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Survey on the Bell nonlocality of a pair of entangled qudits

Alejandro Fonseca,1 Anna de Rosier,2 Tamás Vértesi,3 Wiesław Laskowski,2 and Fernando Parisio1

1Departamento de Física, Universidade Federal de Pernambuco, 50670-901, Recife, Pernambuco, Brazil
2Institute of Theoretical Physics and Astrophysics, Faculty of Mathematics, Physics, and Informatics,
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The question of how Bell nonlocality behaves in bipartite systems of higher dimensions is addressed. By
employing the probability of violation of local realism under random measurements as the figure of merit,
we investigate the nonlocality of entangled qudits with dimensions ranging from d = 2 up to d = 10. We
proceed in two complementary directions. First, we study the specific Bell scenario defined by the Collins-Gisin-
Linden-Massar-Popescu (CGLMP) inequality. Second, we consider the nonlocality of the same states under a
more general perspective by directly addressing the space of joint probabilities (computing the frequencies of
behaviours outside the local polytope). In both approaches we find that the nonlocality decreases as the dimension
d grows, but in quite distinct ways. While the drop in the probability of violation is exponential in the CGLMP
scenario, it presents, at most, a linear decay in the space of behaviors. Furthermore, in the latter approach the
states that produce maximal numeric violations in the CGLMP inequality present low probabilities of violation
in comparison to maximally entangled states, so no anomaly is observed. Finally, the nonlocality of states with
nonmaximal Schmidt rank is investigated.
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I. INTRODUCTION

The violation of Bell inequalities [1], recently confirmed
by experiments not afflicted by detection and locality loop-
holes [2–5], constitutes one of the most impressive confirma-
tions of the nonlocal character of quantum theory. Presently,
the majority of the state-of-the-art experiments in the field
involve two qubits in the context of the Clauser-Horne-
Shimony-Holt (CHSH) inequality. However, it became clear
that the use of systems of higher dimensionality, or qudits,
may lead to new, interesting phenomena and improvements
in the efficiency of some practical tasks [6–10]. In particular,
it may be easier in the future to carry out loophole-free Bell
tests if qudits are employed [11]. The nonlocality of pairs of
entangled qudits have been used to certify high dimensional
entanglement and in the study of robustness against noise,
imperfect state preparation, and measurements [12–15]. Apart
from its foundational relevance, Bell nonlocality is a primary
resource within the field of quantum information [16,17].

A more specific, but important question refers to the
macroscopic limit. Pioneering works, addressing two spin-s
particles, revealed a tendency toward local, classical behaviors
as s → ∞ [18,19], in the sense that the range of parameters
for which nonclassicality arises vanishes as 1/s (however, the
considered inequalities are not tight). Complementarily, Gisin
and Peres [20] showed that, for particular choices of mea-
surement parameters in the context of the CHSH inequality,
it is always possible to obtain violations, but not above the
Tsirelson bound.

The authors of [21] employed the resistance to noise as
a nonlocality quantifier, and numerically calculated it for
maximally entangled states of two qudits up to d = 9, each

subject to one out of two local measurements characterized
by multiport beam splitters and phase shifters (MBSPS) [22].
Rather surprisingly, the authors found that the resistance to
white noise increases with the dimension d. Presently, it is
acknowledged that, although physically relevant, resistance
to noise is not a good measure of nonlocality. Also in this
context, a surprising result is that the nonlocality of a system
of n qubits tends to increase with n, provided that the ability
to individually address each qubit is preserved [23].

Further results indicated that the states that maximally
violate the Collins-Gisin-Linden-Massar-Popescu (CGLMP)
inequality [24] do not correspond to maximally entangled
states for d > 2 [25] (this is also valid for optimal Bell tests
[26,27]). This unexpected finding has been considered as
an “anomaly” of nonlocality. In this context, the probability
of violation under random measurements [28,29] has been
proposed as a measure of nonlocality [30], and, contrary to
these previous works, led to the conclusion that maximally
entangled qutrits are maximally nonlocal. This indicates that
the anomaly [31] in the nonlocality of entangled qudits may
be an artifact of the previously employed measures (see,
however, [32]). Recently, other promising quantifiers have
been proposed, as, for example, a trace distance measure
(within the context of a resource theory for nonlocality) [33],
and a nonanomalous realism-based measure [34,35].

