the
atom, P2/(2M ), which can vary between 10−14 eV for an
ultra cold gas and almost be of the order of atomic energies
for a hot vapor. For the approximations made in this work,
we shall keep corrections of order HA/(mic

2) but drop terms
∼HAL/(mic

2) for any of the two masses i = 1, 2.
We note that neglecting terms of order HAL/(mic

2) also
implies that we drop any terms possibly giving an Aharonov-
Casher interaction, which would couple the magnetic dipole
moment and velocity of the atom with an external electric
field [33]. As shown in Eq. (17), the magnetic dipole mo-
ment already depends on particle velocities, such that the
combination of these three terms goes beyond our level of
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approximation. Studying the relation between our approach
and the proposed connection between the Aharonov-Casher
effect and the difference between center of mass and center of
energy [34] will thus be left for future work.

II. CLASSICAL, APPROXIMATELY RELATIVISTIC
LAGRANGIAN FOR CHARGES AND EXTERNAL

RADIATION FIELDS

We start from the classical Lagrangian for two particles of
mass mi , charge ei at positions ri , and velocities ṙi , i = 1, 2,
interacting with electromagnetic potentials φtot, Atot [13],

L = −
∑
i=1,2

mic
2
√

1 − ṙ2
i /c

2 +
∫

d3x(j · Atot − ρφtot )

+ ε0

2

∫
d3x[(∂tAtot + ∇φtot )

2 − c2(∇ × Atot )
2]. (4)

The first term describes the relativistic motion of the particles,
although only terms up to ∼ṙ2

i /c
2 are required to obtain

the Hamiltonian outlined above. The second and third terms
contain the dynamics of the fields and their interaction with
the charges via the density ρ(x, t ) = ∑

i eiδ(x − ri (t )) and
current j(x, t ) = ∑

i ei ṙiδ(x − ri (t )).
The potentials Atot and φtot contain contributions from

external fields as well as the fields generated by the moving
charges. With Atot = A + A we shall only keep the external
radiation potential A as an independent variable, the potential
generated by the charges, A, shall be expressed in terms
of the particle coordinates, cf. Appendix A. Additionally
we choose the Coulomb gauge where ∇ · A = 0 ↔ A ≡
A⊥ while φtot = φinternal ≡ φ (the external scalar potential
vanishes in the absence of external charges) [59].

The internal potentials satisfy Maxwell’s equations in the
Coulomb gauge,

∇2φ = −ρ/ε0,

(
∇2 − 1

c2

∂2

∂t2

)
A⊥ = −μ0j⊥, (5)

with j⊥ = j − j‖ = j − ε0∇ ∂
∂t

φ. Using these, partial integra-
tion and the identity ∇ × (∇ × A⊥) = −∇2A⊥ = μ0j⊥ −
∂2
t A⊥/c2 we get

ε0

2

∫
d3x(∂tA⊥ + ∇φ)2

= ε0

2

∫
d3x((∂tA⊥)2 − (φ∇2φ))

= 1

2

∫
d3x(ε0(∂tA⊥)2 + ρφ), (6a)

−ε0c
2

2

∫
d3x(∇ × A⊥)2

= − 1

2μ0

∫
d3xA⊥ · (∇ × (∇ × A⊥))

= −1

2

∫
d3xA⊥ · j⊥ + ε0

2

∫
d3xA⊥ · (∂2

t A⊥). (6b)

Using these relations and A⊥ · ∂2
t A⊥ + (∂tA⊥)2 =

∂2
t (A⊥)2/2 we can rewrite the initial Lagrangian from Eq. (4)

in the form

L =
∑
i=1,2

mi ṙ2
i

2

(
1 + ṙ2

i

4c2

)
+ 1

2

∫
d3x(j · A⊥ − ρφ)

+ ε0

2

∫
d3x[(∂tA⊥)2 − c2(∇ × A⊥)2]

+
∫

d3x j · A⊥ + ε0

∫
d3x[(∂tA⊥) · (∂tA⊥)

− c2(∇ × A⊥) · (∇ × A⊥)] + ε0

4

∫
d3x

∂2

∂t2
(A⊥)2.

(7)

The first two terms of this Lagrangian describe the approx-
imately relativistic motion of the particles and their inter-
action with the fields generated by their respective coun-
terparts. Using the internal fields calculated in Appendix A
we see that these two terms give the well known Darwin
Lagrangian (9) [13,37]. The third and fourth terms describe
the external radiation field and its interaction with the moving
charges in the usual form. The remaining terms in the final
two line are studied in Appendix B where we argue why these
can be neglected for the problem of interest here.

III. FROM CLASSICAL LAGRANGIAN TO QUANTUM
HAMILTONIAN IN MINIMAL COUPLING FORM

In the previous section we derived the Lagrangian for two
charges with spin zero (the atom) interacting with an external
radiation field to the lowest approximately relativistic order,

L(r1, ṙ1, r2, ṙ2, A⊥, Ȧ⊥)

= LDarwin(r1, ṙ1, r2, ṙ2) + ε0

2

∫
d3x[(∂tA⊥)2

− c2(∇ × A⊥)2] +
∫

d3x j · A⊥. (8)

Using the internal potentials φ and A⊥ calculated in
Appendix A, cf. Eqs. (A1) and (A3), we obtain the Darwin
Lagrangian [37]

LDarwin(r1, ṙ1, r2, ṙ2)

=
∑
i=1,2

mi ṙ2
i

2

(
1 + ṙ2

i

4c2

)
+ 1

2

∫
d3x(j · A⊥ − ρφ)

= m1ṙ2
1

2
+ m1ṙ4

1

8c2
+ m2ṙ2

2

2
+ m2ṙ4

2

8c2

− 1

4πε0

e1e2

r

(
1 − ṙ1 · ṙ2

2c2

)
+ e1e2

4πε0

(ṙ1 · r)(ṙ2 · r)

2r3c2
,

(9)

where r = r1 − r2 and r = |r|. If we define r1 and r2 to be the
positions of the electron and proton, respectively, then e2 =
−e1 = e, the elementary charge, and r is the vector pointing
from the nucleus to the electron.

