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A large-scale full-configuration-interaction calculation based on the Dirac-Coulomb-Breit (DCB) Hamiltonian
is performed for the 2 1S0 and 2 3S1 states of helium. The operators of the normal and specific mass shifts
are directly included in the DCB framework to take the finite nuclear mass correction into account. High-
accuracy energies and matrix elements involved n (the main quantum number) up to 13 are obtained from
one diagonalization of Hamiltonian. The dynamic dipole polarizabilities are calculated by using the sum rule
of intermediate states, and a series of magic wavelengths with QED and hyperfine effects included for the
2 3S1 → 2 1S0 transition of helium are identified. In addition, the high-order ac Stark shift determined by the
dynamic hyperpolarizabilities at the magic wavelengths are also evaluated. Since the most promising magic
wavelength for application in experiment is 319.8 nm, the high-accuracy magic wavelength of 319.815 3(6) nm
of 4He is in good agreement with the recent measurement value of 319.815 92(15) nm [R. J. Rengelink et al.,
arXiv:1804.06693], and the present magic wavelength of 319.830 2(7) nm for 3He would provide theoretical
support for experimentally designing an optical dipole trap to precisely determine the nuclear charge radius of
helium in the future.
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The long-term outstanding proton radius puzzle causes
great interest in recent years [1–3]. So far there has not
been a satisfying explanation for the discrepancy of 5.6σ in
the proton size derived from muonic hydrogen Lamb shift
measurements [1,2] and the accepted CODATA value [3].
Research in this field has expanded to measurements of the
2S-4P transition energy in hydrogen [4], transition energies
between circular Rydberg states in heavy-H-like ions [5], and
the 1S-2S transition energy in muonic helium ions [6]. In
order to help solve the proton size puzzle, the measurement
of high-precision spectroscopy in helium isotopes has be-
come an additional contribution to this field [7–12]. However,
the nuclear charge radius difference determined from the
2 3S → 2 1S and 2 3S → 2 3P transitions of helium disagrees
by 4σ [7–12]. Even combined with the recent theoretical
investigations [13–15], where the higher-order recoil correc-
tions are taken into account, the 4σ discrepancy does still
exist and remains unexplained by any missed corrections in
existing theoretical predictions. So this discrepancy calls for
the verification of the experimental transition frequencies by
independent measurements.

For the 2 3S → 2 3P transition frequency of helium, re-
cently, the frequency measurement of 4He is achieved to
5.1 × 10−12 [16], which is more accurate than the early results
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of Refs. [11,12,17]. But it’s interesting that applying the
2 3S → 2 3P transition frequency of 3He of Ref. [12] into
Ref. [16], the resulting nuclear charge radii difference agrees
well with the value derived from the 2 3S → 2 1S transition [7]
but differs with the measurement of the 2 3S → 2 3P tran-
sition [9]. This deviation indicates that further independent
measurement of the 2 3S → 2 3P transition for 3He is urgently
needed.

For the 2 3S → 2 1S transition frequency of helium, one
of the main systematic uncertainties of previous measure-
ment [7] comes from ac Stark shift. Implementation of a
magic wavelength trap can solve this problem in many high-
precision measurements [18,19]. Recently, Notermans et al.
obtained the magic wavelengths of He(2 3S → 2 1S) with the
use of available energies and Einstein A coefficients [20]. The
accuracy of their values is limited by extrapolated contribu-
tions from continuums.

