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Nonlinear circuit quantum electrodynamics based on the charge-qubit–resonator interface
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We theoretically explore the applications of a nonlinear circuit QED system, where a charge qubit is
inductively coupled to an LC resonator, in the photonic engineering and ultrastrong-coupling multiphoton
quantum optics. An arbitrary Fock-state pulsed maser, where the artificial qubit plays the gain-medium role, is
achieved via simply sweeping the gate-voltage bias. The resonantly pumped parametric qubit-resonator interface
leads to a squeezed intraresonator field, which is utilizable for the quantum-limited microwave amplification.
Moreover, upwards and downwards multiphoton quantum jumps may be observed in the driving-free steady-state
system.
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I. INTRODUCTION

Owing to properties of rapid operation, flexibility, and
scalability, superconducting quantum circuits have become
the most promising candidate for realizing quantum computa-
tion [1]. However, current practical execution is significantly
limited by their short energy-relaxation and dephasing times
(tens of microseconds [2]). Feedback control may persist the
Rabi oscillation of superconducting qubits infinitely [3] and
efficiently suppresses the low-frequency 1/f fluctuation in
circuits [4,5]. In addition, hybrid schemes composed of super-
conducting circuits and neutral atoms potentially implement
the quantum-state transfer between a rapid quantum processor
and long-term memory [6–10].

Superconducting circuits also provide a vivid platform for
exploring the fundamental principles of the matter-light in-
teraction, especially in the ultrastrong-coupling regime which
the conventional cavity quantum electrodynamics (QED) sys-
tem barely accesses [11–13]. Multiple unique features have
been recognized for the circuit QED [14]. Superconducting
microwave resonators possess a quality factor much larger
than high-finesse optical cavities [15], resulting in a longer
lifetime of intraresonator photons. The capacitive or inductive
coupling between artificial atoms and a resonator or between
two arbitrary superconducting qubits in a many-body system
may be designed deliberately and adjusted simply via tuning
external voltage, current, or flux biases [16], leading to flexi-
ble and engineerable networks [17]. Moreover, the nonlinear
dispersive artificial-atom–resonator interaction overcomes the
weak-response obstacle in the quantum measurement and
efficiently enhances the readout fidelity [18,19].

In this work, we theoretically investigate the potential
applications of a circuit-QED structure, where a charge qubit
nonlinearly interacts with a resonator, in aspects of preparing

the photon-number-state microwave light, squeezing radia-
tion, and quantum jump process. We find that an arbitrary
Fock-state intraresonator field may be produced with a high
fidelity by simply sweeping gate-charge and external flux
biases. The resonant two-photon qubit-resonator coupling
leads to the generation of squeezed radiation, which may be
applied to suppress the quantum fluctuation in measurement.
In addition, multiphoton quantum jumps are identified in the
steady-state system. This nonlinear circuit QED paves the way
for studying multiphoton quantum optics and quantum-state
engineering [20].

II. PHYSICAL MODEL

We consider the nonlinear interface between a Cooper-pair
box and an LC resonator as shown in Fig. 1(a). The box,
which is biased by a voltage source Vg via a gate capaci-
tor Cg = 300 aF, is connected to the Cooper-pair reservoir
through two quasi-identical Josephson junctions with self-
capacitances Cj = 50 aF and Josephson energy EJ

2h̄
= 2π ×

10 GHz. The tunneling rate of Cooper pairs between the
box and the reservoir is tuned by an external flux �ex [21].
The Cooper-pair box is characterized by the charge-number
operator N̂ and the net phase difference δ̂ across the Josephson
junctions with the commutator of [δ̂, N̂ ] = i. The microwave
LC resonator consists of an inductor L = 100 nH and a
capacitor C = 500 aF, resulting in the oscillation frequency
ω0 = (LC)−1/2 = 2π × 22.5 GHz. We use the operators φ̂

and Q̂ to denote respectively the magnetic flux through L

and the charge on C and have the commutator [φ̂, Q̂] = ih̄.
A portion of φ̂, measured by ξ � 1, threads through the
Cooper-pair-box loop, leading to the nonlinear inductive inter-
component coupling. The parameter ξ depends on the specific
constructions of the Cooper-pair-box loop and the inductor
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(a)