To obtain the corresponding (classical) Hamiltonian we
calculate the canonical momenta associated with the particle
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coordinates ri and the external field A⊥,

pi = ∂

∂ ṙi

L = mi ṙi + eiA⊥(ri ) − miri

ṙ2
i

2c2

+ 1

4πε0

e1e2

2rc2

[
ṙj + r(ṙj · r)

r2

]
, (10)

�⊥ = ∂

∂Ȧ⊥ L =ε0Ȧ⊥, (11)

for i = 1, 2 and j �= i. This gives us the resulting classical
Hamiltonian

H = p2
1

2m1
+ p4

1

8m3
1c

2
+ p2

2

2m2
+ p4

2

8m3
2c

2

+ 1

4πε0

e1e2

r

(
1 − p1 · p2

2m1m2c2

)
− e1e2

4πε0

(p1 · r)(p2 · r)

2r3c2

+ ε0

2

∫
d3x[(�⊥/ε0)2 + c2(∇ × A⊥)2], (12)

where pi := pi + eiA⊥(ri ).
We see that this classical Hamiltonian contains products

of the momenta pi with functions of the positions ri . As the
corresponding quantum operators do not commute we have to
be careful to obtain the correct ordering during the canonical
quantisation. To achieve this it is useful to return to the Darwin
Lagrangian Eq. (9) to see that these problematic terms arise
from the coupling j · A⊥, which can be symmetrized as

1

2

∫
d3x j · A⊥

= 1

4
{e1[ṙ1 · A⊥(r1) + A⊥(r1) · ṙ1]

+ e2[ṙ2 · A⊥(r2) + A⊥(r2) · ṙ2]}

≈ 1

4

{
e1

m1
[p1 · A⊥(r1) + A⊥(r1) · p1] + (1 ↔ 2)

}

= e1e2[p1 · 1
r
p2 + (p1 · r) 1

r3 (r · p2) + (1 ↔ 2)]

16πε0c2m1m2
.

For the final line we used the fact that [p1, r] = −[p2, r] and
a symmetric version of A⊥ from Eq. (A3),

A⊥(ri ) = ej [ 1
r
pj + pj

1
r

+ r
r3 (r · pj ) + (pj · r) r

r3 ]

16πε0c2mj

,

with j �= i to avoid infinite interaction between particles and
their own fields.

The quantum Hamiltonian in minimal coupling form thus
becomes

H[Min.c.]

= p2
1

2m1
+ p2

2

2m2
+ 1

4πε0

e1e2

r
+ ε0

2

∫
d3x[(�⊥/ε0)2

+ c2(∇ × A⊥)2] + p4
1

8m3
1c

2
+ p4

2

8m3
2c

2

− e1e2
[
p1 · 1

r
p2 + (p1 · r) 1

r3 (r · p2) + (1 ↔ 2)
]

16πε0c2m1m2
, (13)

where the first four terms are the usual expression for two
charged particles in a radiation field and the remaining terms
are due to post-Newtonian relativistic corrections. A similar
setup including the spin of the electron but without external
fields can be derived from the Dirac equation and is then
called the Breit-Hamiltonian [20,38]. Of course, including
the spin of the electron and nucleus gives rise to a new
wealth of phenomena including, for example, Zitterbewegung
and associated subtleties in the interpretation of position and
momentum operators [39,40].

Note that from now on ri , pi , A⊥, and �⊥ are understood
to be operators with [ri,k, pj,l] = ih̄δi,j δk,l for ri,k being the
kth component for the position operator of the ith particle
and [A⊥

k (x),�⊥
l (x′)] = ih̄δk,lδ

⊥(x − x′) [41]. But aside from
the examples in Sec. VI, the entire derivation given here is
also valid for classical systems where the commutators are
replaced by Poisson brackets.

IV. PZW TRANSFORMATION TO A MULTIPOLAR
HAMILTONIAN IN CENTER OF MASS COORDINATES

The Hamiltonian given in Eq. (13) describes the approxi-
mately relativistic dynamics of two charged particles of spin
zero in the presence of external radiation fields. As we are
interested in a separation between relative and central dynam-
ics of the particles, we shall transform the minimal coupling
Hamiltonian H[Min.c.] to a multipolar form [35].

There are a number of ways to transform a minimal cou-
pling Hamiltonian into a form with central and relative coor-
dinates suitable to describe mobile atoms or molecules [15].
Here we choose the Power-Zienau-Woolley (PZW) trans-
formation in the form of a unitary transformation of the
Hamiltonian combined with a multipolar expansion and the
introduction of center-of-mass coordinates. But of course it
would also be possible to apply an equivalent transforma-
tion to the underlying Lagrangian [12,42,43], similar to the
Göppert-Mayer transformation [44].

The discussion here follows closely that given in previous
works [17,41] and is included here for completeness. The
PZW transformation is given by the unitary operator,

U = e−i� = exp

[
i

h̄

∫
d3xP (x, t ) · A⊥(x, t )

]
, (14)

where P is the polarization field centered at a position R,

P (x, t ) =
∑
i=1,2

ei[ri (t ) − R(t )]

×
∫ 1

0
dλ δ{x − R(t ) − λ[ri (t ) − R(t )]}. (15)

The interpretation of P as the polarization field is sup-
ported by ∇ · P (x, t ) = −ρ(x, t ), where ρ is the density of
the (bound) charges in the atom such that the electric displace-
ment field is D = ε0E + P = −� + P [43]. We also get

∂tP (x, t ) = j(x, t ) − ∇ × M(x, t ) + ∇ × [Ṙ × P (x, t )],

(16)
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with the magnetization field,