Since the dynamic dipole polarizability at the 319.8 nm
magic wavelength is large enough to provide sufficient trap
depth at reasonable laser powers while the scattering lifetime
is accepted, the 319.8 nm magic wavelength is proposed to
design an optical dipole trap (ODT) to eliminate the ac Stark
shift [20]. In order to determine the nuclear charge radius
difference with a precision comparable to the muonic helium
ion, Vassen et al. aim to measure the 2 3S → 2 1S transition
with subkilohertz precision. At this level of precision, the
ab initio calculation for the magic wavelengths of helium
isotopes is required.
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In this Rapid Communication, we improve the previous
relativistic configuration interaction (RCI) method [21] by
adding the mass shift (MS) operators directly into the Dirac-
Coulomb-Breit (DCB) Hamiltonian. Then we perform a large-
scale full-configuration-interaction calculation of the dynamic
dipole polarizabilities for the 2 3S and 2 1S states of helium.
QED corrections to the dynamic dipole polarizabilities are
approximate by perturbation calculations. A series of magic
wavelengths for the 2 3S1 → 2 1S0 transition are accurately
identified according to the dynamic polarizabilities. In ad-
dition, we also carry out nonrelativistic calculations of dy-
namic polarizabilities and hyperpolarizabilities of helium by
using the newly developed Hylleraas-B-spline method [22].
Present magic wavelengths from two different theoretical
methods are in good agreement. Specifically, the accurate
magic wavelengths of 319.815 3(6) nm and 319.830 2(7) nm
are recommended for the 2 3S1(MJ = ±1) → 2 1S0 transition
of 4He and 3He, respectively.

The DCB Hamiltonian with mass shift operator included
for the two-electron atomic system is written as

H =
2∑

i=1

[
cαi · pi + βmec

2 − Z

ri

]
+ 1

r12

− 1

2r12
[α1 · α2 + (α1 · r̂12)(α2 · r̂12)] + HMS, (1)

where c = 137.035 999 074 is the speed of light [23], Z is
the nuclear charge, β is the 4 × 4 Dirac matrix, me = 1 is the
electron mass, αi and pi are, respectively, the Dirac matrix
and the momentum operator for the ith electron, r̂12 is the
unit vector of the electron-electron distance r12, and the MS
operator HMS includes the leading term of normal and specific
mass shift (NMS, SMS) operators,

HMS = HNMS + HSMS =
2∑

i=1

p2
i

2m0
+ p1 · p2

m0
, (2)

where m0 = 7294.299 536 1me and m0 =
5495.885 275 4me [23] are the nuclear mass for 4He and
3He, respectively. The wave function ψ (JMJ ) for a state
with angular momentum (J,MJ ) is expanded as a linear
combination of the configuration-state wave functions
φij (JMJ ), which are constructed by the single-electron wave
functions [21]. Using the Notre Dame basis sets [24,25] of

B-spline functions, the single-electron wave functions are
obtained by solving the single-electron Dirac equation.

The nonrelativistic Hamiltonian for the infinite nuclear
mass of helium is solved with the Hylleraas-B-spline basis
set [22],

φij�1�2 (LML) = Bk
i (r1)Bk

j (r2)rc
12Y

LML

�1�2
(r̂1, r̂2)

± exchange, (3)

where L and ML are the total orbital and magnetic quantum
numbers, respectively, Y

LML

�1�2
(r̂1, r̂2) is the coupled spherical

harmonic function, and c = 0 , 1.
The dynamic dipole polarizability of the magnetic sublevel

|NgJgMJg
〉 under linear polarized light with laser frequency ω

is

α1(ω) = αS
1 (ω) +

3M2
Jg

− Jg (Jg + 1)

Jg (2Jg − 1)
αT

1 (ω), (4)

where αS
1 (ω) and αT

1 (ω) are the scalar and tensor dipole
polarizabilities, respectively, which can be expressed as the
summation over all intermediate states,

αS
1 (ω) =

∑
n�=g

f (1)
gn

(�Egn)2 − ω2
, (5)

αT
1 (ω) =

∑
n�=g

(−1)Jg+Jn

√
30(2Jg + 1)Jg (2Jg − 1)

(2Jg + 3)(Jg + 1)