(b)

FIG. 1. (a) Schematics of nonlinear charge-qubit-resonator in-
terface. The charge qubit is composed of a pair of Josephson
junctions with the self-capacitance Cj . A voltage source Vg biases
the Cooper-pair box via a gate capacitor Cg . An external flux �ex

is applied to tune the Josephson energy EJ of Cooper pairs. The
LC resonator consists of an inductor L and a capacitor C. A flux
portion from L, i.e., ξ φ̂, threads the Cooper-pair-box loop, leading
to the nonlinear inductive qubit-resonator coupling. (b) Dependence
of energy spectrum Eα=1,...,5 on Ng with ξ = 1. Three anticrossings,

which are shown in circles and labeled by Ai=1,2,3, occur at N
(Ai=1,2,3 )
g .

The corresponding energy gaps are h̄�Ai=1,2,3 .

L as well as their relative position. In principle, ξ is tunable
between zero and 1 (see the Appendix). The circuit operates
at the temperature T = 20 mK with the thermal fluctuation
2π × 0.4 GHz.

The coherent Cooper-pair-box–resonator interplay is gov-
erned by the Hamiltonian

Ĥ = EC (N̂ − Ng )2 + h̄ω0â
†â

−EJ cos[θex + θL(â† + â)] cos δ̂, (1)

where we have defined the charging energy EC = (2e)2

2(Cg+2Cj ) �
20EJ , the gate-charge bias Ng = CgVg

(2e) , and the constant phase

0 � θex = π�ex

�0
� π

2 with the flux quantum �0 = πh̄
e

. We
have also used the quantization

φ̂ = �r (â† + â), (2a)

Q̂ = iQr (â† − â), (2b)

with the flux and charge constants

�r =
(

h̄

2

√
L

C

)1/2

, (3a)

Qr =
(

h̄

2

√
C

L

)1/2

. (3b)

â† and â are the creation and annihilation microwave-photon
operators. The phase θL is given by

θL = πξ�r/�0. (4)

The system operates in the charging limit (EC � EJ ).
We choose the basis {|nc〉 ⊗ |np〉, nc = 0, 1, 2, . . . ; np =
0, 1, 2, . . .}, where nc denotes the number of excess Cooper

pairs in the box while np corresponds to the intraresonator
photon number, to span the Hilbert space. The matrix ele-
ments of different operators are given by

N̂ =
∑
nc

nc|nc〉〈nc|, (5a)

cos δ̂ =
∑
nc

(|nc〉〈nc + 1| + |nc + 1〉〈nc|), (5b)

â =
∑
np

√
np|np − 1〉〈np|. (5c)

The αth eigenvalue Eα and eigenstate �α of the system’s
Hamiltonian Ĥ ,

Ĥ�α = Eα�α, (6)

can be derived via the diagonalization method. Figure 1(b)
displays Eα=1,...,5 vs Ng for different θex with ξ = 1. It is seen
that a number of energy-level avoided crossings occur at the
resonant multiphoton interaction. When θex = 0, a Cooper
pair tunneling into (out of) the box leads to the decrement
(increment) of the resonator field by 2k (k ∈ Z) photons.
For example, the anticrossing, which is labeled as A2 and
localized at N (A2 )

g = 1
2 − h̄ω0

EC
= 0.38, has a gap of h̄�A2 =

0.51EJ and occurs between two curves associated with |nc =
1〉 ⊗ |np = 0〉 and |nc = 0〉 ⊗ |np = 2〉 at Ng = 0. This is
because the operator

cos[θL(â† + â)] =
∑

j

θ
2j

L

(2j )!
(â† + â)2j (7)

only causes the even-photon transition of the resonator field.
In contrast, when θex = π

2 the photon number varies by
(2k + 1) for one unit change in the number of Cooper pairs
inside the box since the operator

sin[θL(â† + â)] =
∑

j

θ
2j+1
L

(2j + 1)!
(â† + â)2j+1 (8)

causes the odd-photon transition. For instance, the anticross-
ings A1 and A3 occur at N (A1 )

g = 1
2 − h̄ω0

2EC
= 0.44 and N (A3 )

g =
1
2 − 3h̄ω0

2EC
= 0.33 and have energy gaps of h̄�A1 = 0.57EJ

and h̄�A3 = 0.37EJ .
In the following, we focus on the charge qubit formed by

|nc = 0〉 and |nc = 1〉 states interacting with the resonator. Ng

is restricted within the range from zero to 0.5. The operators
N̂ and cos δ̂ may be rewritten as