M(x, t ) =
∑
i=1,2

ei[ri (t ) − R(t )] × [ṙi (t ) − Ṙ(t )]

×
∫ 1

0
dλ λδ{x − R(t ) − λ[ri (t ) − R(t )]}. (17)

The final term in Eq. (16) is the so-called Röntgen current
which describes the magnetic moment due to an electric
polarization moving at velocity Ṙ [45–47]. In principle, R
could be any position we choose to be the center of our atom,
but as discussed in Sec. V B it is convenient to choose the
center of mass,

R = m1r1 + m2r2

M
, (18)

where M = m1 + m2.
As � is a function of the positions ri and the potential A⊥,

only the respective canonical momenta are changed:

pi → UpiU
† = pi + h̄∇ri

�, (19a)

�⊥(x) → �⊥(x) − P⊥(x). (19b)

Here, ∇ri
denotes derivation with respect to the position of

the ith particle.
Performing the integral with respect to d3x shows that

h̄� = −∑
j ej

∫ 1
0 dλ rj · A⊥(R + λrj ), where rj := rj − R.

Expanding to first order in rj (electric dipole approximation
[60]), we obtain

∇ri
rj · A⊥(R + λrj )

=
(
δij − mi

M

)
A⊥(R + λrj )

+
[
λδij + (1 − λ)

mi

M

]
{(rj · ∇)A⊥(R + λrj )

+ rj × [∇ × A⊥(R + λrj )]}
�

(
δij − mi

M

)
[A⊥(R) + λ(rj · ∇)A⊥(R)]

+
[
λδij + (1 − λ)

mi

M

]
{(rj · ∇)A⊥(R)

+ rj × [∇ × A⊥(R)]}. (20)

Integrating over λ and using
∑

j=1,2 ej = 0, we find

h̄∇r1,2� � ±e[A⊥(R) + (r1,2 · ∇)A⊥(R)]

+ e1r1 + e2r2

2
× [∇ × A⊥(R)]. (21)

Recognizing that A⊥(R) + (ri · ∇)A⊥(R) � A⊥(ri ) and
defining the electric dipole moment d = ∑

i eiri we see that
the PZW-transformation followed by the dipole approxima-
tion gives pi + eiA(ri ) → pi + d × B(R)/2.

Inserting this into the second line of the Hamiltonian
from Eq. (13) we notice that there will be terms of type

pi · [d × B(R)]

mimjc2
∝ |pi |

mic

|d · E(R)|
mjc2

. (22)

As |d · E(R)| � e2/(4πε0r ) � mic
2 is the energy scale for

the interaction between the atom and the field, we can safely

neglect these terms so that

H[mult] � [p1 + 1
2 d × B(R)]2

2m1
+ [p2 + 1

2 d × B(R)]2

2m2

− e2

4πε0r
+ ε0

2

∫
d3x

[
(�⊥ − P⊥

d )2/ε2
0 + c2B2

]

+ p4
1

8m3
1c

2
+ p4

2

8m3
2c

2
+ e2

16πε0c2m1m2

×
[

p1 · 1

r
p2+(p1 · r)

1

r3
(r · p2)+(1↔2)

]
(23)

is the multipolar Hamiltonian H[mult] = UH[Min.c.]U
† in elec-

tric dipole approximation, Pd = −dδ(x − R). To complete
the change to the center of mass frame, we define the mo-
mentum conjugate to the distance variable r as pr such that

p1,2 = m1,2

M
P ± pr, (24)

where P = p1 + p2 is the total momentum which is also
conjugate to R. Using [P, pr ] = [P, r] = 0 and the relative
mass μ = m1m2/M we obtain a Hamiltonian in the center of
mass frame

H[com] = HC + HA + HAL + HL + HX, (25a)

HC = P2

2M

[
1 − P2

4M2c2
− 1

Mc2

(
pr

2μ
− e2

4πε0r

)]
,

(25b)

HA = p2
r

2μ

(
1 − m3

1 + m3
2

M3

p2
r

4μ2c2

)
− e2

4πε0

×
[

1

r
+ 1

2μMc2

(
pr · 1

r
pr + pr · r

1

r3
r · pr

)]
,

(25c)

HAL = −d · E⊥(R) + 1

2M
{P · [d × B(R)] + H. c.}

− m1 − m2

2m1m2
{pr · [d × B(R)] + H. c.}

+ 1

8μ
(d × B(R))2 + 1

2ε0

∫
d3xP⊥

d

2
(x, t ), (25d)

HL = ε0

2

∫
d3x

(
E⊥2 + c2B2

)
, (25e)

HX = − (P · pr )2

2M2μc2
+ e2

4πε0r

(P · r/r )2

2M2c2

+ m1 − m2

2μM2c2

{
(P · pr )p2

r/μ − e2

8πε0

×
[

1

r
P · pr + 1

r3
(P · r)(r · pr ) + H. c.

]}
. (25f)

Here HC describes the central dynamics and HA is the
atomic Hamiltonian with relativistic corrections; neglect-
ing the term [P/(Mc)]2, we see that HC already contains
HA/(Mc2) and thus has the desired form given in Eq. (3).
HAL gives the interaction between the atom and the radiation
field in the dipole approximation; the first line contains the
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usual d · E coupling as well as the Röntgen term, in the second
line we find magnetic dipole terms and higher-order couplings
which are usually neglected [17,61]. HL gives the energy of
the radiation field.

Finally, HX contains terms that couple the internal degrees
of freedom r, pr with the central momentum of the atom,
P. As we discuss in more detail in Sec. V A, the presence
of this term shows that the coordinates R and r and their
respective momenta are not the optimal choice to separate
central and relative dynamics in an approximately relativistic
setting. We therefore need a further canonical transformation
to more suitable coordinates.