×
{

1 1 2
Jg Jg Jn

}
f (1)

gn

(�Egn)2 − ω2
, (6)

with f (1)
gn the dipole oscillator strength,

f (1)
gn = 2|〈NgJg‖T1‖NnJn〉|2�Egn

3(2Jg + 1)
, (7)

where �Egn = En − Eg is the transition energy between the
initial state |NgJg〉 and the intermediate state |NnJn〉, and T1 is
the dipole transition operator. The nonrelativistic polarizabil-
ities are obtained by replacing the quantum number J with L

in Eqs. (4)–(7).
The QED corrections to dynamic dipole polarizabilities are

calculated by the perturbation theory [26] using energies and
wave functions obtained from the nonrelativistic configuration
interaction method [27],

δα
QED
1 (ω) = 2

[∑
n

〈g|T1|n〉〈n|T1|g〉〈g|δHQED|g〉[(En − Eg )2 + ω2]

[(En − Eg )2 − ω2]2
− 2

∑
nm

〈g|T1|n〉〈n|T1|m〉〈m|δHQED|g〉(En − Eg )

[(En − Eg )2 − ω2](Em − Eg )

−
∑
nm

〈g|T1|n〉〈n|δHQED|m〉〈m|T1|g〉[(En − Eg )(Em − Eg ) + ω2]

[(En − Eg )2 − ω2][(Em − Eg )2 − ω2]

]
, (8)

where |g〉 is the initial state, |n〉 and |m〉 represent intermediate states, and δHQED is the QED operator. The expansion of
δHQED [28] to the leading order of α3 is adopted in this work:

H
(3)
QED � 4Zα3

3

{
19

30
+ ln

[
(Zα)−2] − ln

(
k0

Z2

)}
[δ3(r1) + δ3(r2)] + O(r12) , (9)

where ln k0 is the Bethe logarithm, and O(r12) represents the remaining term connected with r12. We use ln k0 = 4.364 036 82(1)
and 4.366 412 72(7) [29] for the 2 3S1 and 2 1S0 states, respectively. O(r12) contributes −5.2 × 10−8 a.u. and −5.6 × 10−9 a.u. to
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the energies of 2 1S0 and 2 3S1 states of helium, respectively, which is three and four orders of magnitude smaller than 1.66 × 10−5

a.u. and 1.67 × 10−5 a.u. from the first term of Eq. (9). So in this work, the QED correction to the magic wavelengths is calculated
by omitting the O(r12) contributions.

The nonrelativistic dynamic hyperpolarizability for the S state is

γ0(ω) = 128π2

3

[
1

9
T (1, 0, 1, ω) + 2

45
T (1, 2, 1, ω)

]
, (10)

where T (La,Lb, Lc, ω) is written as

T (La,Lb, Lc, ω) =
∑
mnk

〈NgLg‖T1‖mLa〉〈mLa‖T1‖nLb〉〈nLb‖T1‖kLc〉〈kLc‖T1‖NgLg〉
(�Emg − ω)�Eng (�Ekg − ω)

− δLb,Lg

∑
m

|〈NgLg‖T1‖mLa〉|2

(�Emg − ω)

∑
k

|〈NgLg‖T1‖kLc〉|2

(�Ekg − ω)2
. (11)

Compared with the dynamic dipole polarizabilities, the accu-
rate calculation of the dynamic hyperpolarizabilities is much
more challenging, since the formula involves three summa-
tions over different intermediated states, which means the cal-
culation of hyperpolarizability depends on the completeness
of the energy spectrum of more intermediate states.

The magic wavelengths of the 2 3S → 2 1S transition are
determined from making the dynamic dipole polarizabilities
of the 2 1S0 and 2 3S1 states equally. The accuracy of magic
wavelengths depends on accurate energies and wave functions
of initial and intermediate states. The high-precision B-spline
RCI method was very successful in accurate calculation of
atomic polarizabilities for the triplet 2 3S1 state of helium [21].
However, for the magic wavelengths around 320 nm of in-
terest in the present work, it’s clearly seen from Fig. 1, they
are located at the edge of the 2 1S0 → 10 1P1, 2 1S0 → 11 1P1,
and 2 1S0 → 12 1P1 resonance transitions. The accurate deter-

