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Topological phase transition in a stretchable photonic crystal
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We design a setup to realize tunable topological phases in elastic photonic crystals. Using the Su-Schrieffer-
Heeger (SSH) model as a canonical example, we show how a system can be continuously tuned across its
topological phase transition by stretching. We examine the setup both analytically and numerically, showing how
the phase transition point may be identified from the behavior of bulk modes. Our design principle is generic, as
it can be applied to a variety of systems, and enables multiple new theoretical predictions to be experimentally
tested by continuously strain-tuning system properties, such as the shape of the band structure and the topological
invariant. In addition, it allows for cost-effective device fabrication, since a wide range of parameter space can
be accessed on a single photonic crystal chip.

DOI: 10.1103/PhysRevA.98.033830

I. INTRODUCTION

While a topological phase of matter is by its nature robust
to small changes in system parameters, reaching a parameter
regime in which a topological ground state forms can be a very
challenging task experimentally. The properties of a material
are highly constrained by its crystal structure and the process
used to fabricate it. There are only few examples in which
multiple topological invariants can be obtained in the same
sample, for instance, by continuously changing the magnetic
field in the quantum Hall effect [1]. In most other cases,
particularly when changing spin-orbit coupling or the size of
the band gap is required, selecting favorable parameters usu-
ally involves searching for many different material candidates
[2,3].

To overcome these intrinsic constraints, one can instead
design a system which simulates the behavior of a topological
phase with a given set of parameters. There is a growing
literature on such topological simulators, setups which mimic
the behavior of a topological phase while allowing for a
wide range of possible parameter values. They have been
demonstrated in a variety of platforms, such as ultracold atoms
[4–8], driven quantum impurities [9], electrical [10] or su-
perconducting circuits [11], beam splitters [12] or microwave
networks [13], but also mechanical [14], acoustic [15,16], and
optical metamaterials [17,18]. In some cases, the first exper-
imental observation of new types of topological phases was
made using simulators. These include higher-order topologi-
cal insulators [10,19], certain types of topological semimetals
[11], Hopf insulators [9], or so-called anomalous Floquet
topological insulators [20,21].

Beyond the advantage of reaching previously unaccessible
parameter regimes, some quantum simulators also allow for
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system properties to be continuously tuned. This can be
achieved either by externally applied electric or magnetic
fields [22,23], or by considering the intrinsic deformations of
the metamaterial [24–29]. For instance, it was recently pro-
posed that applying an electric field can change the refractive
index of a photonic crystal, thereby switching between two
topologically distinct phases [30]. Similarly, by using flexible
components, different topological phases may be reached by
applying pressure to the system [28,31]. The ability to dy-
namically change system parameters leads not only to reduced
fabrication costs, since multiple regimes of operation can be
reached in the same sample, but also facilitates the study of
certain peculiar features of topological phases. For instance,
the study of disorder on topological phase transitions would
require fine-tuning the system to its disorder-dependent criti-
cal point [32], which is more easily achieved in a continuously
tunable system.

In this work, we consider a design for a system in which
parameters can take a large range of possible values but can
also be actively and continuously tuned in the same sample.
We focus on a photonic crystal, realized as an array of
coupled optical waveguides, which simulates the dynamics
of electronic wave functions in a tight-binding model [33].
Each optical waveguide represents a site of the tight-binding
model, while the distance between adjacent waveguides sets
the strength of the hopping processes. Our main insight is that
fabricating the system using a combination of both rigid and
elastic materials allows one to selectively tune desired system
properties. Using the Su-Schrieffer-Heeger (SSH) model [34]
as a canonical example of a topological phase, we show how
our design allows continuous tuning across the topological
phase transition. We demonstrate how the precise position of
the phase transition in parameter space may be identified by
examining the behavior of bulk states.

The rest of our work is organized as follows. In Sec. II we
briefly review the SSH model, its topological invariant, and
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FIG. 1. (a) The band structure of the SSH chain Eq. (2) using t =
1 is plotted for δ = 0 (solid lines) and for |δ| = 0.5 (dashed lines).
The band structure is symmetric with respect to δ → −δ. (b) The
contour of the �d vector is plotted in the dx, dy plane for δ = 0.5, 0,
and −0.5, using again t = 1. Darker shades indicate larger values of
δ, and the arrows indicate the winding direction as k is increased.
When the contour encircles the origin, the winding number Eq. (4) is
nonzero, signaling the presence of zero-energy end states.

protected zero-energy end states. We show that the topological
phase transition in this model can be identified as a point
where bulk modes have a maximal velocity. In Sec. III we
introduce a realistic photonic crystal design that is achievable
with current experimental techniques. We numerically ana-
lyze the expected experimental signatures and show that the
system can be tuned across a topological phase transition by
stretching. Finally, in Sec. IV we conclude by discussing how
our design strategy may be used in other topological phases
and comment on which properties of topological models may
be probed in a continuously tunable system.

