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Experimentally detecting a quantum change point via the Bayesian inference
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Detecting a change point is a crucial task in statistics that has been recently extended to the quantum realm.
A source state generator that emits a series of single photons in a default state suffers an alteration at some point
and starts to emit photons in a mutated state. The problem consists in identifying the point where the change took
place. In this Rapid Communication, we build a pseudo-on-demand single-photon source to prepare the photon
sequences, and consider a learning agent that applies Bayesian inference on experimental data to solve this
problem. This learning machine adjusts the measurement over each photon according to the past experimental
results and finds the change position in an online fashion. Our results show that the local-detection success
probability can be largely improved by using such a machine-learning technique. This protocol provides a tool
for improvement in many applications where a sequence of identical quantum states is required.
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Introduction. The change point problem is a crucial con-
cept in statistics [1–3] that has been studied in many real-
world situations, from stock markets [4] to protein folding [5].
One of the key goals in this field of research is to devise
procedures that detect the exact point where a sudden change
has occurred. This point could indicate, for example, the
trigger of a financial crisis or a misfolded protein step [6].
Many settings can be formulated as a change point problem,
however, we can understand it in the simplest terms as a heads
or tails game. Alice sends a series of fair coins to Bob who can
toss each of them. She then starts sending another type of coin
and Bob’s task is to recognize from his observations the most
likely point where the switching occurred.

In recent works, this problem has been extended to the
quantum realm [7–9]. Considering a quantum state generator
that is supposed to emit a sequence of photons in a default
state but suffers an uncontrolled alteration at some unknown
point (e.g., a rotation of the polarization), the problem then is
to determine where the change took place from measurements
on the photons. A comparison of several methods which
were proposed in Ref. [8] is shown in Fig. 1. The most
general procedure consists in waiting until all the photons
have reached the detector and measuring them at the very
end [6,8]. An optimal global measurement naturally provides
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the best identification performance, but it is difficult to realize
experimentally as it requires a quantum memory to store
photons as well as collective quantum operations. On the other
hand, it is much more feasible to measure the state of each
photon as soon as it arrives (local measurement). The most
basic local procedure consists of fixed measurements that
unambiguously detect a mutated state with some probability,
whereas the performance of this simple procedure is far below
the optimal one. The Bayesian inference procedure, however,
that adapts the local measurements according to the previous
outcome, can greatly improve the success probability. Such a
protocol can be viewed as a machine-learning (ML) mech-
anism, while many recent works have proved that a learn-
ing machine (either classical [8,10–15] or quantum [16–19])
can provide an efficient route to quantum characterization,
verification, and validation. We have already benefited from
using conventional machine learning to solve many quantum
problems [10–15,20,21]. In particular, Bayesian inference as
a classic technique in the ML domain has been discussed
in Refs. [11,22–24] and applied to quantum tasks in many
cases, such as quantum Hamiltonian learning [11], phase esti-
mation [23–27], and several others [28,29] (spectral function
reconstruction and Josephson oscillation characterization).

In this Rapid Communication, we experimentally detect a
quantum change point in one sequence of photons using the
Bayesian inference (BI) and basic local (BL) strategies, which
are proposed theoretically in Ref. [8]. We compare the success
probabilities between these two methods and with respect to
the (theoretical) optimal global strategy. For the BI strategy,
we build a learning agent (a programed computer) to guess
the change point position. Once the photon arrives, we detect
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FIG. 1. Schematic diagram of the three different detection pro-
tocols. The optimal measurement is constituted by four steps: the
source state preparation, a quantum memory for storing each photon,
global detection, and decision making. For the simple local strategy,
such as basic local (BL) detection, the quantum memory model is
removed and global detection is replaced by a local detection. The
measurement base is fixed in the BL method, but is changed in
the Bayesian inference (BI) strategy. The Helstrom measurement in
this method is decided by the prior probability obtained from the
last step (see Appendix A). Meanwhile, the priors are also updated
according to the measurement results using the Bayesian update rule.
The change point is determined by choosing the position with the
largest prior probability after the last step.

the result and update the priors for each hypothesis. Then the
agent decides which measurement basis is used for the next
photon. In other words, the detection basis is being learned as
the protocol proceeds and a refined guess is provided at each
step. The output guess is given after the last measurement.
In contrast, the measurement basis of the BL strategy is fixed
during the whole experiment, and the guessed change position
is determined by the first conclusive detection of a mutated
state (see Appendix A). In order to compare the performances
of these methods, we conduct a total of 1000 experiments
for a certain overlap between the default and mutated state
(50 times for one possible change point, and there are 20
possible change points in our situation). Our results show that
the learning agent provides a significant advantage over the
BL detection and a performance very close to the optimal
(global) one.