In this work we employ the probability of violation to
quantify the nonlocality of two entangled qudits, in two dis-
tinct, complementary perspectives. First, we address a specific
experimental situation, i.e., a fixed Bell scenario (CGLMP)
and the set of observables which are accessible in a particular
experimental realization, namely, multiport beam splitters and
phase shifters (MBSPS). Second, we investigate the same set
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of states in a more fundamental perspective, by calculating
the probability of violation directly in the full space of joint
probabilities (the space of behaviors). While the first approach
corresponds to a situation that can be exhaustively investi-
gated within a single experimental preparation, it also inherits
the bias associated with the choice of a particular facet of the
local polytope. In the first approach we consider dimensions
d with 2 � d � 7, while in the second case we have 2 �
d � 10. The second approach is conceptually more powerful
since it takes into account all possible Bell inequalities (with a
certain number of observables per party), however, the proba-
bilities of violation calculated in the space of behaviors cannot
possibly be determined by a single experimental setup. For
instance, the MBSPS setup is not able to generate all possible
quantum behaviors for d � 3. We discuss both the common
points and the differences between the two approaches.

II. NONLOCALITY OF TWO ENTANGLED QUDITS
IN THE CGLMP SCENARIO

We start by relating the volume of violation, defined as
a quantifier of Bell nonlocality in [30], with the probability
of violation under random, directionally unbiased measure-
ments. Here, the nonlocality extent of a quantum state ρ

within the scenario of a particular Bell function I will be
associated with

VI (ρ) ≡ 1

N

∫
�ρ

dnx, (1)

where X = {xi} is the set of all parameters that characterizes
the measurements, �ρ ⊂ X is the subset of parameters that
lead to violations in the Bell inequality I � 2, and N is a
normalization constant. To obtain the probability of violation
pv (ρ) we must write

1

N = ν

VX
,

where VX gives the total volume of the set of measurement
parameters

VX ≡
∫
X

dnx,

and ν is the number of ways one can relabel Alice’s and
Bob’s observables (the symmetry between Alice and Bob
themselves is already considered). Since we have two ob-
servables per party in both the CHSH and CGLMP sce-
narios, say {A1, A2} for Alice and {B1, B2} for Bob, there
are four inequalities: the original one plus three inequalities
corresponding to A1 ↔ A2 (Bob’s observables unchanged),
B1 ↔ B2 (Alices’s observables unchanged), and A1 ↔ A2

and B1 ↔ B2. Consider, for instance, the CHSH inequality
and the singlet state. If the singlet violates one of the four
inequalities it does not violate the other three. However, there
are three local operations on the singlet (leading to the other
maximally entangled Bell states) that will lead to violations in
each of the other inequalities. To take these local equivalences
into account we must set ν = 4. We verified that the same
reasoning is valid for higher dimensions (d > 2).

In this way, VI (ρ) → pv (ρ) becomes a probability, which
is the quantity that we will consider hereafter. A complemen-
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FIG. 1. Schematic illustration of the multiport-beam-splitters-
and-phase-shifters (MBSPS) realization of the CGLMP inequality.

tary approach was recently used by Atkin and Zohren [36], in
which the measurement settings are fixed and the number of
outcomes of the measurements is varied for several ensembles
of random pure states.

A. Multiport beam splitters and phase shifters

We will be concerned with bipartite systems with Alice and
Bob sharing a pure entangled state |�〉 of two d-level systems.
The state of such a system can always be written as a Schmidt
decomposition

|�〉 =
d−1∑
j=0

αj |j 〉A ⊗ |j 〉B. (2)

Each of the parties can execute one out of two d-outcome
projective measurements (x, y = 1, 2) limited to a MBSPS
scheme, which consists in diagonal phase-shift unitary oper-
ations: Umm = eiφm

x (Alice) and Unn = eiϕn
y (Bob), followed

by discrete Fourier transforms UFT and U ∗
FT on Alice’s and

Bob’s subsystems, respectively, and then a projection onto the
original basis [21,22,24,26,27,37] (see Fig. 1). It is important
to note that this does not exhaust the CGLMP scenario,
however, we obtain a great simplification by remaining within
MBSPS realizations, which are often employed in CGLMP
tests. In addition, this was exactly the considered situation
when the anomaly in the nonlocality of two qutrits was first
reported. It has also been conjectured that the optimal settings
are contained in the MBSPS scenario [37], which has been
proved in the two-qutrit case in [38].