V. SEPARATION OF CENTRAL
AND RELATIVE DYNAMICS

Given that a system’s energy content is part of its inertia it
should not be surprising that the center of mass R is not the
optimal choice for an approximately relativistic discussion.
This is probably why several textbooks dealing with the Dar-
win Lagrangian contain the exercise to rewrite the correspond-
ing Hamiltonian in the center of energy frame [13,14] and
for P = 0 the reader will find the classical equivalent to HA

given in Eq. (25c). However, these exercises are problematic
because the center of energy coordinate R will also depend
on the particle velocities ṙi . Changing from r1, r2 to central
and relative coordinates R and r is therefore not a point
transformation which preserves the dynamics of the single-
particle Lagrangian. Such a change is also not a canonical
transformation as it does not preserve commutation relations.
These problems are only covered up if we choose P = 0. We
shall discuss this in more detail in Sec. V A and Appendix C

It turns out that finding a canonical set of central and
relative coordinates for a relativistic, interacting set of point-
particles is a surprisingly complicated task. A theorem by
Currie, Jordan and Sudarshan even states that it is impossible
to find a relativistic canonical formalism for interacting point-
particles with nonvanishing total momentum P �= 0, if certain
general conditions should hold as well [21,22].

Nevertheless, Close and Osborn managed to find expres-
sions for central and relative coordinates which at least allow
for an approximately relativistic discussion of interacting
particles [16,62]. Applying their result to our case we obtain
the following transformation to the new coordinates Q, q with
their respective canonical momenta P, p,

R = Q + m1 − m2

2M2c2

[(
p2

2μ
q + H. c.

)
− e2

4πε0q
q
]

− 1

4M2c2
[(q · P)p + (P · p)q + H. c.], (26a)

r = q + m1 − m2

2μM2c2
[(q · P)p + H. c.] − q · P

2M2c2
P, (26b)

pr = p + p · P
2M2c2

P − m1 − m2

2M2c2

×
[

p2

μ
P − e2

4πε0

(
1

q
P − 1

q3
(P · q)q

)]
. (26c)

Note that P remains unchanged as it already is the correct
total momentum and q = |q|. These new coordinates satisfy

the canonical commutation relations: [Qk, Pl] = [qk, pl] =
ih̄δkl and [Qk, ql] = [Qk, pl] = [Pk, pl] = [Pk, ql] = 0. The
external radiation field A⊥ at its canonical momentum �⊥

remain unchanged.
As the differences between the old and new coordinates are

small, most terms of the Hamiltonian Eq. (25) transform by a
simple replacement pr → p and r → q. The only exceptions
are

p2
r

2μ
→ p2

2μ
+ (p · P)2

2μM2c2
− m1 − m2

2μM2c2

{
p2

μ
P · p

− e2

8πε0

[
1

q
P · p − 1

q3
(P · q)(q · p) + H. c.

]}
,

(27a)

− e2

4πε0r
→ − e2

4πε0q
− e2

4πε0q3

(P · q)2

2M2c2
+ m1 − m2

2μM2c2

e2

4πε0

×
[

1

q3
(P · q)(q · p) + H. c.

]
. (27b)

These changes add up such that the transformation to the
new coordinates gives

HA(r, pr ) + HX(r, pr, R, P) → HA(q, p), (28)

where HA(q, p) is the atomic Hamiltonian from Eq. (25c)
with r and pr replaced by q and p, respectively. The total
transformed Hamiltonian thus reads

H = P2

2M

[
1 − HA(q, p)

Mc2

]
+ HA(q, p)

+ HAL(Q, P, A⊥,�⊥) + HL(A⊥,�⊥), (29)

with HAL = −d · E⊥ + 1
2M

[P · (d × B) + H. c.] in the
electric dipole approximation.

This Hamiltonian and the path to derive it are the main
result of this work. It shows that it is possible to construct
a Hamiltonian which gives a clear distinction between the
change in momentum and the actual acceleration, even if
the internal atomic energy changes. It also has the form
anticipated in Eq. (3), which is most satisfactory.

A. Remark: The difference between center of mass,
center of energy, and Q

In the course of this work, we mentioned three central
coordinates: the center of mass R Eq. (18), the new central co-
ordinate Q Eq. (26), and the center of energy given by [14,50]

(E1 + E2)R = r1E1 + r2E2, (30)

for Ei = mic
2 + mi ṙ2

i /2 − e2/(8πε0r ). As previously, we use
an approximation to second order to obtain

R � R − m1 − m2

4M2c2

[
q
(

p2

μ
− e2

4πε0q

)
+ H. c.

]

+ 1

2M2c2
[q(P · p) + H. c.]

= Q + 1

4M2c2
[q(P · p) − p(P · q) + H. c.]. (31)
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From the definitions of R and R we see that both are of a
form α1r1 + α2r2 with α1 + α2 = 1 (e.g., αi = mi/M for R).
These points therefore lie on a straight line connecting the
particle positions r1 and r2. Q, however, has a component
pointing in the direction of p, it is therefore not even restricted
to the plane spanned by r1 and r2.

If we consider the dynamics of these central coordinates,
then we find that, without external fields,

Ṙ = i

h̄
[H[com], R] = 1

M
P[1 − HA/(Mc2)] + i

h̄
[HX, R].

(32)

As we see from Eq. (25) we also get [H[com], [HX, R]] �= 0
such that the center of mass accelerates, even if there is no
interaction with an external field and Ṗ = 0. Similarly, also
HA changes as [HX, HA] �= 0, but these changes do not suffice
to cancel the acceleration of R. This illustrates why the center
of mass is not a suitable central coordinate here.

As the Hamiltonian given in Eq. (29) decouples
central and relative dynamics, this cannot happen
for Q. From Eq. (31) we also find that d

dt
(R − Q) =

d
dt

[q(P · p) − p(P · q) + H. c.]/(4M2c2). As the relative
coordinates follow the Coulomb potential in the atom we
get ṗ ‖ q and q̇ ‖ p such that d

dt
(R − Q) = [q(Ṗ · p) −

p(Ṗ · q) + H. c.]/(4M2c2). However, Ṗ is given by the
external fields and as we decided to drop terms ∝ HAL/(Mc2)
we can conclude that Ṙ ≈ Q̇, cf. Sec. I B or Eq. (22). Hence,
although Q is not the center of energy its dynamics are the
same such that all associated conservation laws hold to our
level of approximation [50].