Brief introductions for the theoretical framework. First,
we briefly review the BI strategy according to the theoretical
framework proposed in Ref. [8]. Consider an on-demand
single-photon sequence which contains n photons, a quantum
change occurs at the kth position, and the corresponding
source state can be expressed as

|�k〉 = |H 〉⊗k−1|φ〉⊗n−k+1, (1)

where |H 〉 is the default state and |φ〉 = c|H 〉 + s|V 〉 denotes
the mutated state (without loss of generality, we set c to be real
and positive, and both the default as well as mutated states are
known to the detecting agent). At the sth step, the BI approach
contains the following processes [8]: First, the learning agent
calculates the measurement basis �

(s)
0 according to the prior

probability η
(s)
k = p(k|r1, r2, . . . , rs−1) [31], which represents

the estimation of how likely the change point occurs at posi-
tion k under the sth learning step; second, the agent performs
a Helstrom measurement [32] and obtains the experimental
result (rs = 0 or 1); third, depending on the outcome, the
priors are renewed according to the Bayes updating rule
η

(s+1)
k = p(rs |k)η(s)

k /�n
l=1p(rs |l)η(s)

l , where p(rs |k) denotes
the condition probability which means how probable it is to
have the observed result rs given a hypothetical change point
at position k. The procedure is repeated until the last photon
is measured and the decision is given by the hypothesis with
the highest updated prior. The detailed calculations are shown
in Appendix A.

Experimental setup. The experimental setup is sketched
in Fig. 2(a), which can be recognized as two parts: a source
state generator, which is controlled by Alice, and a classi-
cal learning agent, which is owned by Bob. According to
the above discussion, an on-demand single-photon source is
required for the source state preparation. Here, we propose
a technique to create the pseudo-on-demand single-photon
source, which is helped with a chopper and postselection
method, and the preparation requirements are met. First, the
heralded single photon is generated by a type-II spontaneous
parametric down-conversion (SPDC) process in beta-barium-
borate (BBO) crystal. Then, the chopper driven by an arbitrary
wave-form generator (AWG) is applied to separate the single-
photon sequence into n equal time bins [see the second line in
Fig. 2(b)], which determines the number of particles (n) in the
source state and provides a time label for Alice to create the
change point accurately. After that, the logic unit postselects
the first effective event in each bin to be the detectable photons
in the source state [30]. These procedures ensure that there
must be one (and only one) photon in each bin that can be
detected. This method provides a way to create a pseudo-
on-demand single-photon source which can also be applied
in other similar experiments when the genuine on-demand
single-photon source technology is difficult to implement and
not very mature.

While Alice begins to generate the source state, AWG
will send a trigger signal [at 100-ms intervals, the first line
of the time sequence diagram, as shown in Fig. 2(b)] to
Bob and inform him the detection task should begin. The
prepared pseudo-on-demand single photons then pass through
a polarization beam splitter (PBS) to obtain the default states
|H 〉. An electro-optic modulator (EOM), in conjunction with
half-wave plates (HWPs) and a quarter-wave plate (QWP), are
used to change the default state |H 〉 into a mutated state |φ〉 at
some certain point [see the third and fourth lines in Fig. 2(b)].
During the experiment, Alice can decide at which point (k) the
mutation occurs by controlling the relative time delay of the
signal’s output from the AWG, and without loss of generality,
we set n = 20 in all experiments (the corresponding chopper
period is 5 ms). After the above procedures, the source state
|�k〉 can be generated.

