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Controlled transport between Fermi superfluids through a quantum point contact
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Recent advances in experimental techniques allow one to create a quantum point contact between two Fermi
superfluids in cold atomic gases with a tunable transmission coefficient. In this Rapid Communication we
propose that three distinct behaviors of charge transports between two Fermi superfluids can be realized in
this single setup, which are the multiple Andreev reflection, the self-trapping, and the Josephson oscillation. We
investigate the dynamics of atom number difference between two reservoirs for different initial conditions and
different transmission coefficients, and present a coherent picture of how the crossover between different regimes
takes place. Our results can now be directly verified in the current experimental system.
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Introduction. Transport measurements are powerful tools
not only for revealing fundamental properties of quantum ma-
terials in condensed-matter physics, but also for constructing
solid-state devices. In the past few years, transport has also
become one of the frontiers in cold atom physics. Various
experiments have been conducted, including particle trans-
port [1–7], heat transport [8], and spin transport [9–13]. Of
particular interest is the realization of the two-terminal trans-
port measurements in a cold atom setup [1–6,8]. As shown
in Fig. 1(a), a cigar-shaped cloud is split into two reservoirs
and connected by a quantum point contact (QPC) gener-
ated by high-resolution lithography [2,4,5]. With this setup,
in the weakly interacting regime, quantized conductance of
neutral matter has been first observed [2]. In the strongly
interacting regime, both multiple Andreev reflections between
two Fermi superfluids and anomalous transport between two
normal gases have been observed [4,5], the latter of which
has attracted considerable attention for the lack of theoretical
consensus on its origin [14–17].

One great advantage of studying transport with cold atoms
is to utilize the tunability of this system to cover different
physics in different parameter regimes in a single setting,
and therefore to reveal how the transition between them takes
place. Here we focus on the case of the Fermi superfluid. One
well-known transport effect is the Josephson effect, which is a
nondissipative coherent oscillation. It was first predicted and
observed in condensed-matter systems [18,19] and then has
been intensively studied in superconductors [20]. In cold atom
experiments this effect has also been observed for both Bose
and Fermi superfluids [3,21] and theoretical investigations
have also been conducted [22–27]. Besides the nondissipative
Josephson effect, the dissipative transport can also take place
in fermionic superfluids [7,28]. In the experiment of Ref. [4],
when two Fermi superfluids are connected by a QPC, the
time evolution of the particle number difference between two
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reservoirs exhibits a nonexponential decay, which can be well
explained by the multiple Andreev reflections [29].

Then, a question is raised naturally. For transport between
two Fermi superfluids, under what condition does it exhibit
the Josephson effect and under what condition does it exhibit
the multiple Andreev reflections? In fact, the single-particle
transmission coefficient plays a crucial role in answering
this question. A small transmission coefficient favors the
Josephson effect and a large transmission coefficient favors
the multiple Andreev reflections. Fortunately, recently a new
technique allows one to continuously tune the transmission
coefficient in the cold atom QPC setup by imprinting a meso-
scopic potential or a lattice into the tunneling channel with
a digital micromirror device (DMD) [6,30]. The key point
of this Rapid Communication is to propose that one can use
this new technology to tune the transport between two Fermi
superfluids, with which one can observe and understand the
crossover from the multiple Andreev reflection type transport
to the self-trapping and the Josephson type transport. This will
provide a unified view of these seemingly disparate transport
phenomena.

Setup. The setup of a QPC for a cold atom system is
schematically shown in Fig. 1(a). First of all, two beams
provide transverse harmonic confinements along the x̂ and ẑ

directions, respectively, whose confinement frequencies vary
smoothly along the longitudinal transport direction ŷ. That is
to say, in a first quantized form, the Hamiltonian for the QPC
regime can be written as

Ĥ = p2

2m
+ 1

2m
ω2

x (y)x2 + 1

2m
ω2

z (y)z2 + VDMD(y), (1)

where ωi (y) = ω0
i e

−y2/d2
i (i = x, z). Here typical values

for experiment are h̄ω0
x ∼ 12EF , h̄ω0

z ∼ 4EF , dx ∼ 3.6/kF ,
and dz ∼ 18.2/kF with total number of particles N ∼ 2 ×
105. Because dz > dx , it first squeezes the system into a quasi-
two-dimensional plane and then to a quasi-one-dimensional
tunnel. Secondly, another beam provides a gate potential
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FIG. 1. (a) The geometry of the experimental setup. Two reser-
voirs are connected by a QPC. A gate beam applied on the central
regime tunes the relative energy Vg between the QPC and the reser-
voirs. A tightly focused DMD beam tunes the tunneling amplitude.
(b) The transmission coefficient T as a function of ω is plotted
for different VD . For later convenience, we have taken the bulk
pairing gap � as the energy unit and we choose h̄ω0

x/� = 18 and
h̄ω0

z/� = 6.