II. SSH MODEL

One of the earliest models of a topological phase is the
SSH model [34], originally introduced to describe polyacety-
lene. The model consists of one species of spinless fermions
hopping on a one-dimensional lattice with staggered nearest-
neighbor hopping amplitudes. Using h̄ = 1 and a lattice spac-
ing a = 1 throughout the following, the Hamiltonian is

H =
∑

i

t (1 − δ)c†i,Aci,B + t (1 + δ)c†i,Bci+1,A + H.c., (1)

where c† and c are fermion creation and annihilation opera-
tors, A and B label the sublattices of the chain, and i indexes
the unit cells. The average hopping amplitude is t , while
δ ∈ [−1, 1] sets the strength and sign of the dimerization. In
momentum space, the Hamiltonian reads

H(k) = [t (1 − δ) + t (1 + δ) cos(k)]σx + t (1 + δ) sin(k)σy,

(2)

with σi Pauli matrices acting on the sublattice degree of
freedom.

The bulk spectrum is gapped for δ �= 0 [see Fig. 1(a)],
showing different topological phases depending on its sign.
In a long but finite-sized system, there are zero-energy end
modes whenever δ > 0, such that the chain is terminated
with a weak hopping, whereas no end modes appear for
δ < 0, marking a topologically trivial phase. The presence
and robustness of the boundary modes can be inferred from
the topology of the bulk states through a topological invariant.

The latter is enabled by the presence of sublattice symmetry:
there are only two Pauli matrices in Eq. (2), such that the
Hamiltonian anticommutes with σz. In this basis, H(k) takes
a block off-diagonal from

H(k) =
(

0 q(k)
q†(k) 0

)
, (3)

with q(k) = t (1 − δ) + t (1 + δ)e−ik . The bulk topological
invariant is then given by the winding number of the off-
diagonal block [35]:

ν = 1

2πi

∫ π

−π

dk
d

dk
ln q(k), (4)

where the integral runs over the entire one-dimensional Bril-
louin zone. In a two-band model, the topological invariant
Eq. (4) can be visualized graphically by plotting the winding
of the vector �d (k) = [dx (k), dy (k)], where q(k) = dx (k) −
idy (k). Whenever �d (k) encircles the origin of the complex
plane as k is advanced from −π to π [see Fig. 1(b)], the
integer ν is nonzero and topologically protected zero modes
appear at the ends of a finite chain. As long as the system
shows sublattice symmetry, the Hamiltonian can always be
made off-diagonal as in Eq. (3) and q(k) is well defined. The
winding number is left invariant by variations of the system
parameters which do not close the bulk gap, since ν can only
change if q = 0 for some value of momentum, which implies
a gapless system, H = 0.

In a generic SSH chain, which may include more than
two bands as well as longer-range hopping processes, a
topological phase transition should be identified by using the
topological invariant, Eq. (4). The latter may be determined
experimentally from the long-time dynamics of bulk modes
by computing the so-called mean chiral displacement [36,37],
as we discuss in the next section. However, preluding on the
numerical results on the topological phase transition in the
stretchable photonic system, we can identify in the nearest-
neighbor SSH model Eq. (2) a different indicator of the phase
transition. As we will show in the following, the change of the
winding number occurs at a point at which bulk modes have
maximal velocity. Without loss of generality, we set t = 1 in
the following and determine the eigenvalues of Eq. (2),

E±(δ, k) = ±
√

2
√

(1 + δ2) + (1 − δ2) cos(k), (5)

as well as the associated velocities of the states,

v±(δ, k) = ∂E±(δ, k)

∂k
= (δ2 − 1) sin(k)

E±(δ, k)
. (6)