N̂ = (1 + σ̂z)/2, (9a)

cos δ̂ = (σ̂ †
− + σ̂−)/2, (9b)

with the definitions

σ̂z = |nc = 1〉〈nc = 1| − |nc = 0〉〈nc = 0|, (10a)

σ̂− = |nc = 0〉〈nc = 1|. (10b)

The physical model described in Fig. 1(a) is similar to the
fluxonium-resonator system experimentally demonstrated in
Refs. [22,23]. Although in both cases the qubit is inductively
coupled to the resonator, they have distinct differences:
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(i) Unlike the fluxonium qubit, our superconducting qubit
operates in the charge limit.

(ii) In our system, the flux portion ξ φ̂ passes through
both the Cooper-pair-box loop and the inductor L, and the
qubit-resonator coupling strength depends on their geometric
position. In contrast, the strong coupling between fluxonium
and the resonator is implemented by employing the kinetic
inductance of several Josephson junctions which are shared
by both subcircuits [24].

(iii) The nonlinear fluxonium-resonator interaction com-
ponent is strongly suppressed in the highly anharmonic
regime. However, in our scheme the nonlinear coupling term
plays the main role.

Taking into consideration the dissipation effect, the whole
system is described by the following master equation [25]:

d

dt
ρ̂ = 1

ih̄
[Ĥ , ρ̂] + γ−D[σ̂−]ρ̂ + γϕ

2
D[σ̂z]ρ̂ + κD[â]ρ̂,

(11)
where ρ̂ is the density operator of the system and we have
defined the energy-relaxation and dephasing rates γ− = 2π ×
0.06 GHz and γϕ = 2π × 0.13 GHz of the charge qubit [4]
and the Lindblad superoperator

D[ô]ρ̂ = ôρ̂ô† − 1
2 ô†ôρ̂ − 1

2 ρ̂ô†ô. (12)

κ denotes the photon decay rate and relies on the resonator’s
quality factor Q, i.e., κ = ω0

Q
. Typically, Q varies from 103 to

107 [1], depending on the specific geometric structure of the
resonator, and we have κ 	 γ−, γϕ .

III. FOCK-STATE MASER

The interface between a two-level atom and a high-Q
cavity has been proven to be an ideal platform for realizing
the fragile Fock-state radiation via state-reduction [26] and
trapping-state [27,28] schemes. Recently, Fock states with
up to six photons have been also experimentally demon-
strated based on a superconducting quantum circuit where
a solid-state qubit acts as an intermediary between classical
microwave pulses and the quantum resonator field [29,30].
Those methods all rely on the single-photon (artificial)-atom–
resonator interaction. Here we present an alternative way to
produce the number-state microwave field by utilizing the
resonant multiphoton artificial-atom–resonator coupling.

As an example, we focus on the generation of an |np =
1, 2, 3〉 resonator field under the pulsed operation. The spe-
cific implementation is summarized as follows:

(i) The system is initially prepared in |nc = 1〉 ⊗ |np = 0〉
and the gate-charge bias Ng is set at zero. The charge qubit
barely interacts with the resonator due to the large detuning at
Ng = 0.

(ii) Then, Ng nonadiabatically goes up to N
(Ai=1,2,3 )
g , where

the avoided crossing Ai=1,2,3 occurs [see Fig. 1(b)], via tun-
ing the voltage source Vg . The anticrossing starts the reso-
nant single- or multiphoton (|nc = 1〉 ⊗ |np = 0〉 − |nc = 0〉
⊗ |np = 1, 2, 3〉) transition.

(iii) After a time duration τ , Ng is rapidly ramped back to
zero so as to turn off the qubit-resonator interaction. Indeed,
the system works as a pulsed maser, where the artificial qubit
plays the gain-medium role.

