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Electromagnetic control and improvement of nonclassicality in a strongly coupled
single-atom cavity-QED system
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We present a proposal to control and improve the nonclassicality of photons in a single-atom cavity-QED
system with a strong coupling strength, where the atom is directly driven by external fields. Exploring the
eigenvalues and the corresponding eigenstates of the system, we show that the dressed states can be optically
manipulated by changing the control field intensity. In particular, tuning the control field frequency to be
resonant with the one-photon excitation state, we show that the nonclassicality of cavity photons arising from
the two-photon blockade can be actively controlled. We also show that there exists a magic control field Rabi
frequency at which the two-photon blockade phenomenon can be significantly improved. The work presented
here provides an optical method to control the statistical features of the cavity field that could find utility in
nonclassical light generation, photon gateway operation, and exotic quantum-state generation.
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I. INTRODUCTION

Nonclassical properties of the optical field, such as squeez-
ing, antibunching, and sub-Poissonian photon statistics, have
been intensively studied in modern quantum optics [1,2].
Using these features of the nonclassical optical field, many
applications including high-precision optical measurements,
optical imaging, optical information processing, and high-
fidelity optical communications can be achieved based on
the possibility of overcoming the so-called standard quantum
limit [3–9]. The generation of nonclassical light remains an
open question, despite many attempts to control nonclassical
optical fields.

In general, the field correlation function is an effective
quantity to characterize the nonclassical optical field which
is defined by g(2)(τ ) = 〈Î (t )Î (t + τ )〉/〈Î (t )〉2 [10,11]. It re-
flects the probability of detecting one photon at time t + τ

provided that one was detected at time t . According to the
Schwartz inequality, the optical field is classical if the field
correlation function g(2)(0) > g(2)(τ ). The violation of this
condition represents a nonclassical optical field such as an-
tibunching [g(2)(0) < g(2)(τ )] and a sub-Poissonian distribu-
tion with g(2)(0) < 1.

In the past decade, antibunching photons have been the-
oretically and experimentally studied in cavity quantum
electrodynamics (QED) systems based on the two-photon
blockade phenomenon [12]. In a single-atom cavity-QED
system, antibunching photons with a sub-Poissonian distri-
bution [g(2)(0) < g(2)(τ ) and g(2)(0) < 1] can be observed
since N > 1 photon transitions are blockaded due to vacuum
Rabi splitting. To date, the realization of antibunching photons
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with a sub-Poissonian distribution has been reported in many
configurations, including the cavity-QED system [13,14], ar-
tificial atoms on a chip [15,16], a cavity with Kerr nonlinear-
ity [17–19], and superconducting circuits [20,21].

Using electromagnetically induced transparency (EIT)
based on the quantum interference effect [22–24], it is pos-
sible to control the nonclassicality of an optical field. By
merging the EIT configuration with the cavity-QED system,
two-photon blockade can be enhanced [19,25] and many
interesting phenomena have been theoretically proposed and
experimentally demonstrated, including slow light propaga-
tion [26,27], cavity cooling [28–30], cross phase modulation
and quantum phase gate operation [31–33], the all-optical
switch and transistor [34–38], and quantum information pro-
cessing [39,40]. Besides, a cavity-assisted Rydberg-atom EIT
phenomenon in a high-finesse optical cavity has been ex-
perimentally demonstrated [41], and Wu et al. explore the
possibility of generating and controlling optical frequency
combs in a cavity EIT system [42].

In this work, we present some results for electromagnetic
control and improvement of the nonclassicality of cavity pho-
tons in a strongly coupled single-atom cavity-QED system,
where the atom is directly driven by a probe field and a
control field, forming a �-type configuration. Compared with
cavity driving, atom driving gives a larger optical nonlinearity,
resulting in the improvement of two-photon blockade [43],
observation of three-photon blockade [14], and realization
of the hyperradiance phenomenon [44,45]. Even if the driv-
ing field is strong, the second-order correlation function can
be very small. This scheme is motivated by work on the
atom-driven system and cavity-EIT configuration, where the
nonclassicality of cavity photons can be controlled using EIT
technique [14,25]. However, differently from early works on
the cavity-EIT system [25,46], we consider the atom-driven
case, and the frequency of the control field is tuned to be
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resonant with the one-photon excitation state rather than the
cavity. We show that our scheme not only can be used to
control the nonclassicality of cavity photons but also exhibits
many advantages that the cavity-EIT system does not have.
For example, by exploring the well-known ladder-type eigen-
states, we find that the one-photon excitation state will be split
into a doublet, and the splitting width is nearly proportional
to the control field Rabi frequency. We also show that there
exists a magic control field intensity where the second-order
correlation function decreases to a very small value, but
the mean photon number is reasonable. Compared with the
cavity-EIT scheme, we show that the two-photon blockade ef-
fect can be significantly enhanced in our scheme, resulting in
antibunching photons leaking from the cavity. Based on these
features, we show that our scheme is a good candidate for
controlling the nonclassicality of cavity photons by adjusting
the external control field intensity, which provides an optical
knob for changing the statistic features of the cavity field.

