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For complex PT-symmetric scattering potentials (CPTSSPs) V (x ) = V1feven(x ) + iV2fodd(x ), feven(±∞) =
0 = fodd(±∞), V1, V2 ∈ Re, we show that complex k poles of transmission amplitude t (k) or zeros of 1/t (k) of
the type ±k1 + ik2, k2 � 0 are physical which yield three types of discrete energy eigenvalues of the potential.
These discrete energies are real negative, complex-conjugate pair(s) of eigenvalues (CCPEs: En ± iγn) and real
positive energy called spectral singularity (SS) at E = E∗ where the transmission and reflection coefficient of
V (x ) become infinite for a special critical value of V2 = V∗. Based on four analytically solvable and other
numerically solved models, we conjecture that a parametrically fixed CPTSSP has at most one SS. When V1 is
fixed and V2 is varied there may exist Kato’s exceptional point(s) (VEP ) and critical values V∗m, m = 0, 1, 2, . . . ,
so when V2 crosses one of these special values a new CCPE is created. When V2 equals a critical value V∗m there
exists one SS at E = E∗ along with m or more number of CCPEs. Hence, this single positive energy E∗ is the
upper (or rough upper) bound to the CCPEs: El � E∗, here El corresponds to the last of CCPEs. If V (x ) has
Kato’s exceptional points (EPs: VEP1 < VEP2 < VEP3 < · · · < VEPl), the smallest of critical values V∗m is always
larger than VEPl. Hence, in a CPTSSP, real discrete eigenvalue(s) and the SS are mutually exclusive whereas
CCPEs and the SS can coexist.
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I. INTRODUCTION

So far, much attention has not been paid to complex-
conjugate pair(s) of eigenvalues (CCPEs) in a complex PT-
symmetric scattering potential (CPTSSP):

V (x) = V1feven(x) + iV2fodd(x),

feven(±∞) = 0 = fodd(±∞), V1, V2 ∈ Re. (1)

Here feven(x) is also positive definite so when V1 < 0, the
real part is a potential well. Remarkably, a recent proposal
of the splitting [1] of spectral singularity (SS) [2] in coherent
perfect absorption (CPA) lasers [3] brings them in focus. Here,
we show that complex k poles of the transmission amplitude
t (k) or zeros of 1/t (k) of the type ±k1 + ik2, k2 > 0 yield
three kinds of discrete eigenvalues (E = k2). When k1 �=
0, we get a finite number of CCPEs (En ± iγn) of bound
state of V (x). For the real discrete bound states, eigenval-
ues k1 = 0 and k2 > 0. Further, in a parametric evolution
when the strength V2 of the imaginary part of the V (x) in
Eq. (1) admits a special (critical) value V∗, k2 vanishes, and
k = k1 = k∗, there occurs a SS in V (x) at E = E∗ = k2

∗ .
Based on four analytically solvable and other numerically
solved models, we conjecture that for a potential (1) whose
parameters are fixed (V1, V2), if E∗ exists it is unique (single)
and it is the upper (or rough upper) bound to the CCPEs
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such that El � E∗, here El corresponds to the last CCPEs.
We show that when V2 > V∗ [V (x) is made slightly more
non-Hermitian than the critical one], the SS disappears and
the last of the CCPEs appear as though SS is split into
E ± iγ , where E ≈ E∗. Complex PT-symmetric potentials [4]
which are invariant under the joint action of parity (x → −x)
and time reversal (i → −i), are now well known to have a
real discrete spectrum if the PT symmetry is exact when the
energy eigenstates are also eigenstates of PT, else the energy
eigenvalues could be a mixture of negative real discrete and
CCPEs, then the PT symmetry is said to be broken (inexact)
[1]. This happens below or above a critical value of the real
parameter of the potential. Scarf II is the the first and the sim-
plest exactly solvable model [VS (x,U1, U2) = −U1sech2x +
iU2 sechx tanh x], U1 > 0 which explicitly demonstrates a
phase transition of eigenvalues from real to complex-
conjugate pairs when U2 = Uc = U1 + 1/4 [5]. In terms of
Kato’s exceptional points (EPs) in the parametric evolution of
eigenvalues En(U2), U2 = U1 + 1/4 is the unique (single) EP
of the non-Hermitian Hamiltonian: H = p2 + VS (x,U1, U2),
where pairs of real discrete eigenvalues coalesce. It would be
well to note that the CCPEs are finite and the corresponding
eigenfunctions must satisfy the Dirichlet boundary condition:
ψ (±∞) = 0.

Scattering from complex non-Hermitian potentials starting
from the nonreciprocity of reflection for the left or right
incidence [6] has been well developed as coherent injection
of beams at optical mediums specially the PT-symmetric ones
which are realized as having equal loss and gain. The crucial
existence of SS has been revealed [2] wherein the reflection
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and transmission probabilities for a complex PT-symmetric
potential become infinite at a real positive energy E∗. The
most novel phenomenon of coherent scattering from complex
PT-symmetric potentials is coherent perfect absorption with
lasing (CPA-laser), where in terms of two port scattering
matrix S(E), | det(S(E))| = 1 which becomes indeterminate
(0/0) at E = E∗ such that limE→E∗ | det(S(E))| → 1 [3].