In Appendix C we show that a set of coordinates that
includes the center of energy R does not satisfy the canonical
commutation relations for independent central and relative
coordinates. This means that there is no canonical trans-
formation connecting, for example, the individual particle
coordinates ri with R.

B. Remark: Using the center of mass
in the PZW transformation

Given that the we replaced the center of mass R by the
new central coordinate Q one could argue that it would be
more reasonable to use Q instead of R in the Power-Zienau-
Wolley transformation as well, cf. Sec. IV Eqs. (14) and (15).
The phase �(ri , A⊥) would then become a function of particle
positions as well as their momenta pi , such that the PZW-
transformation would not only transform momenta, but also
positions ri → UriU

†.
More generally, this approach would spoil the connection

between the PZW-transformation and similar transformations
at the Lagrangian level of type L → L − d

dt
�. Such trans-

formations leave the equations of motion unchanged only
if � is a function of coordinates ri and A, not of their
derivatives [12,43,44].

It thus appears to be more instructive to first use a stan-
dard PZW-transformation using the center of mass and then
make a separate canonical transformation to the coordinates q
and Q.

C. Remark: Expressing the atomic Hamiltonian
in terms of energy eigenstates

The basic atomic Hamiltonian HA given above will usually
be replaced by a more complicated version including spin,
multiple electrons etc. In the end, one will obtain the energy
eigenstates of this atom, HA = ∑

n En|n〉〈n|, where En < 0
for a bound state. If the setup is such that the atom can be
restricted to a two level system, HA = Eg|g〉〈g| + Ee|e〉〈e|,
with Eg < Ee < 0, then one can write

HA = Eg|g〉〈g| + Ee|e〉〈e| = h̄ωA

2
σz + Ee + Eg

2
1, (33)

where Ee − Eg = h̄ωA and σz = |e〉〈e| − |g〉〈g|. For an iso-
lated atomic Hamiltonian the constant final term can be
dropped. For the modified kinetic-energy term this implies

P2

2M

(
1 − HA

Mc2

)
≈ P2

2M ′

(
1 − h̄ωA

2M ′c2
σz

)
. (34)

Here M ′ = [M + (Ee − Eg )/(2c2)], where M is the mass
of the atom in its electronic ground state. Although the
modified mass M ′ is not given by the sum of the rest masses
of the atomic constituents it is nevertheless invariant under
any changes of the internal atomic energy such that we
can set M ′ = M for all practical purposes. This allows us
to continue using a notation using energy differences h̄ωA

in HA.
When describing an atom interacting with a laser field

of frequency ωL it is common to apply a unitary trans-
formation U = exp[i(ωLσz + ωA1)t/2] such that, for exam-
ple, U |e〉〈g|U † = |e〉〈g| exp(iωLt ). The kinetic and atomic
Hamiltonian then transform to

P2

2M

(
1 − HA

Mc2

)
+ HA + ih̄U̇U †

= P2

2M ′

(
1 − h̄ωA

2M ′c2
σz

)
+ h̄(ωA − ωL)

2
σz − h̄ωA

2
1.

(35)

The final term can again be dropped without changing the
resulting dynamics. One should thus take note that the uni-
tary transformation used, for example, in the rotating wave
approximation modifies the effective free atomic Hamiltonian,
but not the one appearing in the kinetic term describing the
central motion.

VI. EXAMPLES

In the following three examples we shall briefly examine
the effect of the modified Hamiltonian Eq. (29). The first
example of a moving atom undergoing spontaneous decay
was the trigger for this work. Later we consider the role
of this modification for atomic transition rates and Rabi
oscillations.

A. Decaying atom

The example of a moving, decaying atom was the initial
motivation for this work [1]. Using the Hamiltonian from
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Eq. (29), we see that the equations for the central motion in
the Heisenberg picture are

Ṗ = i

h̄
[H, P] = i

h̄
[HAL, P], (36a)

MQ̇ = P[1 − HA/(Mc2)] + d × B(Q), (36b)

MQ̈ = Ṗ[1 − HA/(Mc2)] − i

h̄
P[H, HA]/(Mc2)

+ i

h̄
[H, d × B(Q)]. (36c)

In Ref. [1] we showed that an initially excited two-level
atom HA = h̄ωA|e〉〈e| decaying at a rate � will change its in-
ternal energy as d

dt
〈HA〉 = −�h̄ωA while the average momen-

tum changes as d
dt

〈P〉 = −�h̄ωA〈P〉/(Mc2) and d
dt

〈d × B〉 =
0. As P and HA commute we can write for the expectation
values

M
d2

dt2
〈Q〉 = d

dt
〈P〉[1 − 〈HA〉/(Mc2)]

−〈P〉 d

dt
〈HA〉/(Mc2) + d

dt
〈d × B〉, (37)

such that M d2

dt2 〈Q〉 ≈ 0 as it should be. Without the correction
term ∼HA/(Mc2) we would have had M〈Q̈〉 = 〈Ṗ〉 with
the misleading result that a decaying, moving atom feels
an average deceleration during the emission process. This
is corrected by the use of the Hamiltonian Eq. (29), which
correctly distinguishes between a change in momentum due
to acceleration and a force due to a change of internal energy.