The paper is arranged as follows. In Sec. II, we present
the theoretical model of this three-level atom-cavity system.
In Sec. III, we give a detailed discussion of the eigenvalues
and the corresponding eigenstates of the system. In Secs. IV
and V, we study the cavity excitation spectrum and explore
the nonclassicality of the cavity field in the case of �L = 0
and �L = −g, respectively. Moreover, the role of the probe
field is discussed. A summary of the main results is given in
Sec. VI.

II. THEORETICAL MODEL

To begin with, we consider a three-level �-type atom
strongly coupled to a single-mode cavity of wavelength λc

(see Fig. 1). In experiments, these three states can be chosen
as |g〉 = |5S1/2, F = 1〉, |e〉 = |5P1/2, F

′ = 1〉, and |m〉 =
|5S1/2, F = 2〉 of the 87Rb atom [47,48]. A probe field with
Rabi frequency η couples the |g〉 ↔ |e〉 transition, and a
control field with Rabi frequency �L couples the |m〉 ↔ |e〉
transition.

Under the rotating-wave and electric dipole approxima-
tions, the Hamiltonian of this single-atom cavity-QED system
can be written as

H = �eσee + �mσmm + �ca
†a + g(aσeg + a†σge )

+�L(σem + σme ) + η(σeg + σge ), (1)

where a and a† are the annihilation and creation operators
of the cavity field, and σij = |i〉〈j | (i, j = g, e,m) are the
atomic raising and lowering operators for i �= j and the
atomic population operators for i = j . The detunings are
defined as �c = ωc − ωp, �e = (ωe − ωg ) − ωp, and �m =
�e − �L, with the control field detuning �L = (ωe − ωm) −
ωL. Here, the energy of the |j 〉 state is h̄ωj (j = g, e,m),
ωc = 2π/λc is the cavity-mode frequency, and ωp(L) is the
angular frequency of the probe (control) field. Assuming that
ωc = ωe − ωg , we can take �p ≡ �c = �e in the following
for simplicity.

In general, the properties of the entire system can be
obtained by numerically solving the master equation, i.e.,

d

dt
ρ = − i

h̄
[H, ρ] + Latom(ρ) + Lcavity(ρ), (2)

FIG. 1. System configuration of a three-level �-type atom
strongly coupled to a single-mode cavity of wavelength λc. A probe
field η with angular frequency ωp drives the |g〉 ↔ |e〉 transition, and
a control field �L with angular frequency ωL drives the |m〉 ↔ |e〉
transition. Here, the cavity decay rate is denoted κ . �ge and �me

represent the spontaneous decay rates from the |e〉 state to the |g〉
and |m〉 states, respectively. The decay rate of the metastable state
|m〉 is denoted �gm. �e = (ωe − ωg ) − ωp and �m = (ωm − ωg ) −
(ωp − ωL) are the detunings of the |e〉 and |m〉 states, respectively.

where ρ is the density operator of the single-atom cavity-
QED system, and Latom(ρ) and Lcavity(ρ) are the Liouvillian
operators for the atomic decay and cavity decay, respectively,
which are given by

Latom(ρ) = �ge(2σ †
egρσeg − σegσ

†
egρ − ρσegσ

†
eg )

+�me(2σ †
emρσem − σemσ †

emρ − ρσemσ †
em)

+�gm(2σ †
mgρσmg − σmgσ

†
mgρ − ρσmgσ

†
mg )

and

Lcavity(ρ) = κ (2aρa† − a†aρ − ρaa†),

with �ij (i, j = g, e,m) being the decay rate from the |j 〉 to
the |i〉 state and κ being the decay rate of the cavity.

III. EIGENVALUES AND DRESSED-STATE PICTURE

For any quantum system, it is helpful to study the eigen-
values and the corresponding eigenstates of the system, so
that the physical mechanism of this system can be understood
very well. Assuming that η = �p = 0 [49], the Hamiltonian
can be rewritten in a new set of basis {|g, n〉, |+, n − 1〉,
|−, n − 1〉}, with n being the number of photons in
the cavity and |±, n − 1〉 = (|m, n − 1〉 ± |e, n − 1〉)/

√
2.