A very interesting aspect of investigations of novel phe-
nomena [7] of coherent scattering from non-Hermitian poten-
tial lies in their imperfections. Nonreciprocity of reflection has
been stated and proved [6] if a potential is nonreal, asymptot-
ically converging to zero, and spatially nonsymmetric; how-
ever, there could be an exception to it [8]. Spectral singularity
was revealed [2] for complex PT-symmetric potentials, and
it turns out that it is actually a property of non-Hermitian
potentials [9]. Any aggregate of matter was stated to perfectly
absorb coherently injected beams at it from left and right,
provided a small dissipation (imaginary part) is added to its
refractive index. Hence the phenomenon of coherent perfect
absorption (CPA) or time-reversed laser has been invented [9],
but it turns out that it is the property of non-Hermitian poten-
tials [10] and CPTSSPs are exceptions to it. These potentials
instead display CPA with lasing [3]. However, whether SS and
real discrete spectra are mutually exclusive in a parametrically
fixed CPTSSP has not been investigated so far. Importantly,
the discrete real positive energy SS found [11] in the complex
PT-symmetric version of Scarf II [12] was noted [13] to be the
last of CCPE of the potential and the corresponding eigenstate
was shown to be just a plane wave [2], yet the phrase and the
discussion of spectral singularities (a plural term) in Scarf II
in Ref. [13] undermines the crucial singleness of SS. Here,
based on four model potentials, we conjecture that the SS in a
parametrically fixed CPTSSP is unique (it occurs only at one
energy denoted as E∗) and no exception to this exists so far.

II. VARIOUS DISCRETE EIGENVALUES IN A COMPLEX
PT-SYMMETRIC POTENTIAL

CPTSSPs are enriched with three types of discrete en-
ergies: negative real, CCPE, and SS. So far, CCPEs have
not received much attention; however, after a recent proposal
of splitting [1] a self-dual spectral singularity (SDSS), their
importance has been underlined. Here, we argue the possible
existence of three types of discrete eigenvalues in a complex
PT-symmetric potential in a simple, model-independent way
in terms of poles of r (k) and t (k). All k poles of these am-
plitudes are not physical as they may give rise to eigenstates
which diverge asymptotically.

Let V (x) of Eq. (1) be a CPTSSP which vanishes asymp-
totically. For the left incidence of a particle we can write the
asymptotic solution of a Schrödinger equation

d2ψ (x)

dx2
+ 2μ

h̄2 [E − V (x)]ψ (x) = 0, (2)

as ψ (x ∼ −∞) = Aeikx + Be−ikx and ψ (x ∼ ∞) = Ceikx ,
and the reflection and transmission amplitudes are r =
B(k)/A(k) and t (k) = C(k)/A(k), respectively. Now let
k = ±k1 + ik2 and let A(±k1 + ik2) = 0 such that r, t and
the reflection R(k) and transmission probabilities T (k)
become infinity. In this situation, the asymptotic solutions

of Schrödinger Eq. (2) become bound states as ψ (x ∼
−∞) = Be∓ik1xek2x and ψ (x ∼ ∞) = Ce±ik1xe−k2x , which
vanish asymptotically satisfying the Dirichlet boundary con-
dition ψ (±∞) = 0. Such states are called bound states with
complex-conjugate pairs of eigenvalues. In the complex k

plane, these k values are poles of r (k) and t (k) which lie
symmetrically in the first and second quadrant. Whenever k2

becomes zero, they represent plane waves and this energy
E = k2

1 = E∗ is called SDSS. This real discrete energy is
embedded in a positive energy continuum at which the eigen-
functions become plane waves at both ends of the potential.
The real discrete spectra can be visualized as those poles of
r and t where k1 = 0 and k2 > 0, so in the complex k plane
these are poles that lie on the positive y axis.

In 1900, Planck predicted that in the microscopic world,
energies are quantized, meaning energy admits only special
discrete values. Later, Sommerfeld (1916) justified the dis-
crete energies as due to the quantization of phase space. It was
in 1926 that Schrödinger revealed that wave function ψ (x)
vanishes asymptotically at these discrete energies and ψ (x) is
L2 integrable. In 1928, Gamow revealed the resonances to be
actually complex discrete eigenvalues (En − i�n/2) at which
ψn(x, t ) grows spatially at asymptotic distances and decays
time-wise. According to this, one has to impose an outgoing
wave boundary condition at the exit of the potential to extract
possible discrete complex energy eigenvalues of the potential
known as resonances. Similarly, SS is a special discrete energy
where ψ (x) becomes an outgoing plane wave on both sides
of the potential. Thus, at a discrete energy eigenvalue, ψ (x)
acquires a special asymptotic behavior. Otherwise, one may
call these various kinds of eigenvalues as generalized eigen-
values where eigenfunctions need not necessarily belong to an
underlying Hilbert space.

Based on four exactly solvable models (Scarf II, the Dirac
δ, the square well, and an exponential potential) of CPTSSP
and several others solved numerically, we conjecture that, in
a potential, the SS is single and it is the upper bound to
complex-conjugate pairs of eigenvalues El ± iγl (El � E∗) in
the potential irrespective of whether the real part of V (x)
is a well or a barrier in the parametric regimes of broken
PT symmetry. We propose to construct a function F (k) =
1/t (k), and we plot the contours of Re[F (k1, k2)] = 0 and
Im[F (k1, k2)] = 0 in the upper (k2 > 0) complex plane. We
collect their points of intersection (k1, k2) which help us in
finding the complex roots of the type ±k1 + ik2 which give
rise to three types of discrete energies [E = (±k1 + ik2)2:
negative real, SS, and CCPEs] of a CPTSSP in a convenient
way.