FIG. 2. Fock-state maser with |np = 1, 2, 3〉. Left: Charge-qubit
excitation Nc (solid) and intraresonator photon number Np (dashed
line) vs pulse length τ . Middle: Dependence of Mandel QM parame-
ter (solid line) on τ . The dashed line corresponds to QM = 0. Right:
Photon distribution Pnp

at τπ = π

�Ai=1,2,3
. For all curves, ξ = 1 and

Q = 5 × 103 which gives κ = 2π × 4.5 MHz.

Solving Eq. (11) gives us the charge-qubit excitation

Nc = Tr(ρ̂N̂ ), (13)

and the intraresonator photon number

Np = Tr(ρ̂â†â), (14)

at the end of ramp pulse. Figure 2 depicts the dependence of
Nc,p on the pulse length τ . It is seen that the Rabi oscillation
of the maser between |np = 0〉 and |np = 1, 2, 3〉 is strongly
damped because of large γ− and γϕ . The Mandel parameter

QM = Tr(ρ̂â†ââ†â) − N 2
p

Np

(15)

is commonly employed to measure the departure of a radia-
tion from the classical field. QM < 0 corresponds to a sub-
Poissonian (nonclassical) photon-number statistics and QM

arrives at −1 for Fock states. As illustrated in Fig. 2, QM

minimizes at the π -pulse length τπ = π
�Ai=1,2,3

. However, due

to the charge qubit’s relaxation, QM does not reach −1. Nev-
ertheless, at τπ the photon distribution Pnp

= 〈np|Trc(ρ̂ )|np〉
of the maser field, where Trc denotes the trace over the charge-
qubit coordinates, is maximized at the corresponding Fock
state with a probability greater than 90%. Thus, the production
of a Fock-state pulsed maser requires the ramp-pulse length
τ = τπ . The lifetime of the Fock-state field is limited by κ−1.
The approach used here to produce multiphoton Fock-state
radiation is applicable to arbitrary photon numbers up to
nmax

p = EC

h̄ω0
� 8, higher than which the populations in |nc =

1〉 ⊗ |np 
= 0〉 rise and the fidelity of Fock-state generation
degrades.

IV. RADIATION SQUEEZING

The nonlinear qubit-resonator interface may be also ap-
plied to generate the squeezed resonator field. In general, the
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two-photon parametric process has been envisaged as a source
of squeezing the radiation, for which we set θex = 0. Fur-
thermore in the weak-coupling limit (θL ∼ 0 with ξ∼0), we
approximate cos[θL(â† + â)] with the Taylor-series expansion
of θL up to second order,

cos[θL(â† + â)] � 1 − θ2
L

2
(â† + â)2. (16)

Thus, the Hamiltonian is simplified as Ĥ � Ĥc + Ĥp with the
free charge-qubit Hamiltonian

Ĥc = EC

(
1

2
− Ng

)
σ̂z − EJ

2
(σ̂ †

− + σ̂−), (17)

and the Hamiltonian associated with the resonator field,

Ĥp = h̄ω0â
†â + θ2

LEJ

4
(â† + â)2(σ̂ †

− + σ̂−). (18)

To resonantly drive the two-photon transition, we sweep Ng

periodically around N (A2 )
g with an amplitude �Ng = h̄�

2EC

(� 	 ω0) and a rate 2ω0. Hence, we have EC ( 1
2 − Ng ) =

2h̄ω0 + h̄� cos 2ω0t . It is unpractical to numerically simulate
the time evolution of the whole system directly based on the
master equation (11). As we see below, in the adiabatic limit
the charge-qubit and resonator-field dynamics can be approx-
imately treated separately, much simplifying the calculation.