The joint probability associated with the kth and lth out-
puts for Alice and Bob, respectively, given that their choices
of observable were x and y reads

Pxy (k, l) = 1

d2
+ 2

d2

d−1∑
m>n=0

Re(αmα∗
n ) cos �mn

xy (k, l), (3)

with

�mn
xy (k, l) = φm

x + ϕm
y − φn

x − ϕn
y + 2π

d
(m − n)[k ⊕ (−l)],

where ⊕ denotes sum modulo d.
The corresponding CGLMP inequality is a facet of the

associated local polytope [39] and reads

Id =
[d/2]−1∑

k=0

(
1 − 2k

d − 1

)
{Bk − B−(k+1)} � 2, (4)

here [ζ ] indicates the integer part of ζ and Bk =
P (A1 = B1 + k) + P (B1 = A2 + k + 1) + P (A2 = B2+k) +
P (B2 = A1 + k), where P (Ax = By + k) is the probability
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FIG. 2. Monolog plot of the probabilities of violation (in per-
cents) of the maximally entangled state (MES) and maximally
violating state (MVS) as a function of the dimension d (CGLMP
inequality and MBSPS measurements). The nonlocality decreases
exponentially with the dimension.

that the outcomes corresponding to the observables Ax and
By differ by k, modulo d.

Introducing the joint probabilities (3) into (4) the CGLMP-
Bell function can be rewritten in a simpler form, compatible
with the MBSPS constraints (see the Appendix)

Id =
2∑

x,y=1

d−1∑
m>n=0

Cmn
xy cos

(
φm

x + ϕm
y − φn

x − ϕn
y + Ψ mn

xy

)
,

with coefficients Cmn
xy and Ψ mn

xy given by (A1) and (A2).
The volume element of the set of measurement parameters

is simply given by d� = ∏2
x,y=1

∏d−1
j,k=0 dφ

j
xdϕk

y . This “triv-
ial” measure is due to the fact that all involved parameters are
in-plane angles (in the MPBSPS scheme). The total volume
is VX = (2π )4d , then the probability of violation may be
calculated as

pv (ρ) = 4

(2π )4d

∫
�ρ

d�, (5)

where �ρ corresponds to the subset of X for which the
measurement parameters lead to violation of the inequality
Id � 2 for a given state ρ.

The results presented in this section have been obtained
via Monte Carlo integrations, corresponding to several runs
of a Bell experiment using uniform random measurement
configurations on a definite quantum state.

Calculations of the probability of violation of pairs of
qudits in maximally entangled states (MES) and maximally

violating states (MVS) under the CGLMP inequality and MB-
SPS measurements were carried out up to d = 7. The results
are shown in a monolog plot in Fig. 2. Each point in this figure
is the average of ten Monte Carlo runs with 1010 points each.
Error-bar sizes in this plot are smaller than the scatters used to
represent the points. In all cases the uncertainties are orders of
magnitude smaller than the mean values. As it can be seen, the
higher the dimension, the lower the probability of violation. In
this way it is possible to conclude that the nonlocal content
of a quantum entangled state of two qudits exponentially
decreases with the dimensionality of the system, which is in
agreement with the notion of restoration of classical features
in the limit of high quantum numbers. However, we stress that
the CGLMP scenario refers to two observables per party, no
matter the value of d. We found that the exponential-decay
behavior assumes a particularly simple form if we use 2π as
the basis (this is a natural basis in MBSPS scenarios). The
points are well described by

pv (d ) ∼ (2π )−d , (6)

where pv (d ) refers to the maximally entangled state (MES)
of two qudits with d levels each. In Fig. 2, these points
are represented by (red) triangles, and the upper continuous
line corresponds to the best fitting with pv (d ) ∼ (2π )−1.04d .
The squares correspond to the states that yield the maximal
numeric violation of the CGLMP inequality. Except for d = 2
(for which equal probabilities are obtained), the MES present
a higher probability in comparison to the maximally violating
states. The probability of violation for the MVS’s drops off
approximately as (2π )−1.07d . This extends the results of [30],
showing that there is no anomaly in the nonlocality of two
entangled qudits up to d = 7, at least in the CGLMP scenario,
when pv is used as a figure of merit. However, very recently,
it has been shown that this conclusion cannot be extended to
d > 7 [40]. In this reference the authors numerically demon-
strate that, for d = {8, 9, 10}, the volume of violation of the
corresponding MES’ is again smaller than that of MVS’. We
atribute this to the increasing bias (as d grows) introduced by
the choice of a single facet of the local polytope rather than to
a fundamental anomaly. In fact, in the next section we show
that no anomaly shows up for 2 � d � 10 when the whole
space of behaviors is considered.