Therefore, in the n-photon space, the Hamiltonian can be
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FIG. 2. Dressed-state structure and eigenvalues of this single-atom cavity-QED system with �L = 0 (a) and �L = −g (b). Solid arrowed
blue lines represent the allowed transitions for the probe field, and dashed arrowed lines represent the forbidden transitions. Here, eigenvalues
are obtained by numerically solving Eq. (3) with g = 20.

expressed as [25,50]

H (n) =
⎛
⎝ 0 g

√
n/2 −g

√
n/2

g
√

n/2 �L − �L/2 −�L/2
−g

√
n/2 −�L/2 −�L − �L/2

⎞
⎠.

(3)

In the case of �L = 0, the eigenvalues of the Hamiltonian
H (n) can be solved analytically, yielding λ

(n)
0 = 0 and λ

(n)
± =

±
√

�2
L + ng2. The corresponding eigenstates are given by

�
(n)
0 = N (n)

0

(
|g, n〉 − g

√
n

�L

|m, n − 1〉
)

(4)

and

�
(n)
± = N (n)

±

(
|g, n〉 + g

√
n/2

λ
(n)
± − �L

|+, n − 1〉

− g
√

n/2

λ
(n)
± + �L

|−, n − 1〉
)

, (5)

where N (n)
0 and N (n)

± are the normalization factors. Clearly,
the eigenstates �

(n)
0 are the intracavity dark states which

cannot be excited. Then the remaining eigenstates form a
ladder of energy levels, which are arranged in doublets. The
splitting between doublets depends on the control field Rabi
frequency �L and the quantum number n [see Fig. 2(a), right],
which is not increased linearly with respect to the control
field Rabi frequency if the coupling strength is high. These
results can also be explained by decomposing the system
into two subsystems. One is the subsystem consisting of the
cavity and a two-level atom with the |g〉 and |e〉 states, and
the other is the subsystem consisting of the control field
and |m〉 state. As we all know, the first subsystem has been
studied extensively; it forms a ladder of doublet levels with
energy splitting 2g

√
n [see Fig. 2(a), left]. The corresponding

eigenvalues and eigenstates are given by �
(n)
± = g

√
n and

�
(n)
± = (±|g, n〉 + |e, n − 1〉)/

√
2, respectively. Therefore, in

the case of detuning �L = 0, the energies of �
(n)
± states are

shifted since the control field is far off-resonant with each state
[see Fig. 2(a)].

When the probe field frequency is tuned to one of the first
manifold dressed states, the absorption of a second photon
at the same frequency is blocked because transitions to two-
photon excitation states are detuned from resonance under
the strong-coupling condition, resulting in the well-known
two-photon blockade phenomenon. With an increase in the
control field Rabi frequency, the energy of the dressed states is
shifted so that the probe field frequency to realize two-photon
blockade is modified. We also show that there exists a magic
control field Rabi frequency where the second-order corre-
lation function goes to a smaller value and the two-photon
blockade effect is enhanced (see Sec. IV).

Likewise, the control field can also be tuned resonant
with the |m, 0〉 ↔ �

(1)
− transition by choosing the detuning

�L = −g. As a result, the �
(1)
− state is split into a doublet,

but the �
(1)
+ state undergoes an energy shift due to the off-

resonant coupling [see Fig. 2(b), left]. Directly solving the
eigenvalues of the Hamiltonian given in Eq. (3), we show
that eigenvalues with photon number n = 1, 2 change with
the control field Rabi frequency �L in Fig. 2(b), right. It is
clear to see that the numerical results match very well with
the analysis based on the dressed states. Manipulating the
dressed states by changing the control field Rabi frequency,
it is possible to change the nonclassicality of cavity photons
and the frequency of the probe field to achieve two-photon
blockade. Differently from the case of �L = 0, the state �

(1)
−

is resonantly coupled by the control field so that the width
of the energy splitting is nearly proportional to the control
field Rabi frequency [see blue curves in Fig. 2(b)]. However,
other states are shifted nonlinearly with respect to the control
field Rabi frequency because of the far-off-resonant coupling.
These features may result in a significant improvement in the
two-photon blockade phenomenon if the magic control field
Rabi frequency is utilized (see Sec. V).