Due to the simple form of the above equations it is possible
to analytically determine the maximal velocity as a function of
dimerization. We find that the largest velocity has a magnitude
vmax = 1 − |δ| and occurs at momenta

kmax = ±arccos

( |δ| − 1

|δ| + 1

)
. (7)

As expected from the band structure of Fig. 1(a), the
maximal velocity occurs at the topological phase transition,
corresponding to the linearly dispersing states at the gap
closing point, E = 0 and k = π . As |δ| is increased away
from 0, the bands become progressively flatter such that the
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velocity decreases, eventually vanishing in the fully dimerized
flatband limit, δ = ±1. While the maximum velocity of all
states is achieved at specific momenta kmax in Eq. (7), the bulk
state velocity Eq. (6) is a monotonically decreasing function
of |δ| for any value of momentum. Therefore, in this simple
model the position of the phase transition may be determined
by examining how a reference bulk state spreads as a function
of time, and identifying the point at which this spread is
maximal.

III. PHOTONIC CRYSTAL

As mentioned in the Introduction, photonic crystals offer
a versatile platform for the simulation of a variety of topo-
logical phases [17,18,20,21,38,39]. This is due to the fact
that the equation describing light propagation in an array of
coupled waveguides, the paraxial Helmholtz equation, has a
mathematical structure identical to that of the Schrödinger
equation [33]. The refractive index of the photonic crystal
plays the role of the quantum-mechanical potential energy,
while the direction of light propagation along the waveguides
plays the role of time. When the waveguide diameter is
comparable to the light wavelength such that it traps a single
propagating mode, then the waveguide acts as a single site
in an effective tight-binding model. The strength of hopping
processes between neighboring sites is determined by the
overlap between the evanescent tails of modes in neighboring
waveguides, which decays exponentially with their separa-
tion.

The mapping between the Helmholtz and Schrödinger
equations offers several advantages. First, it allows one to
directly visualize the simulated temporal evolution of wave
packets by monitoring the spatial propagation of light. This
avoids the inherent difficulty of resolving time on very short
scales in condensed-matter systems. Second, it allows one to
freely select the magnitude of hopping processes between any
neighboring sites, which only requires adjusting the distance
between waveguides. Thanks to these advantages, the SSH
model was successfully simulated in waveguide arrays with
an alternating spacing [40,41] which model the dimerized
hopping of Eq. (1).

However, if the desired potential is made by carving the
refractive index in a rigid propagation medium (for instance,
using a laser), the topological phase of the structure becomes
fixed. Various different devices then have to be fabricated for
demonstrating and analyzing different parameter regimes. In
Ref. [40] for instance, an SSH model with different values of
the dimerization δ was investigated by building nine different
photonic crystals with different waveguide spacings. If fine-
tuned system parameters are required, for instance, to produce
a system precisely at a topological phase transition, then
imperfections in the fabrication process may mean that an
even larger number of samples must be produced.

In order to achieve photonic crystals allowing one to tune
only the parameters of interest, we propose to combine rigid
and elastic materials. For instance, if a one-dimensional ar-
ray of rigid waveguides was placed on an elastic substrate,
then stretching the substrate would continuously change the
distance between neighboring waveguides. On the level of
the effective tight-binding model, this would imply an ap-
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FIG. 2. (a) Front and perspective view of the stretchable photonic
crystal. Pairs of waveguides arranged to form a Y-shaped structure
are placed on an elastic substrate, allowing one to tune the intercell
hopping (w) while keeping the intracell hopping (v) fixed. (b) Field
confinement in the plane perpendicular to the propagation direction
at two different positions along the waveguides as calculated nu-
merically by FDTD simulations (see text). Light is confined within
one of the two Y arms, without leaking to the supporting post. The
dimensions of the Y structure are indicated with arrows. Here as well
as in Figs. 3 and 4, the intensity is divided by its maximum such that
the color scale is dimensionless and runs from 0 to 1.

proximately uniform decrease in the value of all hopping
amplitudes. While this might be useful in some applications,
it would not help in the SSH chain. Uniform stretching
would decrease the value of t in Eq. (1) without changing δ,
merely leading to a decreased bandwidth without changing the
winding number.

To design an SSH chain which allows one to change the
parameter responsible for the topological phase transition δ,
we propose a system in which the distance between neigh-
boring waveguides can be tuned selectively. To this end, we
consider that pairs of neighboring waveguides are attached to
each other using rigid materials, forming a Y-shaped structure
as shown in Fig. 2. As such, stretching the substrate will have
a negligible effect on the hopping between connected sites
(v) but will lead to a large increase in the separation between
disconnected waveguides (w).