that generates a uniform energy shift Vg between the regime
of QPC and the reservoir. That is to say, when we con-
sider an incoming state whose asymptotic behavior is a
plane wave with momentum ky , the energy conservation
gives ω − Vg = h̄2k2

y/(2m) with the particle energy being
ω. Finally, a DMD beam can generate one or a sequence
of delta-function potentials inside the quasi-one-dimensional
tunneling channel. For the simplest case, we first consider
VDMD(y) = VDδ(y).

In practice, Vg and VD are two parameters that can be
easily tuned. By solving this QPC Hamiltonian, one can
obtain the transmission coefficient T , as shown in Fig. 1(b).
Without VDMD(y), the potential varies sufficiently smoothly
in space such that T sharply jumps from zero to unity,
when the incoming energy E increases beyond the threshold
h̄(ω0

x + ω0
z )/2 and one of the tunneling channels becomes

open, as shown by the VD = 0 curve in Fig. 1(b). For finite
VD, T varies much more smoothly as ω varies. Consequently,
for a fixed energy ω above the threshold, T continuously
decreases as VD increases. In this way, we can tune the
transmission coefficient in this system. In Fig. 1(b) we use an
arrow to label the position of μR − Vg , the value of which
we will use in the later calculation, and the transmission
coefficient T decreases continuously as VD increases for
the incoming particle with energy equaling to the chemical
potential μR .

Model and method. Firstly, we take a mean-field Hamilto-
nian to describe the Fermi superfluids in the left and the right

reservoirs, which reads

Ĥj =
∑
kσ

ξjkψ̂
†
jσ (k)ψ̂jσ (k) − �j ψ̂j↑(k)ψ̂j↓(−k) + H.c.,

(2)

where j = L,R is the reservoir index, σ =↑,↓ labels spin
index, and ξjk = k2/(2m) − μj . The parameters μj and �j

are the chemical potential and the order parameter of the j -
th reservoir, respectively. Here, as an example, we will take
μ/EF = 0.59 and �/EF = 0.68 as typical values for unitary
Fermi gas.

Secondly, to study the transport behavior, we employ the
nonequilibrium Keldysh formalism, for which we introduce
the forward and backward branches of the time contours and
denote them by α = 1, 2 after the Keldysh rotation [31]. Since
later we will model the QPC as a local tunneling from the left
to the right reservoirs, we introduce

ψ̂jασ (ω − μj ) =
∫

dt ψ̂jασ (r = 0, t )ei(ω−μj )t , (3)

where ω is defined as the absolute energy of the particles,
and thus ω − μj is the energy measured with respect to the
chemical potential of the j th reservoir. Here we define a
spinor as �̂(ω) = [�̂L(ω − μL), �̂R (ω − μR )]T with

�̂j (ω − μj ) =

⎡
⎢⎢⎢⎢⎢⎣

ψ̂j1↑(ω − μj )

ψ̂
†
j2↓(ω − μj )

ψ̂j2↑(ω − μj )

ψ̂
†
j1↓(ω − μj )

⎤
⎥⎥⎥⎥⎥⎦, (4)

where ω − μj = −(ω − μj ) and “T ” denotes the transposi-
tion. The bare Green’s function G0 = 〈�̂(ω)�̂†(ω)〉 is there-
fore an 8 × 8 matrix for a given ω. The left and right reservoirs
are decoupled without tunneling, then G0(ω) is

G0(ω) =
(
G0L(ω) 0

0 G0R (ω)

)
. (5)

Each G0j=L,R is a 4 × 4 matrix of the form [32–34]

G0j (ω) =
[
GR

j (ω) GK
j (ω)

0 GA
j (ω)

]
, (6)

where GR
j (ω), GA

j (ω), and GK
j (ω) are the retarded, advanced,

and Keldysh Green’s functions, respectively. Considering that
each reservoir is in the thermal equilibrium, the Keldysh com-
ponent of the Green’s function can be obtained as GK

j (ω) =
tanh( ω−μj

2T
)[GR

j (ω) − GA
j (ω)] at temperature T . The mean-

field Hamiltonian gives the retarded and the advanced Green’s
functions as [32–34]

GR(A)(ω) = 1√
�2

j − (ω − μj ± i0+)2

×
[−(ω − μj ± i0+) �j

�j −(ω−μj ± i0+)