Alternatively, one may also use the elegant 2 × 2 transfer-
matrix M method [2,3] of coherent scattering at a complex
PT-symmetric medium from left and right. Diagonal elements
of M(k) and the two port scattering matrix are written as [13]

M11(k) = t (k) − rL(k)rR (k)/t (k),

M22(k) = 1/t (k), S(k) = t2(k) − rL(k)rR (k). (3)

Wherein the zeros of M22(k) = F (k) where Im(k) > 0 (up-
per plane) will give us discrete spectra of three types. On
the other hand, physical zeros of M11(k) are in the lower
complex plane (k2 < 0). This is so because in a CPTSSP,
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the entries of the transfer matrix follow the property that
M∗

11 = M22 [1,3]. Consequently, a zero of M11 is always
accompanied by the zero of M22. Further, an SDSS where
M22 = 0 in a PT-symmetric potential always corresponds to
the time-reversed SDSS where M11 = 0. While in a generic
non-PT-symmetric complex potential a spectral singularity
(coherent laser) [7,8,9] and a time-reversed SDSS (CPA) can
occur separately, in a PT-symmetric potential they always
occur simultaneously, which corresponds to the SDSS, i.e.,
to a combined CPA-laser [3] action. SDSSs that occur in
CPTSSP imply that T (−k∗) = ∞ = T (k∗), otherwise an SS
in other non-Hermitian potentials implies an SS at k = k∗ and
T (−k∗) �= T (k∗); one of these transmission probabilities is
infinite but the other one is finite. See interesting examples of
these two types of spectral singularities in [14]. In this paper,
all spectral singularities (SSs) are actually SDSSs.

In the following, first we present the complex PT-
symmetric version of Scarf II [12] potential whose results are
analytic and explicit. Next, we present three more solvable
CPTSSPs whose results are analytic but implicit. Our method
of contour plotting in the complex k plane (k1, k2) works
in general. Since negative energy bound states and their
evolution as V2 varies have been well studied in terms of
exceptional points earlier [15,16] for potentials in Eqs. (16)
and (20), in the following we do this study only for our
exponential potential in Eq. (24).

III. COMPLEX PT-SYMMETRIC SCARF II:
CCPE AND SINGLE SDSS

Complex PT-symmetric Scarf II potential is written as [5]

V (x) = V1sech2x + iV2 sechx tanh x, V1, V2 ∈ Re, (4)

where V1 < 0 means the real part is a potential well, otherwise
it is a potential barrier. Setting 2μ = 1 = h̄2, let us define

p = 1
2

√
|V2| − V1 + 1/4, q = 1

2

√
|V2| + V1 − 1/4,

s = 1
2

√
1/4 − V1 − |V2|. (5)

When V1 < 0 such that s is real, this CPTSSP is known to
have two branches of a finite real discrete spectrum given as
[5,11]

En± = −[n+ + 1/2 − (p ± s)]2,

n± = 0, 1, 2, . . . [p ± s − 1/2]. (6)

In Eq. (6), PT symmetry is exact (unbroken) and energy
eigenstates are also eigenstates of PT such that PT ψ = ψ .
When PT symmetry is broken, q becomes real, and there is a
phase transition of eigenvalues from real to CCPEs as

En = −[
n + 1

2 − (p ± iq )
]2

, |V2| > −V1 + 1/4 = VEP,

n = 0, 1, 2, . . . [p − 1/2]. (7)

In this case eigenfunctions flip under PT as PTψ+ = ψ−.
VEP is called Kato’s exceptional point (EP) in the V2 evolu-

tion of real eigenvalues where various pairs of real eigenvalues
coalesce to become CCPEs. It has also been shown that when
1/2 − p = −m, m = 0, 1, 2, . . . , the transmission T (E) and
reflection R(E) probabilities of the Scarf II potential become
infinite at a real positive energy given by

E∗ = 1
4 [|V2| − V1 + 1/4] > 0 if

V2 = |V∗m| = V1 + 4m2 + 4m + 3
4 , m = 0, 1, 2, . . . (8)

It can be seen from Eq. (8) that E∗ = k2
∗ where k∗ = ±q. It

has been pointed out [13] that the SS E∗ is nothing but the last

TABLE I. Evolution of discrete eigenvalues for Scarf II (4), when V1 is fixed and V2 admits the first four critical values V∗m, m =
0, 1, 2, 3, . . . , Eq. (8). If V2 = V∗m there is one SDSS and m or more number of CCPEs. For splitting of the SDSS, see rows {5, 10, 17}.
When the real part of V (x ) is a well (V1 < 0) SDSS does not occur alone, it occurs with at least one CCPE. Also notice that a real bound state
eigenvalue and SDSS are mutually exclusive. In all these cases E∗ is upper bound to the real part of CCPEs. We have set 2μ/h̄2 = 1 (eV Å2)−1,
which corresponds to μ ≈ 4me (me is mass of electron) where μ, En, E∗, V1, and V2 are in eV.