Due to κ 	 γ−, γϕ , the charge qubit arrives at the quasis-
teady state much faster than the resonator field. In addition,
the reaction of the qubit-resonator coupling on the charge-
qubit dynamics is weak because of θ2

L ∼ 0. Thus, in the
adiabatic approximation [31] we consider the dissipative time
evolution of the charge qubit separately, which is governed by
the following master equation:

d

dt
ρ̂ (c) = 1

ih̄
[Ĥc, ρ̂

(c)] + γ−D[σ̂−]ρ̂ (c) + γϕ

2
D[σ̂z]ρ̂

(c),

(19)
where ρ̂ (c) is the charge-qubit density matrix operator. Equa-
tion (19) gives us

d

dt
ρ

(c)
11 = −γ−ρ

(c)
11 + i

EJ

2h̄

[(
ρ

(c)
10

)∗ − ρ
(c)
10

]
, (20a)

d

dt
ρ

(c)
10 =

(
−γ−

2
− γϕ − i2ω0 − i� cos 2ω0t

)
ρ

(c)
10

+ i
EJ

2h̄

(
1 − 2ρ

(c)
11

)
, (20b)

with ρ (c)
uv = 〈nc = u|ρ̂ (c)|nc = v〉 (u, v = 0, 1). Substituting

ρ
(c)
10 = ρ̃

(c)
10 e

−i2ω0t−i �
2ω0

sin 2ω0t into the above two equations and
applying the rotating-wave approximation (RWA), we arrive
at

d

dt
ρ

(c)
11 � −γ−ρ

(c)
11 − i

�

2ω0

EJ

4h̄

[(
ρ̃

(c)
10

)∗ − ρ̃
(c)
10

]
, (21a)

d

dt
ρ̃

(c)
10 �

(
−γ−

2
− γϕ

)
ρ̃

(c)
10 − i

�

2ω0

EJ

4h̄

(
1 − 2ρ

(c)
11

)
. (21b)

The steady-state (ss) solutions are derived as

ρ
(c,ss)
11 = 2λ, (22a)

ρ̃
(c,ss)
10 = −iλ, (22b)

with the parameter

λ = γ−

(
�

2ω0

EJ

4h̄

)/[
γ−

(
γ−
2

+ γϕ

)
+ 4

(
�

2ω0

EJ

4h̄

)2
]
.

(23)
In the limit of � 	 (2ω0), we have λ 	 1 and the charge
qubit is mostly populated in the ground state |nc = 0〉.

Since the charge qubit is in the quasisteady state, we

replace σ̂− in Ĥp by ρ̃
(c,ss)
10 e

−i2ω0t−i �
2ω0

sin 2ω0t . Using the master
equation for the resonator-field density matrix operator ρ̂ (p),

d

dt
ρ̂ (p) = 1

ih̄
[Ĥp, ρ̂ (p)] + κD[â]ρ̂ (p), (24)

one obtains

d

dt
A =

(
− κ

2
− iω0

)
A + iλθ2

L

EJ

h̄
(A∗ + A) sin 2ω0t,

(25a)

d

dt
B =

(
− κ − i2ω0 + i2λθ2

L

EJ

h̄
sin 2ω0t

)
B

+iλθ2
L

EJ

h̄
(2Np + 1) sin 2ω0t, (25b)

d

dt
Np = −κNp + iλθ2

L

EJ

h̄
(B∗ − B) sin 2ω0t . (25c)

Here we have defined A = Tr(ρ̂ (p)â) and B = Tr(ρ̂ (p)ââ)
and used Np = Tr(ρ̂ (p)â†â). Substituting A = Ãe−iω0t and

B = B̃e
−i2ω0t−i

λθ2
L

EJ

h̄ω0
cos 2ω0t into the above equations and ap-

plying the RWA, we arrive at

d

dt
Ã � −κ

2
Ã − λθ2

L

2

EJ

h̄
Ã∗, (26a)

d

dt
B̃ � −κB̃ − λθ2

L

2

EJ

h̄
(2Np + 1),

d

dt
Np � −κNp − λθ2

L

2

EJ

h̄
(B̃∗ + B̃). (26b)

The steady-state solutions are then given by

Ã(ss) = 0, (27a)

B̃(ss) = −μ

2

1

1 − μ2
, (27b)

N (ss)
p = 1

2

μ2

1 − μ2
, (27c)

with the parameter

μ = λθ2
LEJ

h̄κ
. (28)

Despite λ 	 1 and θL ∼ 0, reducing κ may enhance μ. As
μ approaches unity, the intraresonator photon number N (ss)

p

is strongly increased. However, the charge-qubit picture be-
comes invalid when N (ss)

p > nmax
p since the number of excess

Cooper pairs in the box exceeds unity. Thus, the maximum of

μ is given by μmax =
√

2nmax
p

1+2nmax
p

� 0.97, leading to the required

κ=2π×0.1 MHz with the achievable quality factor Q ∼ 105.
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(a)

(b)

FIG. 3. (a) Steady-state N (ss )
c,p as a function of Ng and θex .