Below, we provide a list of numerically calculated MVS’s
for 3 � d � 10:

∣∣ψ rank=3
MVS

〉 =0.6169|00〉 + 0.4888|11〉 + 0.6169|22〉, (7)

∣∣ψ rank=4
MVS

〉 =0.5686|00〉 + 0.4204|11〉 + 0.4204|22〉 + 0.5686|33〉, (8)

∣∣ψ rank=5
MVS

〉 =0.5368|00〉 + 0.3859|11〉 + 0.3859|22〉 + 0.3859|33〉 + 0.5368|44〉, (9)

∣∣ψ rank=6
MVS

〉 =0.5137|00〉 + 0.3644|11〉 + 0.3214|22〉 + 0.3214|33〉 + 0.3644|44〉 + 0.5137|55〉, (10)

∣∣ψ rank=7
MVS

〉 =0.4957|00〉 + 0.3493|11〉 + 0.3011|22〉 + 0.2882|33〉 + 0.3011|44〉 + 0.3493|55〉 + 0.4957|66〉, (11)

∣∣ψ rank=8
MVS

〉 =0.4812|00〉 + 0.3379|11〉 + 0.2872|22〉 + 0.2679|33〉 + 0.2679|44〉 + 0.2872|55〉 + 0.3379|66〉 + 0.4812|77〉,
(12)
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∣∣ψ rank=9
MVS

〉 = 0.4690|00〉 + 0.3288|11〉 + 0.2770|22〉 + 0.2541|33〉 + 0.2474|44〉 + 0.2541|55〉 + 0.2770|66〉
+ 0.3288|77〉 + 0.4690|88〉, (13)

∣∣ψ rank=10
MVS

〉 = 0.4587|00〉 + 0.3212|11〉 + 0.2690|22〉 + 0.2440|33〉 + 0.2334|44〉 + 0.2334|55〉 + 0.2440|66〉
+ 0.2690|77〉 + 0.3212|88〉 + 0.4587|99〉. (14)

The first three states above have been calculated by Zohren
and Gill in [26]. The MES and MVS coincide for d = 2,
and pv (2) ≈ 0.32, which shows that the restriction to MB-
SPS measurements increases the probability of violation. For
general measurements, the probability of violation is around
0.28 for maximally entangled states since the CGLMP and the
CHSH inequalities are equivalent for d = 2. A similar result
appears when, in the CHSH scenario, the parties previously
agree on one of the measurement directions. With this, the
inequality becomes the first Bell inequality, for which pv =
1/3 ≈ 0.33 [41].

Regarding two qudits, MES are also maximally symmet-
ric. However, one can consider maximally symmetric states
(MSS) with Schmidt ranks such that r < d, which are not
maximally entangled. In this case, the inequivalence between
MSS’s and states that maximize pv reappears for the CGLMP
inequality. In spite of the balancedness of states like (|00〉 +
|11〉 + · · · + |(r − 1)(r − 1)〉)/

√
r , due to the fact that the

basis kets |rr〉, . . . , |(d − 1)(d − 1)〉 are missing, they are
not maximally nonlocal, in the CGLMP scenario. However,
this does not constitute a true anomaly since the symmetric
low-rank states cannot be considered maximally entangled.
The investigation of states with lower ranks will provide a
clear illustration of how different the results can be when a
single Bell inequality is considered instead of the full space of
behaviors.

As an example, let us consider the family of states (with
zero as the coefficient of |33〉):

cos θ0|00〉 + sin θ0 cos θ1|11〉 + sin θ0 sin θ1|22〉. (15)

FIG. 3. Probability of violation (%) for rank-3 states with d = 4
in the context of the CGLMP inequality. The cross corresponds to
the state (|00〉 + |11〉 + |22〉)/

√
3, and the lower-left darker spot

corresponds to state (16).