S. No. V1 V2 = V∗, V ∗+0.1 E∗ En

1 0 0.75 0.125
2 0 8.75 2.125 1.125 ± i2.915
3 0 24.25 6.125 5.125 ± i4.949, 2.125 ± i9.892
4 0 48.75 12.125 11.125 ± i6.964, 8.125 ± i13.982, 3.125 ± i20.892
5 0 48.85 12.150 ± i0.024, 11.142 ± i6.996, 8.135 ± i13.967, 3.128 ± i20.939
6 5 5.75 2.625
7 5 13.75 4.625 3.625 ± i4.301
8 5 29.75 8.625 7.625 ± i5.873, 4.625 ± i11.747
9 5 53.75 14.625 13.625 ± i7.648, 10.625 ± i15.297, 5.625 ± i22.945
10 5 53.85 14.650 ± i0.027, 13.642 ± i7.682, 10.635 ± i15.337, 5.628 ± i22.992
11 −5 5.24 −1.367, −1.143, −0.028, −0.004
12 −5 5.50 −1.235 ± i0.569, 0.043 ± i0.069
13 −5 19.75 3.625 2.625 ± i3.002, −0.375 ± i7.615
14 −5 43.75 9.625 8.625 ± i6.204, 5.625 ± i12.409, 0.625 ± i18.614
15 −5 75.75 17.625 16.625 ± i8.396, 13.625 ± i16.792, 8.625 ± i25.189, 1.625 ± i33.585
16 −5 115.75 27.625 2.625 ± i52.559, 11.625 ± i42.047, 18.625 ± i31.535, 23.625 ± i21.023 26.625 ± i10.511
17 −5 115.85 27.65 ± i0.023, 26.645 ± i10.540, 23.640 ± i21.057, 18.636 ± i31.573,

11.636 ± i42.090, 2.627 ± i52.607
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FIG. 1. Contour plots of real and imaginary parts of F (k) = M22(k1 + ik2) = 0 for Scarf II [Eq. (4)] in the complex k plane, when (a)
V1 = 5 and V2 = 5 and (b) V1 = −5 and V2 = 19.75 (see row 13 in Table I). Solid red lines and dashed blue lines depict real and imaginary
parts of F (k), respectively. In (a), notice that solid and dashed curves are intersecting only for k2 < 0, so no physical zero is giving rise to
discrete eigenvalues (SDSS or CCPE). In (b), these pairs of curves are intersecting three times for k2 � 0. For the first point of intersection

k2 = 0 (SDSS), two upper ones denote two CCPEs. Units of physical quantities are as in Table I. Unit of k is Å
−1

.

of the CCPEs in Eq. (4) which becomes real and positive; the
eigenfunction at this discrete eigenvalue has been shown [13]
be plane waves at asymptotic distances on both sides of the
potential in Eq. (4).

If V1 > 0, all critical values V∗m are possible for m =
0, 1, 2, . . . . So as V2 increases and crosses them, a new pair
of CCPEs is created. When V2 = V∗m, there is one SS and m

number of CCPEs which are all calculable from Eq. (7). But
when V1 < 0, V∗m exist only after EPs, so there are more than
m number of CCPEs along with one SDSS when V2 = V∗m.
The extra (initial) CCPEs arise due to crossing of EPs where
some pairs of real discrete eigenvalues coalesce to make a
phase transition (spontaneous breaking of PT symmetry) to
CCPEs.

For a fixed value of V1 > 0, when V2 crosses V∗m by
becoming V2 = V∗m + ε, ε > 0, the SDSS disappears and a
new pair of CCPEs is created so there are m + 1 pairs of
CCPEs. But when V2 = V∗ − ε, there is no SDSS and there
are m CCPEs. This explains the proposed phenomenon of
splitting of SDSS [1]. We would like to add that to the case
when we have a real well in V (x) of Eq. (4) (when V1 < 0),
for SDSS values of V∗m > VEPl.

All the expressions for Scarf II are explicit and easy to see
the acclaimed results; however, we present Table I which dis-
plays the scenario for V1 = 0, 5, and −5 in a more convenient
way, when V2 is varied and takes four consecutive special
critical values V∗m. Rows 5, 10, and 17 display the splitting of
the SDSS E∗ into CCPEs when V2 = V∗ + 0.1. Also notice
that a CPTSSP has at most one SDSS and it does not exist
when the potential has a real discrete spectrum (see row
11, when PT symmetry is unbroken: V2 < −V1 + 1/4). Also
notice that when V1 < 0, SDSS does not occur alone even for

the first critical V∗, it is accompanied by CCPEs which are
caused by the phase transition of real discrete eigenvalues to
CCPEs (see row 13). In the whole of Table I, notice that SDSS
is the upper bound to the real part of CCPEs.

Beautiful expressions of reflection r (k) and transmission
t (k) amplitudes for Scarf II (4) are available in Ref. [12] in
terms of their parameters a and b. Using a = (p + q − 1)/2
and b = i(p − q )/2 in them, we investigate the poles of
t (k) or zeros of F (k) = M22(k) = 1/t (k) in the complex k

plane. Figure 1 depicts the extraction of CCPE and SDSS
from the intersection of contour plots of Re[F (k1, k2)] = 0 =
Im[F (k1, k2)] in the complex k plane. In Fig. 1(a), there is
no intersection point lying in the upper half plane, so there
are no CCPEs. This is the case which is devoid of any
discrete spectrum. Figure 1(b) presents the case when there
are physical k poles giving one SDSS and two CCPEs (see
row 13 in Table I).

By invisibility [17] of a potential for an energy E = Ei ,
T (Ei ) = 1 and one or both of RL(Ei ) and RR (Ei ) vanish.
When only one of the reflectivities vanishes it is called
unidirectional invisibility. We find that Scarf II (4) becomes
unidirectionally invisible for at most one special energy.