(b) Trajectory of photon-number expectation value Np with Ng = 1
2

and θex = 0. The system is initially prepared in |nc = 0〉 ⊗ |np = 0〉.
All system parameters are same as in Fig. 2.

We then define two quadrature operators

X̂1 = 1

2
(âeiω0t + â†e−iω0t ), (29a)

X̂2 = 1

2i
(âeiω0t − â†e−iω0t ), (29b)

for the resonator field. In the steady state, the variances

�X
(ss)
i=1,2 =

√〈
X̂2

i

〉(ss) − (〈X̂i〉(ss) )2 (30)

are derived as �X
(ss)
1 � 1

2
√

1+u
and �X

(ss)
2 � 1

2
√

1−u
. The

best squeezing is achieved when μ = μmax, i.e., �X
(ss)
1 �

1
2
√

1+μmax = 0.36. Further reducing �X
(ss)
1 requires a larger

nmax
p (i.e., a larger EC and a smaller ω0) and a smaller κ (i.e.,

a higher Q).

V. MULTIPHOTON QUANTUM JUMPS

The nonlinear interacting system may arrive at a nontrivial
steady state (N (ss)

c,p 
= 0) even without an external driving.
Setting d

dt
ρ̂ = 0 in Eq. (11), one can derive the steady-state

density matrix, i.e., ρ̂(t → ∞), by employing the diagonal-
ization approach [32]. The results are shown in Fig. 3(a). It
is seen that both N (ss)

c and N (ss)
p are maximized at the sweet

spot Ng = 0.5 because the Cooper-pair tunneling resonantly
pumps the qubit from |0〉 to |1〉. In addition, due to EJ ∼
h̄ω0, the qubit-resonator interaction reaches the ultrastrong-
coupling regime and the counter-rotating terms also play an
important role in the intraresonator power enhancement.

We further employ the Monte Carlo wave-function method
[33] to look into more detail about the dissipative artificial-
atom–photon interaction in the steady state. Figure 3(b) illus-
trates a quantum trajectory corresponding to the time evolu-
tion of the photon-number expectation value Np at Ng = 1

2
and θex = 0. As one can see, multiple quantum jumps are
presented and most of them are from the charge-qubit sponta-
neous decaying because of κ 	 γ−, γϕ . Such quantum-jump
dynamics have been experimentally observed in macroscopic
superconducting systems [34–36].

C L 

  

~ 
 

 

C L 

 

Circulator RF amp 
Mixer 

 

Readout resonator 

low-Q 

FIG. 4. QND measurement. The low-Q readout resonator, whose
inductance and capacitance are equal to L and C, is weakly coupled
with the LC resonator in the QED system via the coupling capacitors
Cc. The inter-resonator coupling strength g is proportional to Cc,
i.e., g ∝ (Cc/C), and the readout resonator barely affects the QED
resonator in the limit Cc 	 C. The loss rate κ̃ of the readout
resonator is much larger than κ and γ−. The quantum trajectory Np

is mapped onto the intraresonator photon number Ñp of the readout
resonator, Ñp ≈ (g/κ̃ )2Np . Ñp is measured via an output capacitor
Cout, a circulator, a radio-frequency amplifier, and mixing with a local
oscillator at ωLO [14]. The circulator prevents leakage of thermal
radiation into the resonator.

At any time, the system is in a superposition state com-
pletely composed of odd or even Fock states. After each
photonic jump associated with the jump operator

√
κâ, odd

(even) Fock states transfer to lower even (odd) Fock states.
Figure 3(b) clearly shows a number of sharp jumps with the
photon-number differences of about one and two (or more
than two). Some of them are induced by

√
κâ [e.g., the jumps

JA,B in Fig. 3(b)] while others are caused by the qubit decay
associated with the jump operator

√
γ−σ̂− [e.g., the jump JC

in Fig. 3(b)]. We consider the trajectory period from JA to JC .
Before JA occurs, the system is mainly in the vacuum |np =
0〉 state with the secondary-weighted component of |np =
2〉. Subsequently, the jump JA collapses the system’s wave
function onto |np = 1〉. Similarly, at JB the system collapses
onto |nc = 0〉 ⊗ |np = 1〉. Afterwards, the system evolves to
a superposition state with a component of |nc = 1〉 ⊗ |np =
3〉 via the counter-rotating parametric process (i.e., σ̂

†
−â†â†).