B. Modification of internal atomic dynamics

The dynamics of some operator describing the internal
states of the atom, for example, σ+ = |e〉〈g|, are given by
σ̇+ = i

h̄
[H, σ+] with

[H, σ+] =
[

HA

(
1 − P2

2M2c2

)
+ HAL, σ+

]

≈
(

1 − P2

2M2c2

)
[HA + HAL, σ+]

≈ 1

γ
[HA + HAL, σ+], (38)

with the Lorentz factor γ ≈ 1 + P2/(2M2c2). Thus, we see
that the Heisenberg equation of motion is actually with respect
to proper time, i.e.,

d

dτ
σ+ = γ

d

dt
σ+ = i

h̄
[HA + HAL, σ+]. (39)

This is consistent with the equations of motion for the two
charges in the Lagrangian Eq. (8), which are also the Lorentz
force in the proper time [63].

C. Photon absorption and Rabi oscillations

Although the motivation for this work was an atom under-
going spontaneous emission, it is clear that also absorption or
stimulated emission will change the atom’s mass-energy in the
manner described above. A careful analysis of these effects

should therefore also reveal a “friction-like” force which can
be correctly interpreted using a Hamiltonian of the type given
in Eq. (29).

1. Fermi’s argument for resonant photon absorption

First, let us briefly review Fermi’s classical argument for
a moving atom absorbing a photon [3,51,52]. Let an atom
move in the +z direction with an initial momentum p=Mv

encounter a photon of frequency ωL propagating in the oppo-
site direction. After absorption the atom will be in an excited
state of energy h̄ωA and carry momentum p∗. Energy and
momentum conservation then require that

p2

2M
+ h̄ωL = p∗2

2M∗ + h̄ωA, (40a)

p − h̄ωL/c = p∗, (40b)

where terms with a star are quantities referring to the
excited atom. From this it is easy to obtain the resonance
condition including the Doppler and recoil shift

h̄ωL

(
1 + p

M∗c
− h̄ωL

2M∗c2

)
= h̄ωA + p2

2M

(
M∗

M
− 1

)
,

ωL

(
1 + p

Mc
− h̄ωL

2Mc2

)
≈ ωA, (41)

where we used M∗ ≈ M . The last line can also be written as
ωL ≈ ωA(1 − p

Mc
+ h̄ωA

2Mc2 ).
In a reference frame where the atom is initially at rest the

laser frequency is given by ω′
L = ωL[1 + p/(Mc)] and it is

resonant with the atom if ω′
L = ωA[1 + h̄ωA/(2Mc2)]. In this

frame we see that the change in the atom’s momentum is

(p∗)′ − 0 = −h̄ω′
L/c = − h̄ωA

c

(
1 + h̄ωA

2Mc2

)
. (42a)

In comparison, an observer in a frame where the atom is
initially moving with momentum p finds

p∗ − p = − h̄ωA

c

(
1 + h̄ωA

2Mc2

)
+ p

h̄ωA

Mc2
. (42b)

Thus, we again find a situation in which observers in dif-
ferent reference frames see a different change in momentum
and again this change is proportional to the initial momentum
multiplied by the change in internal energy relative to the
atomic mass [64].

As before, this is resolved by accounting for a change in
mass-energy by setting p∗ = M∗v∗ such that Eq. (40b) gives
v∗ = (Mv − h̄ωL/c)/M∗. The actual change in velocity due
to the absorption of a resonant photon is then given by

v∗ − v = v

(
M

M∗ − 1

)
− h̄ωL

Mc

M

M∗

≈ v

(
M

M∗ − 1

)
− h̄ωA

Mc

(
M

M∗ + h̄ωA

2Mc2

)
+ v

h̄ωA

Mc2

≈ − h̄ωA

Mc

(
1 − h̄ωA

2Mc2

)
. (43)

For the final result we used M∗ = M + h̄ωA/c2 [9].
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Before we consider the corresponding quantum case let
us highlight a few details of the calculation so far: First we
should note that the introduction of a modified mass M∗ was
not necessary to obtain the resonance condition in Eq. (41)
and indeed usual derivations of this condition do not consider
a possible change in mass-energy [51,52]. However, setting
M∗ = M + h̄ωA/c2 is required to obtain an acceleration
which is independent of the original velocity as one would
expect from the case for an atom initially at rest.

Second, we would like to clarify that the result of Eq. (43)
does, of course, not contradict Doppler cooling. The probabil-
ity to absorb a photon and receive a momentum kick is still
proportional to the detuning, which remains sensitive to the
atom’s initial velocity.

It is interesting to note that the Doppler shift in absorption
and emission as well as aberration played a crucial role in
Einstein’s study of thermal equilibrium and the relationship
between the Maxwell-Boltzmann velocity distribution and the
Planck spectrum of thermal radiation [53].

2. A two-level atom in a laser beam: Rabi oscillations

The discussion above was not based on any Hamiltonian,
but on energy and momentum conservation. Hence, it is a suit-
able testing ground for our Hamiltonian which should resolve
the ambiguity between change in (canonical) momentum and
observed acceleration.

Including the mass-energy correction laid out in Eq. (29),
the total Hamiltonian for a two-level atom interacting in one
dimension with a semi-classical laser field is

H = P 2

2M

(
1 − h̄ωA

Mc2
|e〉〈e|

)
+ HA + HAL, (44a)

where the mass M refers to the mass of the atom in the ground
state. The field shall be propagating in the −z-direction such
that we find after a suitable unitary transformation HA =
h̄δσz/2 and

HAL = h̄�L

2

[
σ+

(
1 + P + h̄k/2

Mc

)
e−ikZ + H. c.

]
, (44b)

where δ = ωA − ωL is the detuning, h̄�L gives the cou-
pling strength between the dipole and the electric field, k =
ωL/c is the wave number and [Z, P] = ih̄. The term ∼(P +
h̄k/2)/(Mc) is due to the Röntgen interaction [47]. For the
two-level atom with states |g〉 and |e〉 we have σz = |e〉〈e| −
|g〉〈g|, σ+ = |e〉〈g| and (σ+)† = σ−.