IV. COMPLEX PT-SYMMETRIC DIRAC δ POTENTIAL

This potential is expressed as

V (x) = (V1 − iV2)δ(x + a) + (V1 + iV2)δ(x − a), (9)

and this has been used to study various features of complex PT
symmetry [15,18–20]. The reflection amplitude can be written
[15] as

r (k, V2) = −ie−2ika
[(

2kV2 + V 2
1 + V 2

2

)
sin 2ka + 2kV1 cos 2ka

]
2k2 cos 2ka + 2kV1 sin 2ka + i

[
2kV1 cos 2ka + (

V 2
1 + V 2

2 − 2k2
)

sin 2ka
] . (10)
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TABLE II. Same as Table I, but for the complex PT-symmetric Dirac δ potential (9). Here, a = 1 Å.

S. No. V1 V2 = V∗, V ∗+0.1 E∗ En

1 0 1.110 0.616
2 0 3.332 5.552 1.921 ± i0.663
3 0 5.553 15.421 7.550 ± i1.920, 2.415 ± i0.291
4 0 7.775 30.226 17.222 ± i2.965, 9.424 ± i1.455, 2.457 ± i0.139
5 0 7.875 30.251 ± i0.137, 17.365 ± i3.063, 9.460 ± i1.412, 2.457 ± i0.135
6 5 5.394 2.048
7 5 6.449 8.291 2.116 ± i0.016
8 5 7.932 18.958 8.606 ± i0.136, 2.194 ± i0.0274
9 5 9.668 34.238 19.591 ± i0.397, 8.908 ± i0.207, 2.261 ± i0.031
10 5 9.768 34.284 ± i0.048, 19.627 ± i0.413, 8.923 ± i0.208, 2.264 ± i0.031
11 −5 0 −6.163, −6.332
12 −5 2 5.250 ± i5.000
13 −5 5.571 3.020 1.509 ± i13.929
14 −5 6.979 11.855 5.928 ± i17.447, 2.874 ± i0.037
15 −5 8.788 26.118 11.273 ± i0.275, 13.058 ± i21.971, 2.748 ± i0.046
16 −5 10.776 45.560 25.085 ± i0.744, 22.781 ± i26.939, 10.811 ± i0.316, 2.663 ± i0.041
17 −5 10.876 45.510 ± i0.075, 25.032 ± i0.764, 23.323 ± i27.190, 10.793 ± i0.315, 2.659 ± i0.041

For the incidence from the left, rL(k) = r (k, V2); and from the right, it is rR (k) = r (k,−V2). This demonstrates nonreciprocity
of reflection, namely, RL(k) �= RR (k). The transmission amplitude [17] is

t (k, V2) = 2k2e−2ika

2k2 cos 2ka + 2kV1 sin 2ka + i
[
2kV1 cos 2ka + (

V 2
1 + V 2

2 − 2k2
)

sin 2ka
] . (11)

Notice that t (k) is invariant if we change V2 to −V2 (reflec-
tion of the potential), so the transmission is reciprocal. One
can check that RL(−k) = RR (k) and T (−k) = T (k). In this
potential the SDSS is single and it has been found [20] at k =
k∗ = π (2m+1)

4a
when V1 = 0 and V2 = π (2m+1)

2
√

2a
= V∗m, m =

0, 1, 2, 3, . . . . If we set 2k2 = V 2
2 − V 2

1 in the denominators
of r (k, V2) and t (k, V2), the denominator has (k cos 2ka +
V1 sin 2ka) as a factor. Thus, the SDSS is found at

E = E∗ = k2
∗ = [

V 2
2 − V 2

1

]
/2, where

2V1 +
√

2
[
V 2

2 − V 2
1

]
cot

(
a

√
2
[
V 2

2 − V 2
1

]) = 0. (12)

Further, we numerically check that | det(S(k))| =
|t2(k) − rL(k)rR (k)| = 1 except when k = k∗, at this value
| det(S(k∗))| becomes indeterminate 0/0 but its limit as
k → k∗ becomes 1. This action of the optical medium with
balanced gain and loss is called CPA with lasing [3,7]. Notice
that features of the δ potential (9) presented in Table II are the
same as that of Scarf II (4). Figure 2, displays two examples
of splitting of SDSS when V2 = V∗ + 0.1.

Not shown here, we also find that the δ potential (9)
displays both unidirectional and bidirectional invisibility, fre-
quently. When V1 = 0, bidirectional invisibility exists at E =
Ein = n2π2 h̄2

8μa2 ; incidentally these are the discrete eigenvalues

of an infinitely deep well of width 2a. When V1 �= 0, this po-
tential (9) becomes easily unidirectionally invisible at several
discrete energies.

V. COMPLEX PT-SYMMETRIC SQUARE WELL
POTENTIAL

Piecewise constant complex PT-symmetric square well
potential, which is written as

V (|x| < a) = [V1 + iV2 sgn(x)], V (|x| > a) = 0, (13)

was first discussed [21] for demonstrating the nonreciproc-
ity [6] of reflection from left and right. Let us define

p, q =
√

2μ

h̄2 (E − V1 ± iV2), k =
√

2μE

h̄2 . For incidence from
left, the solution of the one-dimensional time-independent
Schrödinger Eq. (2) can be written as

ψ (x � −a) = Aeikx + Be−ikx,

ψ (−a < x � 0) = C sin px + D cos px,

ψ (0 < x � a) = (p/q )C sin qx + D cos qx,

ψ (x > a) = Feikx. (14)

Matching the scattering solution ψ (x) and its derivative at
x = 0, we find equations for A,B,C,D, and F . From these
equations, we obtain the reflection amplitude r (k, p, q ) as