The Y-shaped pair of waveguides of Fig. 2 defines a unit
cell of the SSH model, so building a finite-sized chain requires
placing multiple equally spaced Y’s on an elastic substrate,
such as polydimethylsiloxane. The latter material has been
shown to sustain up to 40% strain for over 3000 cycles
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FIG. 3. (Top) Strength of the nearest-neighbor hopping J as
a function of waveguide separation. The strengths of intracell (v,
squares) and intercell (w, circles) hopping are different, reflecting
the different media between the waveguides. Dashed lines show the
value of v used in subsequent simulations. (Bottom) Oscillation of
the light field in an isolated pair of waveguides using a separation of
75 nm. The light is confined to each of the waveguides forming the Y
structure and jumps to the neighboring waveguide periodically. The
frequency of jumps is used to extract the hopping strength.

without measurable degradations in its optical performance
[42]. While in principle the only requirement for a tunable
dimerization is to have pairs of connected sites, we have
chosen a Y-shaped geometry for two reasons. First, the two
waveguides of the structure (the arms of the Y) are isolated
from each other by an ultrathin wall (50 nm) and also from
the substrate through the supporting post, which has a lower
refractive index n. For instance, one could use Al2O3 for the
Y arms (n = 1.76) and SiO2 (n = 1.45) for the Y post. Both
the thin connection between the arms and the lower refractive
index of the post mean that propagating light will be confined
to only one of the waveguides and will not leak to other parts
of the structure or to the substrate [see Fig. 2(b)]. As such,
the Y forms a well-defined pair of sites in the SSH chain.
The second reason for this geometry is that it allows one to
reach larger values of dimerization. Each Y only touches the
substrate on a narrow region, being glued to it thanks to van
der Waals forces, such that it remains in place even as the
system is stretched. This narrow region leaves a larger portion
of free substrate between neighboring unit cells so the system
can be stretched more easily. Also, since the post is narrow,
there is a reduced chance it will detach from the substrate upon
stretching.

We test our elastic photonic crystal design by performing
finite-difference time domain (FDTD) numerical simulations
using the MEEP software package [43,44]. We use a uniform

FIG. 4. Light intensity profile for the edge (top) and bulk (bot-
tom) modes in the topologically nontrivial phase, corresponding
to a separation of 25 nm between waveguides of neighboring Y
structures. The waveguides are arranged horizontally, such that in the
simulated SSH model the vertical direction represents space while
the horizontal direction represents time. Most of the light remains
confined to the edge, signaling the presence of a topologically
protected boundary state, while it disperses in the bulk owing to the
finite velocity of bulk states.

Yee grid with the size of 25 nm3 and define a photonic crystal
of 40 μm in the longitudinal direction. Each Y structure
has waveguides of size 300 × 300 nm2, connected by a 50-
nm-thick wall. The width and height of the supporting post
are 225 and 275 nm, respectively. The refractive indexes are
the same as before, n = 1.76 for the arms and n = 1.45 for
the post, corresponding to Al2O3 and SiO2, respectively.
In the numerical simulations, we compute the propagation of
light (wavelength λ = 700 nm) after it is injected in an initial
waveguide. In the longitudinal direction, the waveguides are
terminated by a perfectly matched layer boundary condition
such that the light is absorbed at the end of the system and
there is no backreflection.

As a first step, we determine the strength of the hopping
processes, both within a unit cell (v) as well as between cells
(w), as a function of waveguide separation. This is done by
simulating only a pair of waveguides and counting how many
times light bounces back and forth while propagating for
25 μm along the waveguides. Results are plotted in Fig. 3,
showing the expected exponential decay. Notice how the
two hopping strengths are different for the same separation,
reflecting the different media between waveguides. The in-
tercell hopping w occurs through air, while the intracell v

also occurs through the rigid contact between waveguides.
Having established the range of parameters available in the
simulation, we fix a value v � 2.11/(25 μm), corresponding
to a separation of 225 nm between the Y arms. In a system
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(a) (b)