Once the trigger signal is received, Bob starts his mea-
surement. At the first step (s = 1), he tunes the electronic-
controlled HWP to the basis �

(1)
0 which is calculated from the

previous information on the computer. Then, a two-outcome
single-shot measurement is performed on the first photon and
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FIG. 2. (a) Experimental setup. This setup consists of two main
parts: the source state preparation part at the Alice side and the
detecting agent part controlled by Bob. Preparation part: The pseudo-
on-demand single photon is generated by the SPDC process in
BBO crystal associated with the postselection method and a chop-
per, which divides the photon sequence into n equal discrete time
bins [30]. The photons then pass through a PBS to produce the
default states |H 〉 and an EOM after that creating the change point at
some certain place in the sequence. Detection part: The measurement
device consists of an electronic-controlled HWP, a PBS, and a
classical learning agent (personal computer). The measurement basis
realized by the PBS and the electronic-controlled HWP can respond
rapidly when the learning agent calculates the new basis from the
latest priors (see Appendix A). (b) The time sequence diagram. The
first line is the trigger signal (generated by AWG), which has a
100-ms interval. The second line denotes the time bins created by
the chopper. Each time bin has a 2.5-ms width and the red balls
represent signal photons postselected by the logic unit [30]. The third
and fourth lines are the EOM signal and the folding signal by EOM
and chopper, respectively. In the picture, we show a case where the
change point is set at the fifth photon, and the arrows on the red balls
denote the photon polarization.

detected by two single-photon avalanche diodes (SPADs).
After that, the result (“0” or “1”) [33] is sent to the computer to
calculate the priors η

(2)
k according to the Bayes’ updating rules

(the details are shown in Appendix A). A new measurement
basis then can be determined for the next step. Until the
last measurement is finished, Bob produces a guess k̂ that
maximizes η

(21)
k for the change point. It worth noting that there

is only one sequence of photons prepared by Alice in each ex-
periment. Therefore, Bob is able to measure only one photon
in each learning step but does not have any other copies of the
photons that can detected. Namely, at the sth step in one learn-
ing process, once the sth photon is detected by Bob, he should
respond to this result (completes the learning calculations and
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FIG. 3. (a) The results of prior probabilities at each step when
c2 = 0.604 and k = 5. From the first step to the last (21st) step,
the priors fluctuate depend on the measurement results and begin
to converge at the sixth step. At the last step, the highest column
is located at k = 5, which corresponds to a prior probability of
0.569. This result corresponds to the correct change point in this
experiment. (b) The relationship between success probability and
change point position. Here, Alice sets c2 = 0.604, but varies each
change position. The purple triangles correspond to the success
probabilities for the optimal (global) strategy [8], the red squares
are the numerical simulation results for the BI strategy, and the
circles are the actual experimental results. The simulation average
value of the success probabilities are denoted by the dashed red line.
The black solid line and the gray region are the average values and
associated errors obtained from experiments, respectively. It is clear
that the probabilities derived from the BI protocol are all beyond the
BL one, denoted as the solid orange line.

resets the measurement basis) before the next photon comes,
i.e., less than the time interval of each bin (5 ms).

Results and discussion. An example of a single learning
process is shown in Fig. 3(a). We choose a random value of
the overlap, c2 = 0.604, and a change point at position k = 5.
The height of the columns in each row represents the priors
for every hypothesis k = 1, . . . , 20 after each measurement
step. The initial priors are set to be uniform since Bob does
not have prior knowledge about the position of the change
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point. As the measurements proceed, the Bayesian inference
method is able to learn the right position and to correct
previous wrong guesses or mistakes caused by experimental
noise [34]: We can find that the prior distribution begins to
converge on the correct point after the sixth step, although
an incorrect value occurred at the third step (the highest
column occurs at k = 2, which is not the correct change
point position). As can be readily seen in Fig. 3(a), the
highest updated prior probability at the end of the process
k̂ = arg maxk{η(21)

k } is precisely k̂ = 5.
Next, we analyze the detection performance for each posi-