B

A
= [q(k2 − p2) sin P cos Q + p(k2 − q2) cos P sin Q + ik(p2 − q2) sin P sin Q]e−2ika

2ikpq cos P cos Q + p(k2 + q2) cos P sin Q + q(p2 + k2) sin P cos Q − ik(p2 + q2) sin P sin Q
, (15)
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FIG. 2. Same as Fig. 1, but for the Dirac δ potential (9) (a = 1 Å). (a) When V1 = 0, V2 = 5.653, there are three pairs of roots with k2 > 0,
these are 15.456 ± i0.133, 7.663 ± i1.949, 2.420 ± i0.280, The first pair is due to splitting of SDSS that occurs at E∗ = 15.421 when V2 =
5.553 = V∗ (see row 3, in Table II). (b) When V1 = −5 and V2 = 5.671 = V∗ + 0.1, there are two CCPEs: 3.009 ± i0.004, 1.789 ± i14.177.
The first one results from the splitting of SDSS (see row 13 in Table II).

and the transmission amplitude t (k, p, q ) is

C

A
= 2ikpq e−2ika

2ikpq cos P cos Q+p(k2+q2) cos P sin Q+q(p2+k2) sin P cos Q−ik(p2+q2) sin P sin Q
, (16)

where P = pa and Q = qa. Table III presents the same
scenario of Tables I and II for the square well potential (13).
Here unlike potentials (4) and (9), there could be mixtures
of negative real discrete eigenvalues and CCPEs (see row
11 in Table III). In Fig. 3, two cases of splitting of SDSS
are presented. We also observe unidirectional invisibility at
several energies in the model.

VI. COMPLEX PT-SYMMETRIC EXPONENTIAL
SCATTERING POTENTIAL

This is a new CPTSSP to be expressed as

V (x) = [V1 + iV2 sgn(x)] e−2|x|/a. (17)

TABLE III. Same as Table I, but for the complex PT-symmetric square well potential (13). Here, a = 2 Å.

S. No. V1 V2 = V∗, V ∗+0.1 E∗ En

1 0 0.519 0.284
2 0 3.330 4.674 1.1423 ± i2.668
3 0 6.946 14.172 5.950 ± i4.244, 1.470 ± i6.352
4 0 11.028 28.701 15.390 ± i5.209, 6.642 ± i8.698, 1.647 ± i10.464
5 0 11.128 28.728 ± i0.139, 15.413 ± i5.330, 6.654 ± i8.806, 1.650 ± i10.595
6 5 0.915 5.851
7 5 3.685 10.534 6.408 ± i2.844
8 5 7.259 20.368 11.520 ± i4.245, 6.593 ± i6.556
9 5 11.289 34.845 21.124 ± i5.162, 11.952 ± i8.731, 6.714 ± i10.684
10 5 11.389 34.864 ± i0.136, 21.139 ± i5.284, 11.967 ± i8.839, 6.717 ± i10.786
11 −5 2.000 −0.083, −0.918, −3.823 ± i1.601
12 −5 5.900 0.621 ± i3.899, −3.560 ± i5.466
13 −5 6.000 8.033 0.646 ± i3.998, −3.556 ± i5.566
14 −5 10.383 22.578 9.732 ± i5.195, 1.445 ± i8.429, −3.381 ± i9.941
15 −5 14.960 42.137 23.995 ± i5.826, 10.808 ± i10.308, 1.947 ± i13.119, −3.263 ± i14.533
16 −5 19.738 66.662 43.334 ± i6.246, 25.054 ± i11.521, 11.551 ± i15.491, 2.294 ± i18.010, −3.179 ± i19.329
17 −5 19.838 66.685 ± i0.137, 43.357 ± i6.372, 25.072 ± i11.638, 11.563 ± i15.598,

2.299 ± i18.112, −3.177 ± i19.430
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FIG. 3. Same as Fig. 1, but for the square well potential (13) (a = 2 Å). (a) When V1 = −5 and V2 = 2.0, there are two negative real
discrete eigenvalues as the dashed (blue) and solid (red) curves intersect on the upper y axis (k1 = 0, k2 > 0) and we have one CCPE (see row
11, in Table III). (b) When V1 = −5 and V2 = 10.483, there are four pairs of roots with k2 > 0, these pairs are 22.6139 ± i0.134, 9.762 +
5.309i, 1.45 ± 8.530i, −3.377 ± i10.041. The first pair results from the splitting of SDSS that occurs at E∗ = 22.578 when V2 = 10.383 =
V∗ (see row 14 in Table III).

A. Scattering states

Let us introduce p, q = a

√
2μ

h̄2 (−V1 ± iV2) and s = ka,

k =
√

2μE

h̄2 , for solving the one-dimensional time-independent
Schrödinger Eq. (2) with this exponential potential (17). Us-
ing the solvability of the Schrödinger equation for this poten-
tial in terms of cylindrical Bessel functions J±ika (qe|x|/a ), we
can write the scattering eigenstates for the incidence from left

as

ψ (x < 0) = Aα(p/2)−isJis (pex/a )

+Bα∗(p/2)isJ−is (pex/a ),

ψ (x � 0) = Cα∗(q/2)isJ−is (qe−x/a ). (18)

Here α = �(1 + is). Owing to the property that Jν (z) ≈
(z/2)ν/�(1 + ν), when z is very small, we see that ψ (x < 0)
behaves as a combination of incident and reflected waves

TABLE IV. Same as Table I, but for the complex PT-symmetric exponential well (a = 2 Å), Eq. (17). Notice the # sign in rows 9, 14, and
16 where of all 61 cases presented in the four tables, only here is El slightly greater than E∗, rendering SDSSs as the rough upper bounds to
El (El ≈ E∗).