FIG. 5. (a) Contours of the �d vector as momentum is advanced
from −π to π , computed using the numerically extracted values of
intracell and intercell hopping, v and w. Each contour winds in an
anticlockwise fashion as momentum is increased. Lighter shades and
smaller radii correspond to larger separation between the waveguides
of adjacent Y structures (from 25 to 400 nm in steps of 25 nm).
(b) Mean chiral displacement computed as in Eq. (8), plotted as a
function of the separation between unit cells. The dashed black line
shows the result expected in the infinite time limit. As the photonic
crystal is stretched, a topological phase transition to a trivial phase
takes place. The latter occurs when the contours of panel (a) no
longer encircle the origin and is marked by a sharp drop in the mean
chiral displacement of panel (b), from values close to 0.5 to values
close to 0.

of 19 unit cells, we compute light propagation for different
values of w, ranging from a separation of 25 nm to 400 nm in
steps of 25 nm (the Yee grid size).

Figure 4 shows simulation results for a separation of 25 nm
between waveguides belonging to neighboring Y structures,
such that the system is in a topologically nontrivial phase.
When the initial light is sent through only the bottom-most
waveguide, most of it remains confined to the boundary of the
system, reflecting the presence of a topologically nontrivial
end mode (see Appendix). In contrast, starting with light in
one of the middle waveguides, we observe that it spreads
throughout the entire system, since bulk modes have a finite
velocity. In both cases, the pattern of light propagation simu-
lates the time evolution of an initial wave packet localized on
either a bulk site or an end site of the SSH chain.

As the photonic crystal is progressively stretched, the
simulated SSH chain undergoes a topological phase transition.
The latter is signaled by a closing and reopening of the
bulk gap and is accompanied by a change in the winding
number, Eq. (4). For the values of the intercell hopping in the
simulated experiment, we plot in Fig. 5(a) the contour of the
�d vector computed from the off-diagonal Hamiltonian block
q(k) [Eq. (3)]. Notice that unlike in Fig. 1(b), the contours
are now concentric since the distance between the Y arms
remains constant throughout the stretching process. Neverthe-
less, a change in the winding number is clearly visible and
occurs at the point where the hopping between waveguides of
neighboring Y’s becomes smaller than the hopping within a
unit cell.

As mentioned in the previous section, the topological in-
variant can be obtained directly from the light intensity profile
by computing the mean chiral displacement [36,37]. Starting
from an initial wave packet |ψ〉 localized on a single site in
the middle of the SSH chain, which we label as belonging

FIG. 6. Mean-squared displacement d computed as in Eq. (9)
and plotted as a function of the distance between unit cells. The value
of d has a maximum at the topological phase transition, since at that
point the bulk mode velocity is maximal.

to the zeroth unit cell, the mean chiral displacement as a
function of time reads C(t ) = 〈ψ (t )|�m|ψ (t )〉. Here, m =
diag(. . . ,−2,−2,−1,−1, 0, 0, 1, 1, 2, 2, . . .) is an operator
labeling the unit cell of each site in the tight-binding model,
whereas � = σz ⊕ σz ⊕ · · · ⊕ σz is the chiral symmetry op-
erator of the finite chain. In the infinite time limit, it has
been shown that C(t ) converges to value equal to half of the
winding number [36,37]. To compute the latter, we simulate
the propagation of light starting from a single waveguide
in the middle of the photonic crystal. The light intensity in
each waveguide is integrated over the last 400 nm of the
system, corresponding to 1% of the total waveguide length.
The resulting light intensity profile is normalized (divided by
the sum of intensities of all waveguides) and used to compute
the mean chiral displacement as

C =
∑

j

Ij,A · j −
∑

j

Ij,B · j, (8)

where Ij,A/B is the light intensity in the waveguide belong-
ing to the j th unit cell and the A or B sublattice. Results
shown in Fig. 5(b) confirm that a topological phase transition
indeed occurs as a function of stretching. For small distances
between neighboring Y structures, C takes values close to 0.5,
indicating a winding number ν = 1. As the distance between
unit cells is increased, the mean chiral displacement shows a
sharp drop to values close to zero, indicative of a topologically
trivial phase.