]
. (7)
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It is straightforward to calculate the inverse of the bare
Green’s function as

G−1
0j =

[(
GR

j

)−1 (
G−1

j

)K

0
(
GA

j

)−1

]
, (8)

where (G−1
j )K = −(GR

j )−1GK
j (GA

j )−1.
Thirdly, the tunneling between two reservoirs is modeled

by local tunnelings as [32–34]

V =
∫ ∞

−∞

dω

2π

∑
σ,α=1,2

{T (ω − Vg, VD )

× ψ̂
†
Lασ (ω − μL)ψ̂Rασ (ω − μR ) + H.c.}, (9)

where the transmission amplitude T (ω − Vg, VD ) is a func-
tion of Vg and VD as discussed above. Thus, the inverse of the
full Green’s function G−1 can be calculated by incorporating
G−1

0 with a matrix form of V . Since V introduces coupling
between different frequencies, G−1 will not be a simple 8 × 8
matrix as G−1

0 . Hence, in practice, we discretize the frequency
space and write down an infinite matrix of G−1, and then
numerically calculate the inverse of it [35].

Finally, it is convenient to calculate the current I (t ) =
1
2∂ (NR − NL)/∂t in the frequency space by introducing

I (t ) =
∫ ∞

−∞

d�

2π
I (�)e−i�t , (10)

and in the Keldysh formalism the current I (�) is written as

I (�) = − i

2

∑
σ

∫ ∞

−∞

dω

2π
{T (ω − Vg, VD )

×〈ψ̂R1σ (ω − μR + �)ψ̂†
L2σ (ω − μL)〉

− T (ω − Vg, VD )〈ψ̂L1σ (ω − μL + �)

× ψ̂
†
R2σ (ω − μR)〉}.

With the Green’s function calculated above, it is straight-
forward to obtain I (�). Here the frequency � can only
take a series of discrete values as �m = 2mδμ with m =
0,±1,±2, . . . [32], where δμ = μL − μR is the bias voltage.
Denoting I (�m) ≡ Im, the total current for a fixed bias volt-
age can be written as

I (t ) = I0 + 2
∞∑

m=1

[Re(Im) cos(�mt ) + Im(Im) sin(�mt )].

(11)

Controlled transport. In Fig. 2, we first show the current
I0 and I1 as functions of VD/� and δμ/�. We have verified
that the higher component currents are much smaller than
these two and can be safely ignored. The I0 part is the
dc component, which results from the quasiparticle trans-
port by the multiple Andreev reflections. The components of
Re(I1) cos(�1t ) and Im(I1) sin(�1t ) are the ac parts and are
usually referred to as the “cosine” and “sine” terms. They
describe the phase coherent transport of the Cooper pairs [20].
The sine term Im(I1) sin(�1t ) is related to the usual Joseph-
son current. The cosine term was also predicted by Joseph-
son [18] originally. It was first observed in the experiment by
Pederson et al. [36]. In the usual weak link discussion, the

(a) (b)

FIG. 2. |I0|, and the real and imaginary parts of I1 as a function
of VD/� for fixed δμ = 0.2� (a), and as a function of δμ/� for
fixed VD = � (b). Here we have fixed Vg = −14�.

cosine term vanishes in the first order of perturbation theory,
and presents at the second-order calculation.

Because the dc current is generated by the multiple An-
dreev reflection, if n is the smallest integer such that nδμ >

2�, it takes at least (2n − 1) step of tunnelings in order
to generate the dc current, and therefore the current is pro-
portional to T 2n [32,34]. Thus, the dc current is dominative
either when VD is small and T is close to unity, as shown
in Fig. 2(a), or when δμ is larger compared to � and n is
small, as shown in Fig. 2(b). In other words, when either VD

increases and T decreases, or when δμ becomes small, the
dc current gradually decreases until vanishing. In these two
regimes, the Josephson current will become dominative, as
one can also see from Fig. 2.

In realistic cold atom experiments, instead of studying
transport with a fixed bias voltage as in a condensed-matter
system, one starts with an initial atom number imbalance and
monitors how this imbalance evolves as a function of time.
To investigate this dynamics, we employ coupled dynamical
equations as follows:

dδn

dt
= −I0 − 2Re(I1) cos φ − 2Im(I1) sin φ,

dφ

dt
= 2δμ(t ),

(12)

where φ is the phase difference between the two reservoirs,
and δμ is related to the atom imbalance by

μL

μR

=
(

1 + δn

1 − δn

)2/3

(13)

and δn = (NL − NR )/(NL + NR ). Here the major assump-
tion is that the tunneling time is much longer than the lo-
cal equilibrium time of the reservoir (characterized by tF =
2πh̄/EF), such that we can apply the above results with fixed
δμ to any instantaneous time. From the results we obtained
(as shown in Fig. 3), this assumption is indeed well obeyed.