FIG. 1. Dynamic dipole polarizabilities (in a.u.) of helium for
the photon energy 319 nm � ω � 326 nm. The solid red line and
the dashed blue line represent the dynamic polarizabilities for
2 3S1(MJ = ±1) and 2 1S0 states, respectively. The crossing points
marked as a solid magenta circle are the magic wavelengths. The
vertical lines are the resonance transition positions, and the black
line denotes a horizontal line.

mination of these magic wavelengths requires construction of
sufficient configurations in an appropriate box size to make
sure that all transition energies from the 2 1S0 state to the
10 1P1, 11 1P1, and 12 1P1 Rydberg states are accurate. This
is a biggest challenge for our RCI calculation.

We optimize our RCI program by using OpenMP parallel
and block calculations, which overcomes the problem of
time-consuming and large memory required in calculating
the electron-electron Coulomb and Breit interaction integrals.
Extensive tests of the numerical stability for energies, matrix
elements, polarizabilities, and magic wavelengths of helium
are carried out.

In order to get accurate energies for the intermediate
n 1P1(n = 10–13) states, we fix the box size R0 = 600 a.u.
and increase the numbers of partial-wave lmax, and B-spline
basis sets N to test the convergence of energies. Seen from
the Table I, when fixing N = 50 to increase �max, we get the
converged energy of −2.003 297 06(1) a.u. for the 12 1P1

state, which has eight significant digits.
For other n 1P1 states, seen from Table II, all the energies

for n 1P1(n � 13) intermediate states have eight significant
digits. That means the energy accuracy for all the states, even
for the Rydberg states, can be guaranteed to the same level of
precision from one diagonalization in the present RCI calcu-
lations. The Hylleraas energies [30] of Table II are derived by
combining the values in Tables 11.7 and 11.8 of Ref. [30] and
the ground-state energy of −1.999 832 572 508 a.u. of He+.
Compared with the Hylleraas energies [30], which include

TABLE I. Energy (in a.u.) test of the 2 1S0 and 12 1P1 states of
4He. N is the number of B spline, R0 is the box size, and �max

presents the number of partial wave.

2 1S0 12 1P1

�max (N,R0 )=(45,100) (N,R0 )=(50,600) (N,R0 )=(50,600)

7 −2.145 783 68 −2.145 782 91 −2.003 297 046
8 −2.145 784 58 −2.145 783 74 −2.003 297 053
9 −2.145 785 15 −2.145 784 25 −2.003 297 057
10 −2.145 785 53 −2.145 784 58 −2.003 297 059
15 −2.145 786 27 −2.145 785 21 −2.003 297 063
Extrap. −2.145 786(1) −2.145 785(1) −2.003 297 06(1)
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TABLE II. Comparison of present RCI energies (in a.u.) for
some selective n 1P1(n � 13) states of 4He and 3He. The numbers
in parentheses are computational uncertainties.

4He

State RCI Hylleraas [30]

2 1P1 −2.123 650 17(2) −2.123 654 51
3 1P1 −2.054 968 56(2) −2.054 970 17
4 1P1 −2.030 896 59(2) −2.030 897 47
5 1P1 −2.019 734 98(2) −2.019 735 59
6 1P1 −2.013 664 02(2) −2.013 664 52
7 1P1 −2.009 999 98(2) −2.010 000 41
8 1P1 −2.007 620 18(2) −2.007 620 57
9 1P1 −2.005 987 70(2) −2.005 988 07
10 1P1 −2.004 819 48(2) −2.004 819 84
11 1P1 −2.003 954 83(2)
12 1P1 −2.003 297 06(1)
13 1P1 −2.002 784 91(4)