S. No. V1 V2 E∗ En

1 0 1.330 0.225
2 0 14.245 3.400 3.180 ± i5.606
3 0 40.250 9.943 10.733 ± i8.610, 7.760 ± i21.637
4 0 79.253 19.816 21.581 ± i11.464, 20.199 ± i27.026, 13.442 ± i48.951
5 0 79.353 19.487 ± i0.023, 31.609 ± i11.681, 20.221 ± i27.067, 13.455 ± i49.024
6 5 5.534 4.129
7 5 20.470 6.997 7.634 ± i8.305
8 5 46.232 13.467 14.028 ± i10.212, 12.392 ± i25.488
9 5 86.139 #23.3298 #25.502 ± i12.769, 24.517 ± i29.547, 18.154 ± i53.401
10 5 86.239 23.362 ± i0.026, 25.531 ± i12.807, 24.540 ± i29.601, 18.168 ± i53.474
11 −5 3 −1.2334, −1.554
12 −5 3.2 - −1.390 ± i0.3611
13 −5 3.381 0.035 −1.370 ± i0.537
14 −5 32.473 #6.441 #6.651 ± i6.796, 3.113 ± i17.229
15 −5 71.865 16.326 17.666 ± i10.449, 15.875 ± i24.310, 8.720 ± i44.185
16 −5 124.100 #29.569 #31.941 ± i13.782, 31.437 ± i30.841, 26.837 ± i52.641, 15.213 ± i82.867
17 −5 124.200 29.601 ± i0.022, 31.970 ± i13.814, 31.462 ± i30.885, 26.856 ± i52.698, 15.224 ± i82.943
18 −60 10 −43.25, −30.82, −20.25, −14.95, −9.19, −6.29, −3.16, −1.75, −0.44, −0.065
19 −60 14 −39.32, −33.70,−17.64 ± i1.03,−7.73 ± i0.91,−2.43 ± i0.52, −0.20 ± i0.15
20 −60 83 8.551 8.51 ± i6.75, 5.87 ± i14.99, −0.20 ± i25.17, −11.235 ± i38.20, −30.84 ± i56.27
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FIG. 4. Evolution of negative real discrete eigenvalues of the exponential potential (17) En(V2) when V1 = −60 eV and a = 2 Å.
Coordinates of the endpoints are (12.82,−0.22), (12.96, −2.44), (13.17, −7.73), (13.63, −17.64), and (14.78, −36.40) which are in units
of eV. So EPs of the potential are VEPn (eV): 12.82, 12.96, 13.17, 13.36, and 14.78. This structure is temple-like (length of the bottom loop is
largest); for a cone-like structure of evolution see [16]. Part (b) presents 10 real discrete negative eigenvalues which are negative energy poles
of T (E), Eq. (20), for the case of the potential (see row 19 of Table IV).

Aeikx + Be−ikx when x ∼ −∞ and ψ (x � 0) when x ∼ ∞
behaves as a transmitted wave traveling from left to right. By

matching ψ (x) and its derivative at x = 0, we find B/A and
C/A which define the reflection amplitude r (k, p, q ) as

r (k, p, q ) = −(p/2)−2is �(1 + is)

�(1 − is)

(
qJis (p)J ′

−is (q ) + pJ−is (q )J ′
is (p)

qJ−is (p)J ′
−is (q ) + pJ−is (q )J ′

−is (p)

)
, (19)

and transmission t (k, p, q ) amplitude as

t (k, p, q ) = (pq/4)−is �(1 + is)

�(1 − is)

(
2iπ−1 sinh πs

qJ−is (p)J ′
−is (q ) + pJ−is (q )J ′

−is (p)

)
. (20)

Notice that r (k, p, q ) and r (k, q, p) are unequal; the former
denotes rL(k) while the latter is rR (k). Next, t (k, p, q ) being
symmetric in p and q ensures reciprocity of transmission and
so tL(k) = t (k, p, q ) = tR (k).

B. Real discrete energy bound states

Let us define κn =
√

2μ(−En)/h̄2, out of two linearly
independent solutions J±κna (pe−|x|/a ) of the Schrödinger

Eq. (2), the appropriate solutions vanishing asymptot-
ically are ψ (x < 0) = AJ−iκna (pe−x/a ) and ψ (x � 0) =
BJiκna (pex/a ). Matching these solutions at x = 0, we get
an energy eigenvalue equation for the real discrete energy
eigenvalues of the exponential well as

pJκna (q )J ′
κna

(p) + qJκna (p)J ′
κna

(q ) = 0, (21)

which are nothing but negative energy (physical) poles of r

and t in Eqs. (19) and (20).
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FIG. 5. Same as Figs. 1–3, but for the exponential potential (17) (a = 1 Å), see various rows in Table IV. (a) When V1 = −60 and V2 = 10,
there are 10 physical zeros of F (k) as 10 solid (red) curves are being intersected by the vertical dashed (blue) line. These roots on the y axis
represent bound states of the potential as V2 is less than the fourth (smallest) EP which is VEP4 = 12.82 [see Fig. 4(a)]. There are no SDSSs or
CCPEs in this case (row 18 in Table IV). In (b) we have V1 = −60 and V2 = 14, which lie between two EPs, VEP1 = 14.78 and VEP2 = 13.63;
in this case there are two real negative energy bound states and the rest are CCPEs (row 19 in Table IV).
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The first 17 rows in Table IV for the exponential potential
are similar to those of Tables I–III. The distinctive feature of
exponential model (17) is exhibited by rows {9, 14, 16}. In
these rows, the #-tagged cases suggest a slightly exceptional
feature where E∗ is the rough upper bound to the real parts
of CCPEs. These are three exceptions in the overall 61 cases
presented in four tables for four different potential models.