Beyond directly measuring the topological invariant, the
presence and position of a topological phase transition can be
more directly observed by examining the spread of light as
it propagates through the photonic crystal. As pointed out in
the previous section, in this simple model of an SSH chain,
the average velocity of bulk modes should increase as the
critical point is approached, and decrease afterwards. We test
this prediction numerically, starting from an initially excited
waveguide in the bulk of the photonic crystal. After a distance
of 40 μm from the light injection point, corresponding to an
evolution of wave packets for a fixed amount of time, we
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FIG. 7. Light intensity profiles after a propagation distance of
40 μm, starting from a bulk state. The light intensity (color scale)
is plotted as a function of waveguide position relative to the ini-
tially excited waveguide (horizontal axis) and distance between unit
cells (vertical axis). The overall spread of light increases as one
approaches the phase transition (dashed green line) and decreases
afterwards. The light intensity is plotted on a logarithmic scale to
better show the behavior close to the critical point.

determine the mean-squared displacement of light

D =
∑
j,s

Ij,s (xj,s − x0,A)2. (9)

Here, Ij,s is the light intensity in the waveguide belonging to
the j th unit cell and sublattice s = A,B, whereas xj,s is its
real space position which depends on how much the system
is stretched. The initially excited waveguide is located in the
middle of the system and belongs to the A sublattice, its
position being denoted by x0,A. Figure 6 shows the value of
D (divided by its maximum value) determined for different
separations between the Y structures. As expected, the mean-
squared displacement is maximal at the phase transition point
and decreases away from it. Since D is computed after a
fixed distance in the photonic crystal lattice, corresponding
to a fixed time in the evolution of wave packets, its maximum
value corresponds to a maximum in the bulk state velocity.
This nonmonotonic behavior in the spread of light through the
system can also be directly visualized in the waveguide array,
as shown in Fig. 7.

IV. CONCLUSION

We have theoretically proposed and numerically analyzed
a photonic crystal design which allows the system parameters
to be continuously tuned in the same sample. By using an
elastic substrate and waveguide pairs arranged in a Y-shaped
geometry, we have shown that the lattice constants of the
simulated tight-binding model can be addressed selectively.
We have tested this design on one of the simplest examples of
a topological phase, the SSH model, which can be elastically
and reversibly stretched across a topological phase transition.
The critical point separating topologically distinct phases can
be determined as the separation at which bulk modes have a
maximal spread.

Our proposed setup should be accessible in experiments
using currently available fabrication techniques. For instance,
the Al2O3 arms of the Y structure may be carved by electron-
beam lithography, while the supporting posts made from SiO2

could be produced using wet etching. Moreover, we expect
that the strategy of combining rigid and elastic materials
should be applicable also to other topological models, in both
one and two dimensions. For instance, a three-dimensional
array of coupled waveguides was recently used to simulate
Chern insulators [18]. In such a system, if one keeps the
waveguides rigid but embeds them in an elastic medium, then
stretching the photonic crystal should tune the tight-binding
model across a two-dimensional topological phase transition.
Given the band structures shown in Ref. [18], we expect that
also in their model the transition point can be inferred from
the spread of bulk states.

A single photonic crystal able to reach a wide range of pa-
rameter values would mean a reduction in the costs associated
to device fabrication. Beyond this practical aspect, however,
tunable devices would allow experiments to probe a variety of
theoretical predictions which would be impractical otherwise.
For instance, in photonic crystals realizing topological phases
protected by lattice symmetries, so-called topological crys-
talline insulators [45], stretching would allow one to probe
the robustness of boundary states upon breaking the protecting
symmetries. Another example is the problem of localization in
one-dimensional systems, which has a large, well-established
body of theoretical research [46–52]. While initially it was
expected that even an infinitesimal amount of disorder would
lead to a localization of all bulk states [46], it was later shown
that some states remain delocalized when the one-dimensional
system is at a topological phase transition [50,52]. The critical
behavior of a variety of one-dimensional systems was ana-
lyzed, and theoretical predictions for transport properties and
the density of states are available, yet the problem has never
been tackled experimentally.
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APPENDIX: BAND STRUCTURE AND END MODES OF
THE PHOTONIC CRYSTAL

In this Appendix, we provide a detailed description of
the analogy between the propagation of light in a photonic
crystal and the time evolution of wave packets in a periodic
condensed-matter system. Further, we show how this analogy
can be used to determine the bulk band structure and the
topological edge modes of the setup considered in the main
text.