3He

State RCI Hylleraas [30]
2 1P1 −2.123 552 83(2) −2.123 557 20
3 1P1 −2.054 875 71(2) −2.054 877 36
4 1P1 −2.030 805 19(2) −2.030 806 11
5 1P1 −2.019 644 21(2) −2.019 644 86
6 1P1 −2.013 573 59(2) −2.013 574 20
7 1P1 −2.009 909 74(2) −2.009 910 20
8 1P1 −2.007 530 06(2) −2.007 530 50
9 1P1 −2.005 897 67(2) −2.005 898 08
10 1P1 −2.004 729 51(2) −2.004 729 91
11 1P1 −2.003 864 90(2)
12 1P1 −2.003 207 09(4)
13 1P1 −2.002 695 04(4)

the finite nuclear mass, relativistic, and anomalous magnetic
moment corrections, our RCI energies are in good agreement
with Hylleraas energies [30].

But for the energy of the 2 1S0 state, seen from Table I, since
the electron-electron correlation is much larger than the 12 1P1

state, we cannot get eight significant digits from the present
largest-scale RCI calculation. Even we decrease the box size
R0 to 100 a.u. and fix N = 45 to increase �max = 15, the con-
vergent energy is −2.145 786(1) a.u., which is less accurate
than the n 1P1(n � 13) states by one order of magnitude, and
just has seven same digits compared with the best value of
−2.145 786 909 a.u. [28]. So in the later determination of
magic wavelengths, we replace our RCI energies of the 2 1S0

state of helium with the values of Ref. [28].
Table III gives a comparison of the reduced matrix ele-

ments for the dipole allowed 2 1S0 → n 1P1(n � 13) transi-
tions. The Hylleraas values [31] include the finite nuclear
mass and the leading relativistic corrections. Compared with
the Hylleraas values, present RCI results have four same digits
for the 2 1S0 → n 1P1(n � 5) transitions. The energies of n 1S0,
n 3S1, and n 3PJ states, and the reduced matrix elements for
2 1S0 → n 3P1, 2 3S1 → n 3PJ , and 2 3S1 → n 1P1 transitions
with n � 13 for 3He and 4He are presented in the Supplemen-
tal Material [32].

TABLE III. Comparison of some reduced matrix elements be-
tween present RCI calculations and Hylleraas calculations [31] of
the 2 1S0 → n 1P1(n � 13) transitions for 4He and 3He. The numbers
in parentheses are computational uncertainties.

RCI Hylleraas [31]

2 1S0 → n 1P1
3He 4He 4He

2 5.052 46(2) 5.052 06(8) 5.050 977
3 1.580 76(2) 1.580 81(2) 1.581 082
4 0.801 02(2) 0.801 03(2) 0.801 106
5 0.515 54(2) 0.515 53(2) 0.515 578
6 0.371 14(2) 0.371 14(2) 0.371 159
7 0.285 12(2) 0.285 12(2) 0.285 131
8 0.228 58(2) 0.228 58(2) 0.228 590
9 0.188 89(2) 0.188 89(2) 0.188 899
10 0.159 68(2) 0.159 67(2) 0.159 686
11 0.137 40(2) 0.137 39(2)
12 0.119 92(2) 0.119 92(2)
13 0.105 90(2) 0.105 89(2)

Since the 319.8 nm magic wavelength was proposed to
trap helium for high-precision measurement, Table IV lists
the convergent test for this particular magic wavelength of the
2 3S1(MJ = ±1) → 2 1S0 transition of 4He. The correspond-
ing dynamic dipole polarizabilities at the magic wavelengths
are also listed. It is seen that both the parameters, N and �max,
affect the convergent rate of numerical values. According to
the values in the last three lines, we can obtain the extrapolated
value of 319.814 3(4) nm for the magic wavelength. In order
to take into account the incompleteness of configurations, the
uncertainty of 319.814 3(4) nm is obtained by doubling the
difference of 319.814 300 and 319.814 128 nm for the sake
of conservativeness. Similarly, we can get the extrapolated
polarizability of 186.96(6) a.u., which is more accurate than
the semiempirical result of 189.3 a.u. [20].