In Fig. 3 we plot pv for the above rank-3 states with d = 4,
as a function of θ0 and θ1. The balanced state is identified by
the cross, while the two states that maximize the probability
of the violation are given by (θ0, θ1) ≈ (0.864, 0.604),

0.647|00〉 + 0.628|11〉 + 0.431|22〉; (16)

and (θ0, θ1) ≈ (1.126, 0.798) (equivalent to the above state
with |00〉 ↔ |22〉), with pv ≈ 0.224 × pv(MES), where
pv(MES), refers to the full-rank maximally entangled state.
Similar results are obtained for r = 3 and d = 5, in which
case the state with larger probability of violation corresponds
to (θ0, θ1) ≈ (0.840, 0.585). For r = 3 and d � 6 we did not
find any violation.

III. NONLOCALITY OF TWO ENTANGLED QUDITS
IN THE SPACE OF BEHAVIORS

In this section we will consider the nonlocality of two
entangled qudits, with 2 � d � 10, in a more general way,
by calculating the probability of violation without referring
to a particular Bell inequality. This can be done by means
of linear programming [42]. In this scenario the observers
can choose between two arbitrary observables defined by
orthogonal projections (specified by general unitary transfor-
mations). The integration in (1) is now defined in the space of
behaviors, characterized by the joint conditional probabilities
{p(ab|xy)}. Each p(ab|xy) defines an axis in this space,
whose dimension is given by 4d2, e.g., for two inputs and d

possible outputs for each of the two parties. This dimension
can be lowered if we take into account the normalization of
probabilities and the no-signaling condition. With these phys-
ical constraints the effective dimension becomes 4d(d − 1)
[16]. Practically, we check how many (in percents) projective
measurement operators sampled according to Haar measure
lead to violation of local realism. The numerical procedures
are described in detail in [23]. The results of this section are
summarized in Tables I and II.

In accordance with the results of the previous section, the
probability of violation decreases as d grows, for two observ-
ables per party for the investigated values of d. However, the
fact that there is no restriction to a particular Bell inequality
(all relevant scenarios with a fixed number of observables
per party are simultaneously considered), makes the decrease
in pv qualitatively different. Instead of an exponential drop
we find an initially linear decay for 2 � d � 5. In Fig. 4 we
display the probability of violation (this time in the space of
behaviors) for the MES’s, red triangles, and, for the sake of
comparison, for the MVS considered in the previous section,
black squares. Here, no anomaly shows up.

Differently from what we observed in the CGLMP-MBSPS
scenario, we found that balanced states with any rank larger
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TABLE I. Probability of violation with two measurement set-
tings per party for two qudits MSS and MVS states of different rank.
For r = d the MSS’s are also MES’s (see the bold entries).

sample pv (%)
d r size |ψ rank=r

MSS 〉 |ψ rank=r
MVS 〉

2 2 1010 28.318

3 2 109 10.757
3 3 109 24.011 22.317

4 2 5 × 108 3.548
4 3 5 × 108 11.206 9.749
4 4 5 × 108 18.667 16.252

5 2 108 0.734
5 3 108 2.858 2.423
5 4 108 5.228 3.713
5 5 108 12.709 10.863

6 2 107 0.173
6 3 107 0.397 0.322
6 4 107 1.390 0.930
6 5 107 1.748 1.139
6 6 107 9.300 7.738

7 2 106 0.034
7 3 106 0.044 0.029
7 4 106 0.215 0.134
7 5 106 0.435 0.258
7 6 106 0.679 0.400
7 7 106 8.132 6.537

8 2 105 0.003
8 3 105 0.008 0.004
8 4 105 0.020 0.013
8 5 105 0.107 0.040
8 6 105 0.128 0.061
8 7 105 0.422 0.246
8 8 106 7.380 5.734

9 2 105 0.003
9 3 105 0.000 0.000
9 4 105 0.001 0.002
9 5 105 0.015 0.007
9 6 105 0.033 0.017
9 7 105 0.067 0.032
9 8 105 0.358 0.206
9 9 5 × 105 7.047 5.198

10 2 104 0.000
10 3 104 0.000 0.000
10 4 104 0.000 0.000
10 5 104 0.000 0.000
10 6 104 0.000 0.000
10 7 104 0.000 0.010
10 8 104 0.050 0.000
10 9 104 0.420 0.220
10 10 105 6.671 4.773

than 1, present a nonvanishing probability of violation. For
instance, with r = 2 and d = 6 we found that 0.173% of the
possible behaviors are outside the local polytope, while for
r = d = 6 this percentage is about 9.3%. In Fig. 5 we plot
pv against the dimension d for MSS with ranks ranging from
r = 2 to r = 10.