Solving the Schrödinger equation for a general atomic
state |ψ (t )〉 = ∫

dp(cg (t, p)|g, p〉 + ce(t, p)|e, p〉) with ini-
tial condition cg (0, p) = c0

g (p) and ce(0, p) = 0 we get

cg (t, p) = c0
g (p)e−i�(p)t

{
cos [�R (p)t/2]

+i
�(p)

�R (p)
sin [�R (p)t/2]

}
, (45a)

ce(t, p − h̄k) = −ic0
g (p)

�L

�R (p)

(
1 + p − h̄k/2

Mc

)

× e−i�(p)t sin [�R (p)t/2]. (45b)

Here,

�(p) = p2 + (p − h̄k)2

4h̄M
, (45c)

�(p) = ωA − ωL

(
1 + p − h̄k/2

Mc

)
, (45d)

�2
R (p) = �2

L

(
1 + 2

p − h̄k/2

Mc

)
+ �2(p), (45e)

give the dispersion of the wave packet, the detuning be-
tween the moving atom and laser field including the recoil
shift and the Rabi frequency, respectively. As one would
expect, the ground-state amplitude for momentum p is cou-
pled to the excited-state amplitude for momentum p − h̄k

and |cg (t, p)|2 + |ce(t, p − h̄k)|2 = |c0
g (p)|2. For an opti-

mally chosen laser frequency we find �(p) = 0 and the atom
oscillates between the ground and excited state at a rate given
by the Rabi frequency.

Let p0 = ∫
dp p|c0

g (t )|2 denote the momentum expecta-
tion value for the initial wave packet which is well lo-
calised in momentum space such that

∫
dp f (p)|c0

g (t )|2 ≈
f (p0) for any slowly varying function f . Setting Ce(t ) :=∫

dp |ce(t, p)|2 we then find that the momentum expectation
value changes as

〈Ṗ〉 = −h̄kĊe(t ), (46a)

while the actual acceleration is given by

M〈Z̈〉 = 〈Ṗ〉 − h̄ωA

c

p0 − h̄k

Mc
Ċe(t ) + FR, (46b)

where FR is a force given by the Röntgen term,

FR = h̄�L

c

d

dt

∫
dp Re[cg (t, p)c∗

e (t, p − h̄k)]

= − h̄�2
L

c

�(p0)

2�R (p0)

(
1 + p0 − h̄k/2

Mc

)
sin [�R (p0)t].

(47)

Choosing ωL = ωA(1 − p0−h̄k/2
Mc

), such that �(p0) = 0, we
obtain

〈Ṗ〉 = − h̄ωA

c

(
1 − p0 − h̄k/2

Mc

)
Ċe(t ), (48a)

while the actual acceleration is given by

〈Z̈〉 = − h̄ωA

Mc

(
1 − p0 − h̄k/2

Mc
+ p0 − h̄k

Mc

)
Ċe(t )

≈ − h̄ωA

Mc

(
1 − h̄ωA

2Mc2

)
Ċe(t ), (48b)

which is consistent with what we had in Eq. (43) and is
independent of the initial momentum p0.

VII. CONCLUSION

The usual Hamiltonian describing the nonrelativistic inter-
action between (moving) atoms and external fields is not able
to distinguish between the atom’s mass and its mass-energy.
This is because the motion of atoms is usually described
in terms of Galilean physics while electromagnetic fields
inherently follow Lorentzian symmetry. This hotchpotch leads
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to the surprising effect that the concept of mass-energy enters
the atomic equations of motion through the back-door of first
order the Doppler effect and aberration [1,2].

Motivated by this discrepancy, we re-derived the Hamilto-
nian for atom-light interaction including some next-order rel-
ativistic effects. Starting from Darwin-Lagrangian we first de-
rived a corresponding minimal-coupling Hamiltonian. After a
PZW-transformation to a multi-mode Hamiltonian in center-
of-mass coordinates, a further canonical transformation gave
the final Hamiltonian Eq. (29). The essential difference be-
tween this Hamiltonian and the usual description is that the
kinetic energy term changes as P2/(2M ) → P2/(2M )[1 −
HA/(Mc2)].

The examples given in Sec. VI illustrate that this allows
a clear distinction between forces connected to an actual
change in the motion of the atom and those that arise due
to changes in internal energy. Such an ambiguity can arise
whenever mechanical interactions between atoms and light
are calculated to the level of a single photon recoil.

Although we only used a very simple atomic model of
two opposite charges, there is no reason to assume why more
elaborate models of atoms should give very different results,
provided the hierarchy of energy scales given in Sec. I B is
preserved.

Finally, we note that the results presented here are reminis-
cent of those obtained for the motion of a spin-half relativistic
dipole, such as a neutron, moving in an external field [54].
Indeed we could have based our analysis on the Dirac equation
for a neutron [55] and extended this, by analogy, to an
atomic dipole. We shall present this complimentary derivation
elsewhere.
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APPENDIX A: CALCULATION OF FIELDS GENERATED
BY THE CHARGES

The internal potentials can be calculated from Maxwell’s
equations in Coulomb gauge, ∇2φ = −ρ/ε0 and (∇2 −
1
c2

∂2

∂t2 )A⊥ = −μ0j⊥, with j⊥ = j − j‖ = j − ε0∇ ∂
∂t

φ. These
can be solved using the Green’s function for the Poisson and
wave equation, respectively [13],

φ(x, t ) = 1

4πε0

∫
d3x′ ρ(x′, t )

|x − x′| (A1)

A⊥(x, t ) = μ0

4π

∫
d3x′

[
j(x′, t ) − ε0∇x′ ∂

∂t
φ(x′, t )

]
ret

|x − x′|

= μ0

4π

∫
d3x′ 1

|x − x′|
[

j(x′, t )

+ ∇x′

4π

∫
d3x′′ ∇x′′ · j(x′′, t )

|x′ − x′′|
]

ret

. (A2)

Here we used the continuity equation ∇ · j + ∂tρ = 0 to
obtain the last line and ∇x′ indicates derivation with respect
to primed coordinates. The brackets [. . . ]ret indicate that an
expression is evaluated at the retarded time t ′ = t − |x −
x′|/c, but as A⊥ appears in the Lagrangian only together with
j, including retardation would lead to terms in third order
of velocity and go beyond our approximation. Using partial
integration we obtain the vector potential generated by the
moving charges [13],

A⊥(x, t ) � μ0

4π

∫
d3x′ j(x′, t )

|x − x′| + μ0

(4π )2

∫
d3x′

×
∫

d3x′′ x − x′

|x − x′|3
j(x′′, t ) · (x′ − x′′)

|x′ − x′′|3

= μ0

8π

∑
i=1,2

ei

{
ṙi

|x − ri | + (x − ri )[ṙi · (x − ri )]

|x − ri |3
}
.