Then, the jump operator
√

γ−σ− collapses the system’s wave
function onto |nc = 0〉 ⊗ |np = 3〉 at JC .

Observing quantum jumps of Np relies on the quantum
nondemolition (QND) measurement at a rate much faster than
κ and γ− [35]. Such a measurement may be performed, as an
example, by weakly coupling the LC resonator with another
resonator (called the readout resonator) whose inductance and
capacitance are equal to L and C (see Fig. 4). The inter-
resonator coupling strength g is small enough that the readout
resonator barely affects the QED system. In addition, the Q

factor of the readout resonator is very low, leading to a loss
rate κ̃ much larger than κ and γ−. Thus, the readout-resonator
field always follows the one in the QED circuit adiabatically.
The intraresonator photon number Ñp of the readout res-
onator approximates Ñp ≈ (g/κ̃ )2Np. Consequently, quan-
tum jumps can be observed by measuring Ñp.

VI. CONCLUSION

We have studied a nonlinear circuit-QED scheme where a
charge qubit is inductively coupled to a microwave resonator
via multiphoton processes. Such an architecture can produce
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FIG. 5. Nonlinear inductive qubit-resonator coupling. The res-
onator’s inductor L is in the single-layer vacuum-core solenoid
structure. The Cooper-pair-box loop of the charge qubit presents two
circles separated far enough from each other. The external flux �ex

goes through one circle while the flux portion ξ φ̂ from L threads the
other circle.

arbitrary photon-number states of a resonator field with a
high fidelity, which is of particular importance for linear
photonic quantum computing [37,38]. The squeezed radiation
may be generated by the parametric qubit-resonator interface,
potentially applicable to the quantum-limited microwave am-
plifier [39]. This platform can also be employed to investigate
fundamental principles of multiphoton light-matter interac-
tion in the ultrastrong-coupling regime [40], where, as we
have illustrated, the counter-rotating terms and qubit decay
jointly lead to upwards multiphoton quantum jumps of the res-
onator field. The rapid development of cryogenic electronics
may sustain much longer lifetimes of superconducting circuits
in the future, enabling more potential applications of circuit
QED in quantum information processing and fundamental
new physics.
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APPENDIX: PARAMETER ξ

The physical scheme described in Fig. 1(a) has various
implementations in experiment. Here we show in principle
that the parameter ξ , which measures the qubit-resonator
coupling, may be tuned between zero and 1.

We take the single-layer vacuum-core solenoid as an exam-
ple to form the resonator’s inductor L (see Fig. 5). Based on
the Wheeler formula for the inductance calculation [41,42],
the specific structure of L can be chosen as the coil diameter
of 50 μm, the wire diameter of 5 μm, the winding pitch of
6 μm, and the number of turns, 250, resulting in L = 100 nH.
According to [43], the stray capacitance of L is estimated to
be less than 30 aF, much smaller than the resonator’s capacitor
C. This tiny parasitic capacitance is connected in parallel with
L in the equivalent circuit model [44] and its effect on the
circuit is negligible. We should note that the design of L has
other options, such as the planar spiral structure [45].

As shown in Fig. 5, the Cooper-pair-box loop consists of
two circles, C1 and C2, which are far apart from each other. The
external flux �ex mainly passes through C1 while the flux por-
tion ξ φ̂ from L primarily threads the circle C2. The inductor
L is aligned perpendicular to the plane of C2. The area of C2 is
similar to the coil area of L. The parameter ξ can be tuned by
adjusting the relative position between the Cooper-pair-box
loop and L along the vertical direction. When L completely
penetrates the circle C2, we obtain the maximum ξ = 1. As L

moves away from C2 vertically, ξ goes down.
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