Figure 4 presents the evolution of negative real discrete
eigenvalues En(V2) for V1 = −60, a = 2, see coalescing of
five pairs of negative discrete eigenvalues at five exception
points: VEP1 = 12.82, VEP2 = 12.96, VEP3 = 13.17, VEP4 =
13.63, and VEP5 = 14.78. There are 10 pairs of eigenvalues
when V2 = 10 < VEP1 [see row 18 of Table IV and Fig. 4(b)].
These eigenvalues are also depicted as purely imaginary roots
of F (k) = 0 in the upper k plane in Fig. 5(a). When VEP3 <

V2 < VEP4 there are two real and four CCPEs, see row 19 in
Table IV and Fig. 5(b). When V2 = 83 � VEP5, there exists an
SDSS (E∗ = 8.551) along with five CCPEs whose real parts
are less than E∗ (see row 20).

We confirm the phenomenon of CPA-laser [3] at SDSS
in all four potential models presented here. This means
that two port scattering matrix S(E), | det(S(E))| = 1
which becomes indeterminate (0/0) at E = E∗ such that
limE→E∗ | det(S(E))| → 1 [3]. The localized CPTSSPs in
Eqs. (9) and (13) display unidirectional invisibility [17] at
several energies of injection, but other potentials, (4) and (17),
display it for at most one energy.

VII. CONCLUSIONS

We have shown that the poles of t (k) or zeros of the
transfer matrix element M22(k) = 1/t (k) of the type ±k1 +
ik2, k2 > 0 give rise to three types of discrete energy eigen-
values (En = k2). More importantly the complex-conjugate
pairs of eigenvalues of a complex PT-symmetric scattering
potential are yielded. Recently proposed splitting of the spec-
tral singularity has also been confirmed. Alternatively, the
zeros of M11(k) of the type ±k1 + ik2, k2 < 0 can also yield
three types of discrete eigenvalues and they can explain the
phenomenon of splitting of spectral singularity. Here, it is
the appearance of ± signs which is very crucial and which
has been missed out earlier, also see Figs. 1–3, 5, where
k poles of M22(k) are symmetrically placed about the y

axis. It will be well to point out that in general there can
be algebraic or transcendental equations such as f (x, i) =
f (−x,−i) = 0 (PT invariant); these equations have roots
which are essentially of the type x = ±a + ib where a, b ∈
Re. For complex PT-symmetric scattering potentials the en-
ergy eigenvalue equations here and elsewhere are always of
the type F (k, i) = F (−k,−i) = 0 and hence three types of
discrete energy eigenvalues.

Our extensive study of four exactly solvable and other
numerically solved models reveals that in a CPTSSP if V2

crosses an exceptional point VEP or a critical value V∗, a
new CCPE is created. In the absence of EPs, if V2 = V∗m,
the potential possesses one SDSS and m number of CCPEs,
otherwise these are more than m number of CCPEs. This
gives rise to the following conjectures about self-dual spectral
singularity:

(i) In CPTSSP, SDSS is essentially a phenomenon of
parametric regime of broken PT symmetry. In other words
a CPTSSP having real discrete eigenvalues cannot have an
SDSS and vice versa. Hence these two are mutually exclusive.
See row 11 in Tables I–IV and Fig. 5 in this regard.

(ii) A parametrically fixed CPTSSP can have at most one
spectral singularity: none or one. No exception to this exists
so far.

(iii) If SDSS occurs, it is mostly the upper bound (E∗ > El )
and rarely the rough upper bound (E∗ ≈ El ) to the real part of
the CCPEs of the potential. Here the subscript l means “last.”

(iv) The SDSS at E = E∗ for V2 = V∗m splits into a CCPE
if V2 is increased (V2 > V∗m). If for V2 = V∗m there exist one
SDSS and m number of CCPEs, then for V2 = V∗m + ε, ε >

0 there is no SDSS but there will be m + 1 CCPEs. For V2 =
V∗m − ε again there is no SDSS and there will be m CCPEs.
The former is referred to as splitting of the SDSS.

(v) When the real part of a CPTSSP is a barrier, CCPE
results essentially from splitting of the SDSS. Otherwise
CCPE also results after coalescing of real discrete eigenvalues
at an exceptional point.

(vi) If a CPTSSP has Kato’s exceptional points (EPs:
VEPn = VEP1 < VEP2 < VEP3 < · · · < VEPl), the critical values
of V2 (= V∗m) for the SDSS are larger than VEPl.

We also find that localized potentials (square well and
Dirac δ models) are unidirectionally invisible at multiple
energies whereas Scarf II and exponential potentials are so,
for at most one energy of incidence. Bidirectional invisibility
is rare; however, purely imaginary δ well model entails them
in abundance.

We hope that the present study of three types of discrete
eigenvalues, interesting results, and conjectures about self-
dual spectral singularity will open up a direction of investiga-
tion into complex PT-symmetric potentials which have been
giving rise to new possibilities in coherent injection at optical
mediums with equal gain and loss.
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