For the 3He atom, in Table V, the convergence tests of the
319.8 nm magic wavelength with and without the hyperfine

TABLE IV. Convergence test of 319.8 nm magic wavelength for
the 2 3S1(MJ = ±1) → 2 1S0 transition of 4He as the number of B

splines, N increased with the number of the partial wave, �max = 7,
and as �max increased with N = 50 by choosing the box size, R0 =
600 a.u. The convergence test for the dynamic dipole polarizabilities
at the corresponding magic wavelengths are also listed.

�max=7

N λm α1(ω)

40 319.828 217 183.903 70
45 319.815 649 186.660 50
50 319.814 254 186.967 81
55 319.814 140 186.992 26
60 319.814 128 186.995 32
�max N=50
10 319.814 287 186.959 58
15 319.814 299 186.957 01
20 319.814 300 186.956 61

Extrap. 319.814 3(4) 186.96(6)
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TABLE V. Convergence test of 319.8 nm magic wavelength for
the 2 3S1(MJ = ±1) → 2 1S0 transition and the 2 3S1(F = 3

2 ,MF =
3
2 ) → 2 1S0(F = 1

2 , MF = 1
2 ) hyperfine transition of 3He as the

number of B splines, N , increased by fixing the number of the partial
wave as �max = 7 and choosing the box size as R0 = 600 a.u. The dy-
namic dipole polarizabilities at the corresponding magic wavelengths
are also listed.

2 3S1(MJ = ±1) 2 3S1(F = 3
2 , MF = 3

2 )
→ 2 1S0 → 2 1S0(F = 1

2 , MF = 1
2 )

N λm α1(ω) λm α1(ω)

40 319.843 338 184.136 47 319.843 372 183.888 81
45 319.830 791 186.897 83 319.830 832 186.641 95
50 319.829 394 187.201 98 319.829 437 186.945 04
55 319.829 278 187.237 65 319.829 320 186.980 95
60 319.829 266 187.232 93 319.829 308 186.976 20
Extrap. 319.829 2(4) 187.22(6) 319.829 3(4) 186.96(6)

effect are presented. For the 2 3S1(MJ = ±1) → 2 1S0 transi-
tion, the extrapolated values of 319.829 2(4) nm and 187.22(6)
a.u. are, respectively, for the magic wavelength and the cor-
responding dynamic dipole polarizability. For the 2 3S1(F =
3
2 ,MF = 3

2 ) → 2 1S0(F = 1
2 ,MF = 1

2 ) hyperfine transition,
we use the hyperfine energy shifts of Ref. [33] for the 2 1S0,
2 3S1, and n 1,3PJ (n � 10) states. For higher n 1,3PJ interme-
diate states, the hyperfine energy shifts are obtained by fitting
the hyperfine splitting of n 1,3PJ (n � 10) states. The reduced
matrix elements between hyperfine levels can be transformed
by the Eq. (4) of Ref. [34]. Then we replace the hyperfine
energies and matrix elements into Eqs. (4)–(7) to get dynamic
dipole polarizabilities for extracting the magic wavelengths.
We find that the hyperfine effect has large correction to α1(ω),
but only increases about 0.1 pm on the extrapolated λm of
319.829 2(4) nm, which can be taken as one source of the
uncertainty in the final recommended magic wavelength.

In addition, the QED corrections to all the magic wave-
lengths are extracted by performing the calculation of QED
correction to the dynamic dipole polarizabilities. The values