TABLE II. Probability of violation for MES with 3 × 3 measure-
ment settings per party. Compare to the bold entries of Table I.

d 2 3 4 5

pv (|ψ rank
mes = d〉) 78.219 78.675 71.478 56.681

sample size 109 108 107 2.25 × 105

Another interesting feature is the strong enhancement in
our ability to detect nonlocality by increasing the number
of observables per party from 2 to 3 (see Table II). In the
simplest case of two entangled qubits, this amounts to a
change from pv ≈ 28.3% to pv ≈ 78.2% for MES. For d =
r = 5, the probabilities of violation for 2 and 3 observables
per party are 12.7% and 56.5%, respectively. In fact, very
recently, this tendency towards large probabilities of violation
for an increasing number of observables has been expressed
rigorously in [43]. The property demonstrated in this reference
is that, for any pure bipartite entangled state, pv tends to unity
whenever the number of measurement choices (of the two
parties) tends to infinity [43].

Finally, we address the family of states in (15), this time
considering all possible behaviors. The results for the prob-
ability of violation are given in the contour plot in Fig. 6.
It is much more symmetric than the corresponding plot,
restricted to the CGLMP-MBSPS scenario, Fig. 3. Due to
statistical fluctuations, we were not able to determine the exact
location of the state that maximizes the probability, rather we
determined a region in the θ0-θ1 plane which contains such
a state. The boundary of this region is the innermost contour
in Fig. 6, and the MSS with r = 3 (d = 4) is identified by the
cross. We thus conclude that the apparent asymmetry revealed
in Fig. 3 is mainly due to the bias introduced by the choice
of a particular facet of the local polytope. Since the number
of relevant Bell inequalities grows with the dimension, the
effect of this bias tends to increase with d. We believe that
this is the cause for the reappearance of the anomaly in the
nonlocality of two qudits for d > 7, in the context of a single
Bell scenario, as reported in [40]. We, therefore, conclude that
the most consistent definition for the probability of violation
is that concerning integrations in the space of behaviors.

d

p
(%
)

V

30

25

20

15

10

5
2 3 4 5 6 7 8 9 10

MSS
MVS

FIG. 4. Probability of violation of MES’s and MVS’s as func-
tions of the dimension d , in the space of behaviors. The nonlocality
decreases slowly with the dimension. Note that apart from the qubit
case (d = 2), the MES presents more nonlocality than the MVS.
Compare to the monolog plot of Fig. 2.
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FIG. 5. Probability of violation of maximally symmetric states of
several ranks r as a function of d , in the space of behaviors. Despite
the strong decrease in pv as d grows, all states with r � 2 present
nonvanishing nonlocality.

IV. CLOSING REMARKS

The goal of the present paper was to study quantum
nonlocality in bipartite systems of high dimensionality. The
results showed that the extent of nonlocality decreases with
the dimension of the qudits in both, the CGLMP scenario
(d � 7) and in the space of behaviors (d � 10). The decay be-
ing exponential for the particular Bell inequality we addressed
and much slower, at most linear, when all possible behaviors
are considered. It was additionally shown that no anomaly of
nonlocality showed up in the space of behaviors, with pv as
the figure of merit.

The qualitative agreement between the two approaches
ceases to hold when maximally symmetric states of lower rank
(r <d) are considered and for MES with d >7 [40]. While in
the fixed Bell scenario we observed that the MSS are not max-
imally nonlocal, we found numerical evidence that, whenever
the entire local polytope is considered this is no longer true.
This may be understood as an effect of the increasing (as d

grows) bias introduced by the choice of a particular facet. This
is an indication that the probability of violation defined in the

FIG. 6. Probability of violation for rank-3 states with d = 4 in
the space of behavoirs. The cross corresponds to the state (|00〉 +
|11〉 + |22〉)/

√
3. Note how symmetric this plot is in comparison to

that of Fig. 3.

space of behaviors is a more fundamental quantity as com-
pared to the volume of violation of a particular Bell scenario.

The regime of large d may be, at least in some sense,
considered as a classical limit, and then, we should observe
local behaviors as the dominant ones. However, we may
as well conceive the classical limit as a large gathering of
two-level systems, which leads to an apparent contradiction.
It has been shown that the probability of violation strongly
increases with the number N of qubits, and two observables
per party [23,44]. In fact, random states of 5 qubits typically
present pv > 0.99 [23] and nonlocality becomes completely
dominant for large N . We remark that this is not a loose
comparison because there is an isomorphism between the
Hilbert space of a system with N qubits (for simplicity we
assume N to be even) and the Hilbert space of two qudits with
d = 2N/2 levels, each. How do we get opposite trends in the
limit N → ∞, and consequently in the limit d → ∞?