1. Bulk band structure

The propagation of light through the dielectric waveguide
array is governed by the paraxial Helmholtz equation:

i∂zψ (x, z) = − 1

2k0

∂2

∂x2
ψ (x, z) − k0�n(x)

n0
ψ (x, z), (A1)
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where ψ (x, z) is the envelope function of the electric field:

E(x, z) = ψ (x, z)ei(k0z−ωt ), (A2)

k0 = 2πn0
λ

is the free-space wave number, n0 = 1 is the refrac-
tive index of the host medium (air), λ is the wavelength of the
light, which we consider constant, and �n(x) is the refractive
index contrast of the waveguide core and the surrounding
medium.

The paraxial Helmholtz equation has a mathematical struc-
ture similar to that of the Schrödinger equation:

ih̄∂tψ (x, t ) = − h̄2

2m

∂2

∂x2
ψ (x, t ) − V (x, t )ψ (x, t ). (A3)

This similarity provides the possibility to use an optical
system to experimentally simulate the temporal evolution of
wave packets in a quantum-mechanical system. In such a
simulation, the refractive index of the medium plays the role
of the potential energy V , and the spatial evolution of the
optical wave function in the photonic system is equivalent
to the time evolution of the particle’s wave function in the
Schrödinger equation.

Following Ref. [33], we use the coupled-mode approach,
which assumes that the modes in each individual waveguide
have a constant shape such that only their amplitude evolves
in the longitudinal direction z. Further, since the modes of
different waveguides have an evanescent coupling, we only
take into account nearest-neighbor interactions. Under these
assumptions, the Helmholtz equation, Eq. (A1), can be written
as a set of coupled differential equations:

i∂zψA,m = −w ψB,m−1 − v ψB,m,

i∂zψB,m = −v ψA,m+1 − w ψA,m. (A4)

Here ψs,m is the mode amplitude of a waveguide belonging to
the sublattice s = A,B and to the mth unit cell, whereas v and
w are coupling coefficients describing the interaction strength
between neighboring waveguides.

To determine the band structure, we consider a photonic
crystal composed of infinitely many waveguides and substi-
tute the plane-wave solutions,

ψs,m = ψs,0 exp[i(βxmd + βzz)], (A5)

where d is the distance between neighboring unit cells and
βx,z are wave-vector components in the transversal (x) and
longitudinal (z) directions. The system of equations Eq. (A4)
then takes the familiar form of a tight-binding eigenvalue
problem:

(
0 v + we−iβmd

v + we+iβmd 0

)(
ψA,0

ψB,0

)
= βz

(
ψA,0

ψB,0

)
. (A6)

Solving the band structure amounts to finding the rela-
tion between the longitudinal and transverse wave-vector

FIG. 8. Spectrum of a photonic crystal consisting of 40 waveg-
uides (meaning N = 20 unit cells), obtained by solving Eq. (A8)
with v = 0.6 μm−1 and w = 1 μm−1. The spectrum is gapped and
contains two topological midgap modes at βz = 0.

components,

βz = ±
√

v2 + w2 + 2vw cos (βmd ), (A7)

which is similar to Eq. (5) and Fig. 1 of the main text.

2. Edge modes

In a finite-sized structure, discrete translational symmetry
is broken so we can no longer consider the waveguide ampli-
tudes to be plane waves in the transverse direction, as done
in Eq. (A5). However, assuming the (now finite) number of
waveguides to be infinitely long, we can make the substitution
ψs,m = φs,m exp(iβzz) in Eq. (A4). For a photonic crystal
consisting of N unit cells, this substitution leads to

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 v 0 0 0 0 · · · 0 0
v 0 w 0 0 0 · · · 0 0
0 w 0 v 0 0 · · · 0 0
0 0 v 0 w 0 · · · 0 0
0 0 0 w 0 v · · · 0 0
0 0 0 0 v 0 · · · 0 0
...

...
...

...
...

...
. . .

...
...

0 0 0 0 0 0 · · · 0 v

0 0 0 0 0 0 · · · v 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φA,1

φB,1

φA,2

φB,2

φA,3

φB,3
...

φA,N

φB,N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= βz

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φA,1

φB,1

φA,2

φB,2

φA,3

φB,3
...

φA,N

φB,N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A8)

identical to a tight-binding Hamiltonian problem on a finite
lattice. We have numerically solved this eigenvalue problem
for a lattice of N = 20 unit cells, setting v = 0.6 μm−1 and
w = 1 μm−1. As shown in Fig. 8, the spectrum is gapped
and contains two βz = 0 eigenstates, corresponding to the
topological end modes.
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