The different regimes of tunneling dynamics are summa-
rized in Fig. 3 with two tunable parameters δn and VD .
Let us analyze the evolution between different regimes as
follows.

A → B: In case A, I0 is the most dominative component
and δn quickly drops to zero. From case A to case B, the
initial δn decreases. Because I0 is less dominative in the
small δμ regime, as shown in Fig. 3(b), one can see that a
small oscillation of δn becomes visible, and at mean time the
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(a) (c)

(b) (d)

FIG. 3. Schematic of different transport regimes with different
initial atom number difference δn and different VD . (a)–(d) represent
four typical dynamical behaviors for δn and φ. For (a), δn(0) =
0.5, VD = �, and corresponding T ∼ 0.9. (b) has the same VD

and T as (a), but smaller initial δn(0) = 0.02. For (c), δn(0) =
0.02, VD = 3�, and corresponding T ∼ 0.5. (d) has the same VD

and T as (c), but different initial δn(0) = 0.005.

long-time saturation value of δn is a finite value instead of
dropping to zero.

B → C: From case B to case C, the initial δn is about
the same, but VD increases and T decreases. The Josephson
effect gradually becomes dominant over the multiple Andreev
reflection. This crossover happens in the way that on one
hand, the saturation value of δn increases until eventually the
drop of δn becomes insignificant, and on the other hand, the
oscillation becomes more profound. As a result, δn oscillates
around a finite value. This is known as the “self-trapping”
regime in the previous study of the Josephson oscillations in a
Bose-Einstein condensate of bosons [22].

C → D: In both cases of C and D, VD and T are fixed in
the regime where Im(I1) is the most dominative component.
The only difference is that the initial δn in case D is much
smaller than that of case C. Only keeping the sin φ term in
the first equation of Eq. (12), it is known that Eq. (12) can be
mapped to the dynamical equation of a classical pendulum,
where two different solutions can be found depending on the
initial conditions. The first is an oscillation around the global
minimum when δn is small, corresponding to the conventional
Josephson effect, and the other is a continuous clockwise (or
anticlockwise) rotation when δn is large, corresponding to the

FIG. 4. (a) The transmission amplitude T (ω − Vg, VD ) for the
case of two delta-function potentials with VD = 8�. (b) The currents
I0 and Im(I1) as functions of the gate potential for a fixed chemical
potential bias δμ = 0.6�.

self-trapping [22]. A similar crossover from the Josephson to
the self-trapping regime has also been observed previously in
a Bose condensate of bosons [21].

Tuning transport with gate potential. For a single delta-
function potential barrier, T is a monotonic function of
ω − Vg as shown in Fig. 1(b). For multiple delta-function
potentials, due to the interference effect, T as a function of
ω − Vg exhibits much richer structure, as shown in Fig. 4(a).
When the gate potential is applied to the QPC region, the
energy of the eigenmode in QPC is lowered by Vg . This is
equivalent to shifting the chemical potentials of the reservoirs.
In Fig. 4(a) we label the position of the chemical potential of
the right reservoir by an arrow. Hence as one increases |Vg|,
the arrow moves from left to right. The particles around the
chemical potential will see a varying T . As we discussed in
Fig. 2, when one varies T the relative strength between I0 and
Im(I1) will change. Eventually, the varying Vg can lead to an
oscillating behavior of I0 and Im(I1) as shown in Fig. 4(b).
Thus, in this case, the different regimes of transport behaviors
discussed above can also be controlled by Vg instead of VD .

Outlook. In summary, we have presented a system in
which three distinct behaviors of transport between two Fermi
superfluids can all be realized, and the crossover between
them can be tuned by both the initial atom number imbalance
and the transmission coefficient. Given that the experimental
technique required has been reported, our prediction can now
be directly applied to current experimental setup. Further
investigation along this direction includes the multichannel ef-
fect and finite temperature effect. The similar argument as pre-
sented above will lead to the conclusion that the multichannel
effect may suppress the Josephson effect. Finite temperature
effect can affect the stabilization of the self-trapping because
of the suppression of the order parameter and the increasing
of the quasiparticle excitations. Generalization of this study
can also be extended to spin and heat transport problems with
a tunable transmission coefficient through a quantum point
contact.
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