The point is that, in both cases, we have two observables
per party, but this amounts to quite different physical situa-
tions. In the N -qubit case we have two observables per qubit,
say A1, A2; B1, B2; C1, C2; and so on. Since each observable
is dichotomous, we have 4 possibilities involving the choice
of observables and potential outcomes for every qubit. This
leads to a total of 4N = 22N independent possibilities. In the
case of 2 qudits with dimension d = 2N/2 we only have four
observables: A1,A2;B1,B2, each with 2N/2 outputs, leading
to a total of 4 × 2N/2 × 2N/2 = 2N+2 possibilities. So, the four
many-output observables in the latter case are not sufficient to
compensate for the 2N dichotomic observables in the former
situation. Of course, in practice, it may become increasingly
hard to address individual qubits in the large-N regime.
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APPENDIX: CGLMP INEQUALITY UNDER MULTIPORT
BEAM-SPLITTERS–PHASE-SHIFTERS

EXPERIMENTAL SETUP

Any probability term P (Ax = By + k) in the CGLMP
inequality may be written in function of joint probabilities as

P (Ax = By + k) =
d−1∑
j=0

P (Ax = j ⊕ k, By = j )

=
d−1∑
j=0

Pxy (j ⊕ k, j ),

thus Bk may be written as

Bk =
2∑

x,y=1

d−1∑
j=0

Pxy (j ⊕ κxyk, j ⊕ λxyk ),
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with nonvanishing coefficients κxyk and λxyk given by κ11k =
κ22k = λ12k = k, and λ21k = k + 1.

Joint probabilities for the experimental setup considered in
this work [(3)] satisfy the following symmetry property:

d−1∑
j=0

Pxy (j ⊕ k, j ⊕ l) = dPxy (k, l),

taking this into account it is easy to see that Bk − B−(k+1) in
the CGLMP inequality [(4)] reduces to

2

d

2∑
x,y=1

d−1∑
m>n

Re(αmα∗
n )

{
cos �βmn

xy (κxyk, λxyk )

− cos �βmn
xy [κxy(−k−1), λxy(−k−1)]

}
.

Using trigonometrical identities, the CGLMP function Id

takes the form

Id =
2∑

x,y=1

d−1∑
m>n=0

Cmn
xy sin

[π

d
(m − n)

]

× {
cos

(
φm

x + ϕm
y − φn

x − ϕn
y

)
+Amn

xy sin
(
φm

x + ϕm
y − φn

x − ϕn
y

)}
,

with

Amn
xy = (−1)x(1+y)+1 cot

[π

d
(m − n)

]

and

Cmn
xy = 4Re(αmα∗

n )

d
(−1)y(1+x)Cmn, (A1)

where

Cmn =
[d/2]−1∑

k=0

(
1 − 2k

d − 1

)
sin

[π

d
(m − n)(2k + 1)

]
.

By using the harmonic addition theorem, the CGLMP
function for quantum joint probabilities under a measurement
scheme based on multiport beam splitters and phase shifters
characterized by a set of angles (φn

x , ϕm
y ) reduces to

Id =
2∑

x,y=1

d−1∑
m>n=0

Cmn
xy cos

(
φm

x + ϕm
y − φn

x − ϕn
y + Ψ mn

xy

)
,

with amplitude Cmn
xy given by (A1) and the phase coefficient

Ψ mn
xy = (−1)x(1+y)

[π

2
− π

d
(m − n)

]
. (A2)
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A 380, 2191 (2016).

[15] E. Polozova and F. W. Strauch, Phys. Rev. A 93, 032130 (2016).
[16] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S.

Wehner, Rev. Mod. Phys. 86, 419 (2014).
[17] H. Buhrman, R. Cleve, S. Massar, and R. de Wolf, Rev. Mod.

Phys. 82, 665 (2010).
[18] N. D. Mermin, Phys. Rev. D 22, 356 (1980).
[19] N. D. Mermin and G. M. Schwarz, Found. Phys. 12, 101 (1982).

[20] N. Gisin and A. Peres, Phys. Lett. A 162, 15 (1992).
[21] D. Kaszlikowski, P. Gnaciński, M. Żukowski, W. Mik-
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