are listed in the Table VI. Especially for the 319.8 nm magic
wavelength, leading order of QED correction is 0.001 00(2)
nm. Other terms, such as the second derivative of the Bethe
logarithm, Araki-Sucher term, and high-order QED correc-
tions, would bring possible sources of the error. For the sake
of conservativeness, we can multiply the uncertainty by 10.
So the final QED correction of 0.0010(2) nm is indicated
to the 319.8 nm magic wavelength, which can be added
into present RCI values, then we can get the recommended
magic wavelengths of 319.815 3(6) and 319.815 4(6) nm,
respectively, for the 2 3S1(MJ = ±1) → 2 1S0 and 2 3S1(MJ =
0) → 2 1S0 transitions of 4He. Similarly, with the QED and
hyperfine structure corrections taken into account for 3He,
we can give the recommended values of 319.830 2(7) and
319.830 4(7) nm, respectively, for the 2 3S1(MJ = ±1) →
2 1S0 and 2 3S1(MJ = 0) → 2 1S0 transitions of 3He. Our rec-
ommended value of 319.815 3(6) nm for 4He agrees well
with recent measurement results of 319.815 92(15) nm [35].
And the present magic wavelength of 3He would provide
theoretical reference for designing ODT experiments to help
resolve the nuclear radius discrepancy of helium isotopes.

Except the important application of the 319.8 nm magic
wavelength of helium, both the 321.4 and 323.5 nm magic
wavelengths can also be used to design experiments once
a high-power laser can be realized. The magic wavelengths
obtained from present RCI calculations are 323.587 9(4) and
321.409 5(4) nm for the 2 3S1(MJ = ±1) → 2 1S0 transition
of 4He. Taking the QED correction into account, we rec-
ommend 323.588 9(6) and 321.410 5(6) nm as the final
values of magic wavelengths. Similarly, for the 2 3S1(MJ =
±1) → 2 1S0 transition of 3He, with the QED and hyperfine
corrections included, the magic wavelengths of 323.604 1(7)
and 321.425 7(7) nm are recommended.

Table VI summarizes the first nine magic wavelengths in
the range of 318–413 nm from two independent calculations
of the Hyllerass-B-splines and RCI methods. All the values
from two different theoretical methods are consistent. The
relativistic and finite nuclear mass corrections on all the magic
wavelengths are less than 60 pm. For the RCI calculation, the
difference of all the magic wavelengths between 4He and 3He

TABLE VI. The first nine magic wavelengths (in nm) of the 2 3S1 → 2 1S0 transition of helium. The numbers in parentheses are
computational uncertainties. The uncertainties in the present RCI values evaluated from the incompleteness of configuration space. The values
of QED correction only represents the convergence results of our numerical calculation; the uncertainty would be multiplied by 10 in the final
QED correction for conservativeness.

Hyllerass B splines RCI Ref. [20]

2 3S → 2 1S 2 3S1(MJ = ±1) → 2 1S0 2 3S1(MJ = 0) → 2 1S0 QED 2 3S1 → 2 1S0

No. ∞He 4He 3He 4He 3He 2 3S1 → 2 1S0
4He 3He

1 412.16(2) 412.167(5) 412.166(5) 412.173(8) 412.177(7) − 0.000 43(2) 411.863
2 352.299(4) 352.335(3) 352.351(4) 352.336(3) 352.352(4) 0.001 12(2) 352.242
3 338.641(2) 338.681 7(5) 338.697 2(5) 338.681 8(5) 338.697 4(5) 0.001 07(2) 338.644
4 331.240(1) 331.282 7(4) 331.298 1(4) 331.282 8(4) 331.298 3(4) 0.001 04(2) 331.268
5 326.633(1) 326.677 0(4) 326.692 2(4) 326.677 1(4) 326.692 3(4) 0.001 03(2) 326.672
6 323.544(1) 323.587 9(4) 323.603 1(4) 323.588 0(4) 323.603 4(4) 0.001 02(2) 323.587 323.602
7 321.366(1) 321.409 5(4) 321.424 7(4) 321.409 6(4) 321.424 9(4) 0.001 01(2) 321.409 321.423
8 319.771(1) 319.814 3(4) 319.829 2(4) 319.814 4(4) 319.829 4(4) 0.001 00(2) 319.815 319.830
9 318.567(1) 318.610 5(8) 318.625 6(8) 318.610 6(8) 318.625 8(8) 0.001 11(2) 318.611 318.626
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TABLE VII. Dynamic hyperpolarizabilities (in a.u.) at the nine
magic wavelengths for the 2 1S and 2 3S states of ∞He. The high-
order ac Stark shifts (in Hz) are also presented in the last column.
The electric field intensity F ≈ 1.58 × 10−7 a.u. is evaluated from
real experimental condition [35]. The numbers in the square brackets
denote powers of ten. The numbers in parentheses are computational
uncertainties.