tion of the change point. We repeat the above experiment 50
times to gather statistics and compute the success probabilities
for each source state |�k〉, k = 1, 2, . . . , 20 (we fix the over-
lap to be the same as before, i.e., c2 = 0.604). The conditional
success probabilities as a function of k are shown in Fig. 3(b).
The red squares represent the numerical results of a Monte
Carlo simulation of the experiment, and the actual experi-
mental data are shown as circles. Notice the good agreement
between both values that coincides within the experimental er-
ror bars. We find that most change positions (k = 3–19) have
constant success probabilities of approximately 0.58 without
large fluctuations. We also observe that the first two and the
last positions can be better detected than the rest (with a
success probability larger than 0.7). This is an expected result,
as change points occurring toward the beginning or end of the
sequence are more distinguishable from their neighbors than
those occurring at the bulk of the sequence. For comparison,
we also show the optimal (global) conditional probabilities
with purple triangles. One can also appreciate from Fig. 3(b)
that there is a small but systematic difference between the
local BI and the global protocol for most values of k. How-
ever, at the end points, this difference disappears and the BI
protocol performs almost optimally [35]. Furthermore, the
success probabilities produced by the classical learning agent
all surpass the BL method (the solid orange line) including the
errors. This advantage remains even for large n. More numer-
ical simulation results are given in the Supplemental Mate-
rial [30]. Here, the error bars are obtained by 100 Monte Carlo
simulations (we use the same number of simulations below).

Finally, to assess the overall performance of each protocol,
we conduct the aforementioned experiments and compute the
corresponding average success probability for all possible
change points and for each value of the overlap c2, that we
space in intervals of �c2 = 0.05. We show our results in
Fig. 4. The red dots and orange triangles are the experimental
results for the BI and BL strategies, respectively. The black
dashed line represents the optimal measurement, and the
purple solid line indicates the theoretical BL detection limit.
It is clear from the results that the improvement over the BL
strategy provided by a machine-learning-enhanced local pro-
cedure almost closes the gap with the optimal measurement
(which is extremely hard to implement, especially for large n).

Although the theoretical optimal detection strategy estab-
lishes an ultimate performance bound for the task of identi-
fying quantum change points, it had yet to be seen how close
a realistic experimental implementation could get. We have
demonstrated that BI is an easily implementable local strategy,
within the reach of current experimental techniques, that per-
forms quasioptimally. The identification of quantum change
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FIG. 4. Comparison of the BI, BL, and optimal measurement for
every overlap. The red dots are the experimental results obtained
using BI detection, and the solid light red line is the corresponding
simulation value. The orange triangles are the results obtained from
BL detection, and the solid purple line is its theoretical value.
The success probability for the optimal measurement is shown
as the dashed black line. Although the BI approach cannot surpass
the optimal (global) detection, it nearly covers the gap between the
BL and the optimal measurement.

points demonstrated in our experiment might be applicable in
many practical situations, such as identifying domain walls in
condensed-matter systems [36] and detecting the changes of
fluorescence polarization in some biological processes [37].
Our work can also be extended to high-dimensional quantum
states, mixed states, and multiple change points. In addition,
while our experimental setup uses a classical learning agent,
the BI approach is also implementable with quantum learning
algorithms [38]. This will be studied in the future.

Conclusion. In summary, we report a demonstration of the
quantum change point detection under the pseudo-on-demand
single-photon sequences and based on the Bayesian inference
strategy, which yields a higher success probability compared
to other local methods. The BI approach contains a learning
agent that can adjust the measurement basis at each step
using the Bayes rule. This agent gives a very significant
advantage that yields a performance very close to optimality
and also provides the capacity to correct mistakes caused by
experimental noise. The ability to accurately detect a quantum
change point has an immediate impact on many quantum
information tasks. Our learning method demonstrated that
the protocol can be efficiently implemented to identify the
position of a sudden change in the quantum settings where
a sequence of identical quantum states is required.
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APPENDIX A: THEORY AND CALCULATIONS

The source state prepared by Alice can be expressed as
|�k〉 = |H 〉⊗k−1|φ〉⊗n−k+1, where the k denotes the position
of the change point and n is the number of the photons
in the source state. Here, |φ〉 = c|H 〉 + s|V 〉 (s = √

1 − c2,
and H,V represent the horizontal and vertical polarization,
respectively). Without loss of generality, we choose c to be
real and positive.