(A3)

APPENDIX B: NEGLIGIBLE TERMS
IN THE LAGRANGIAN Eq. (7)

The Lagrangian given in Eq. (7) contains two unfamiliar
terms which shall be examined here.

The first is ε0
4

∫
d3x ∂2

t (A⊥)2, the second time-derivative
of the internal vector potential. From Eq. (A3) we see that
ε0(A)2 is proportional to terms of second order in the particle
velocities divided by the speed of light c. The additional time-
derivatives of ∂2

t (A⊥)2 will then give terms ∼|ṙi |2|ṙj |2/c4 as
well as terms containing accelerations |r̈i ||ṙj |2/c4 and even
|...r i ||ṙj |/c4, i, j = 1, 2. We can assume that the dominant
force in our setup is the electrostatic attraction between the
particles, so that

|r̈i ||ṙj |2
c4

∝ 1

4πε0

e1e2

|r1 − r2|
|ṙj |2
mic4

. (B1)

These terms are thus proportional to the electrostatic energy of
the atom divided by mic

2 times |ṙj |2/c2, which goes beyond
our level of approximation. Other works deriving the Darwin
Lagrangian have used similar arguments [16,38].

The second term under consideration here is

ε0

∫
d3x[(∂tA⊥) · (∂tA⊥) − c2(∇ × A⊥) · (∇ × A⊥)].

(B2)

This is a cross term between the transverse electric and
magnetic fields generated by the moving charges and the
external fields. Terms like this are not specific to our problem,
they appear whenever the back-action of fields generated by
a (moving) charged particle on itself are considered. This
term is thus connected to radiation reaction, electromagnetic
masses and similar problems [13,56,57]. As we are also
ignoring other formally infinite self-action terms appearing in
j · A − ρφ we can also drop the term Eq. (B2) following the
same rationale.
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APPENDIX C: PROOF THAT ONE CANNOT
CONSTRUCT CANONICAL VARIABLES

USING THE CENTER OF ENERGY

Throughout this work we have made the claim that it is
impossible to use the center of energy as a central coordinate
for our problem to two charged particles. In Eq. (31) we
gave the center of energy in terms of the canonical quantities
Q, q, P, p and found

R− Q = [q(P · p) + (p · P)q − p(P · q) − (q · P)p]

4M2c2
. (C1)

Q, q are canonical coordinates with their respective momenta
P, p and a straightforward (but lengthy) calculation confirms
that [Qk, Pl] = [qk, pl] = ih̄δkl and [Qk, ql] = [Qk, pl] =
[Pk, pl] = [Pk, ql] = 0. Using the relationship between Q and
R, we shall now try to construct a set of canonical coordinates
(R, PR; r, pr) which preserve these commutation relations.

The central momentum P = p1 + p2 already is the total
momentum of our two particles. If R is to be a central coor-
dinate, then we need PR = P, and this also fulfills [Rk, Pl] =
[Qk, Pl].

It is also reasonable to demand that the new set of co-
ordinates converges towards the center of mass coordinates
in the lowest approximation, especially limc→∞ r = r = r1 −
r2. We can therefore say that r − q is “small” just as R − Q
above such that (R − Q)k (r − q)l ≈ 0. Using this reasoning,
we can write

[Rk, rl] = [Qk + (R − Q)k, ql + (r − q)l]

≈ [Qk, ql] + [Qk, (r − q)l] + [(R − Q)k, ql],

(C2)

such that, using [Qk, ql] = 0 and demanding [Rk, rl]
!= 0, we

find

[Qk, (r − q)l]
!= −[(R − Q)k, ql]. (C3)

With Eq. (C1), we find

[(R − Q)k, ql] = − ih̄

2M2c2
[qkPl − δlk (q · P)]

= − ih̄

2M2c2

∑
n

(δlnqk − δlkqn)Pn. (C4)

As [Qk, (r − q)l] = ih̄ ∂
∂Pk

(r − q)l , we see that (r − q) has to
be of second order in P. We thus set

(r − q)l =
∑
mn

αlmn(q)PmPn + Cl (q, p), (C5)

for a set of coefficients αlmn(q) and some self-adjoint
Cl (q, p), which commutes with Qk . We then find

[Qk, (r − q)l] = ih̄
∑
mn

αlmn(q)(δnkPm + δmkPn)

= ih̄
∑

n

[αlnk (q) + αlkn(q)]Pn. (C6)

If Eq. (C3) should hold, then we must find that each term in
the sums of Eqs. (C4) and (C6), respectively, are the same,
i.e.,

− 1

2M2c2
(δlnqk − δlkqn)

!= [αlnk (q) + αlkn(q)]. (C7)

However, we see that the expression on the left-hand side
(l.h.s.) is antisymmetric under exchange of n and k, while the
right-hand side (r.h.s.) is symmetric ([l.h.s]n,k = −[l.h.s]k,n

while [r.h.s]n,k = [r.h.s]k,n). This shows that it is impossible
to fulfill Eq. (C3) and thus [Rk, rl] �= 0 for any relative
coordinate r.
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