No. 2 1S 2 3S 1
24 �γ0(ω)F 4

1 −6(4)[6] −2.3(5)[8] −3.9[−5]
2 −1.2(1)[6] −3.6(9)[7] −6.0[−6]
3 −4.1(9)[6] −2.4(9)[7] −3.4[−6]
4 −1.5(7)[7] −3.7(8)[7] −3.6[−6]
5 −2.9(4)[7] −5.7(6)[7] −4.8[−6]
6 −9.6(2)[7] −1.1(3)[8] −2.6[−6]
7 −5.4(1)[8] −3.7(3)[8] 3.1[−5]
8 −1.0(1)[10] −3.4(1)[9] 1.2[−3]
9 4.2(1)[11] 3.9(1)[10] −6.6[−2]

are less than 17 pm. It’s noticed that the QED corrections
listed in the Table VI only represent the convergence results
of present numerical calculation, the uncertainty may be mul-
tiplied by 10 in the final QED correction for conservatively
taking other neglected contributions into account.

Table VII presents the dynamic hyperpolarizabilities at the
nine magic wavelengths of Table VI for the 2 1S and 2 3S

states of ∞He by using the Hyllerass-B-splines method. And
the high-order Ac Stark shift at each magic wavelength is also
estimated. Especially, for the 319.8 nm magic wavelength,
the dynamic hyperpolarizabilities are −1.0 × 1010 a.u. and
−3.4 × 109 a.u. for the 2 1S and 2 3S states of ∞He, respec-
tively. The difference of the dynamic hyperpolarizabilities for
the 2 3S → 2 1S transition is �γ0(ω) = 6.7 × 109 a.u. If the
power of the incident trapping laser beam is P = 0.2 W with
beam waist w0 = 85 μm, then we can get the electric field
intensity F ≈ 1.58 × 10−7 a.u. Accordingly, the higher-order

Ac Stark shift is evaluated as 1
24�γ0(ω)F 4 ≈ 1.7 × 10−19 a.u.

≈1.2 mHz, it is smaller by six orders of magnitude than the
1.8 kHz uncertainty of the absolute frequency for the 2 3S1 →
2 1S0 transition of 4He [7], which indicates the high-order Ac
Stark shift can be neglected for the precision spectroscopy
measurement of the 2 3S1 → 2 1S0 transition of helium by
implementation of a magic wavelength trap.

In summary, the improved RCI method enables us to calcu-
late the dynamic dipole polarizabilities in a wide range of laser
frequency for both 2 3S1 and 2 1S0 states of helium. A series of
magic wavelengths for the 2 3S1 → 2 1S0 forbidden transition
of 4He and 3He are accurately determined. The nonrelativistic
calculations of magic wavelength for ∞He are also carried
out by using the Hylleraas-B-spline method. Further, the
leading order of QED corrections on the magic wavelengths
have been taken into account. For 3He, the correction from
hyperfine structure to the magic wavelengths has been cal-
culated. In addition, the high-order ac Stark shifts related
with the dynamic hyperpolarizabilities are estimated. All the
magic wavelengths from two different theoretical methods
are consistent. The present recommended magic wavelength
of 319.815 3(6) nm for 4He is in good agreement with the
high-precision measurement value of 319.815 92(15) nm [35].
The present magic wavelength of 319.830 2(7) nm for 3He
provides an important reference for experimental design of
a magic wavelength trap to eliminate the ac Stark shift for
the precision spectroscopy of the 2 3S1 → 2 1S0 transition of
helium in the future.
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