Basic local. For a chain of photons for which the polariza-
tion state begins with |H 〉 and changes into the state |φ〉 at an
unknown point k, the simplest online strategy (namely, basic
local) is to measure each photon in the basis {|H 〉, |V 〉}. The
measurements are performed sequentially until the outcome
|φ〉 (i.e., get result “1”) is obtained for the first time at the rth
step. We are sure that the rth particle was in the state |φ〉,
which means that the change must have occurred at some
position k � r . Then, our best guess for the change point is
k = r . The success probability is p = 1 − c2 + c2

n
.

We want to note here that the measurement basis need
not be {|H 〉, |V 〉}. We also can set it as others, such as the
Helstrom basis {�0,�1} [32], which is given by the projectors
onto the positive and negative parts of the spectrum of the
Helstrom matrix � = |H 〉〈H | − |φ〉〈φ|. However, it can be
proven that the success probability of all the fixed-basis meth-
ods cannot surpass the learning-enhanced local strategy [39].

Bayesian inference. This online strategy can improve the
success probability by adjusting the measurement basis ac-
cording to the experimental result in each step. We build
a classical learning agent to guess where the change point
occurs. It starts with a uniform prior p(k) = 1

n
about the

hypothesis of the change point and updates the expectation
as new data are obtained. In order to update the information at
the sth step, the learning algorithm is designed as follows [8]:

(1) Find the probability p
(s)
H (or p

(s)
φ ) of the most

likely sequence that has the particle at position s being in
the state |H 〉 (or |φ〉), which in general depends on all
previous results r1, r2, . . . , rs−1 through the priors η

(s)
k ≡

p(k|r1, r2, . . . , rs−1):

p
(s)
H = max

k

{
η

(s)
k

}n

k=s+1,

p
(s)
φ = max

k

{
η

(s)
k

}s

k=1.

(2) Perform the Helstrom measurement [32] on the sth
photon. The measurement basis {�(s)

0 ,�
(s)
1 } is given by the

projectors onto the positive and negative parts of the spectrum
of the Helstrom matrix �(s) = p

(s)
H |H 〉〈H | − p

(s)
φ |φ〉〈φ|

(3) After the sth measurement has been performed, the
prior is updated in accordance with the measurement result,
using Bayes’ update rule,

η
(s+1)
k = p(rs |k)η(s)

k∑n
l=1 p(rs |l)η(s)

l

.

(4) Go back to the first procedure for the next measure-
ment.

After the last measurement, the agent updates the prior to
η

(n+1)
k and produces the guess k̂ that maximizes η

(n+1)
k for the

change point [k̂ = argmaxk (η(n+1)
k )]. If the guess is correct

(k̂ = k), mark this experiment as successful. Otherwise, mark
it as unsuccessful.

APPENDIX B: EXPERIMENTAL ERROR ANALYSIS

In our experiment, the experimental error is caused by
several aspects, such as the background noise, the systematic
error, and the statistical error. In Fig. 4, the success probabili-
ties at c2 = 0.010 for two strategies are PBI = 0.984 ± 0.002
and PBL = 0.982 ± 0.004, respectively.

Because of the imperfect experimental apparatuses, such
as the EOM and the PBS, we cannot obtain an extremely
high extinction ratio. In other words, we cannot create the
ideal orthogonal state (c2 = 0). In this case (c2 = 0.010), the
default state and the mutated state are nearly orthogonal, and
the statistical error is minimized since all the experimental
results in this case should give the correct guessing point.
Therefore, the distances between the experimental data and
the corresponding theoretical values (P th

BI = 0.995 and P th
BL =

0.991) are mainly caused by the background noise and the
systematic error. The fluctuation of success probabilities that
appears at other places is mainly caused by the statistical error.
Since we run 50 experiments for each change point at one
overlap, the statistical probability obtained by 50 experiments
[Fig. 3(b)] and 1000 experiments (Fig. 4) will have a statistical
fluctuation. We can find a relatively large fluctuation (a rela-
tively large error bar) in Fig. 3(b) because there are just 50
experiments for each change point. However, in Fig. 4, the
fluctuation (or error bars) becomes much smaller since they
are calculated from a total of 1000 experiments (50 times for
each change point and there are 20 possible change positions
for each overlap). Although the number of experiments for
each source state is not very large, the experimental results for
different k (or c2) matches the numerical results and shows the
characteristic of the relationship between success probability
and the change position (or overlap).
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