IV. THE CASE OF �L = 0

Before studying the nonclassicality of the cavity field, we
calculate the mean photon number ncav = 〈a†a〉 in the cavity
by numerically solving Eq. (2), which directly reflects the
energy shifts of each eigenstate. In Fig. 3(a), we plot the
mean photon number ncav as a function of the normalized
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FIG. 3. (a) Mean photon number 〈a†a〉 and (b) steady-state
second-order photon-photon correlation function log10 [g(2)

ss (0)] as
a function of the normalized detuning �p/κ for the probe field.
The control field is taken as �L = 0 Hz (dashed blue curve) and
11.0κ (solid red curve), respectively. Other system parameters are
chosen as �L = 0, �ge = �me = 1.5κ , �gm = 5 × 10−4κ , g = 10κ ,
and η = 0.1κ . The dash-dotted line in (b) indicates the condition
log10 [g(2)

ss (0)] = 0 [i.e., g(2)
ss (0) = 1].

detuning �p/κ for the probe field. Here, we choose the con-
trol field Rabi frequencies �L/κ = 0 (dashed blue curve) and
11.0 (solid red curve), respectively. Other system parameters
are chosen as �L = 0, �ge = �me = 1.5κ , �gm = 5 × 10−4κ ,
g = 10κ , and η = 0.1κ [47,51]. In the absence of the control
field (i.e., �L = 0 Hz), we can observe two peaks (see the
dashed blue curve) at �p = ±g in the cavity excitation spec-
trum, which correspond to two one-photon transitions, i.e.,
�

(0)
0 → �

(1)
± . In the presence of the control field, however, the

position and amplitude of these two resonant peaks change
greatly as the eigenvalues and eigenstates of the system are
modified by the control field. As shown in Fig. 2(a), we
can observe a larger energy splitting between two peaks

(i.e., 2
√

g2 + �2
L; see the solid red curve), and the corre-

sponding mean photon number also increases significantly.
It is noteworthy that high-order transitions are too weak to
be observed since the multiphoton (n � 2) transitions are
far off-resonant, which results in the two-photon blockade
phenomenon.

To characterize this interesting phenomenon, we cal-
culate the equal-time, second-order field correlation func-
tion g(2)

ss (0) = 〈a†(0)a†(0)a(0)a(0)〉/〈a†(0)a(0)〉2 under the
steady-state condition. As shown in Fig. 3(b), the second-
order correlation function g(2)

ss (0) < 1 for the peaks in the
cavity excitation spectrum (corresponding to one-photon tran-
sitions), which is evidence of the two-photon blockade phe-
nomenon. Another key feature of this system is the presence
of strong photon bunching behavior [g(2)

ss (0) 
 1] at the cen-
tral frequency (i.e., �p = 0). In the absence of the control
field, the probe field is off-resonant with all states so that
the quantum property of the cavity field is the same as that
of the probe field, and the second-order correlation function
g(2)

ss (0) = 1 (i.e., a coherent field). When the control field is
turned on, additional states �

(n)
0 appear and can be excited via

multiphoton transition processes, resulting in classical field
generation with superbunching behavior, i.e., g(2)

ss (0) 
 1.In
Figs. 4(a) and 4(b), we plot the mean photon number ncav

and the steady-state second-order field correlation function
log10 [g(2)

ss (0)] as functions of the normalized detuning �p/κ

and control field Rabi frequency �L/κ , respectively. Here, the
system parameters are the same as those used in Fig. 3, and

FIG. 4. (a) Mean photon number ncav and (b) steady-state
second-order field correlation function log10 [g(2)

ss (0)] as functions
of the normalized detuning �p/κ and control field Rabi frequency
�L/κ , respectively. The horizontal dashed pink line indicates the
magic control field Rabi frequency, where a specific probe field
detuning (indicated by the vertical dashed pink line) can be chosen
to realize an improved two-photon blockade phenomenon with the
reasonable photon number. The white area in (b) denotes the regime
where log10 [g(2)

ss (0)] > 0.

we just consider the case of blue detuning (i.e., �p < 0) due
to the symmetry of the system. As shown in Fig. 4(a), the
width of the energy-level splitting almost increases linearly as
the intensity of the control field increases. Correspondingly,
the second-order field correlation function, strongly depen-
dent on the cavity photon excitation, varies significantly [see
Fig. 4(b)]. In particular, there exists a magic control field in-
tensity (indicated by the horizontal dashed pink line) to obtain
the minimum of the second-order field correlation function.
As a result, an improved two-photon blockade phenomenon
with a reasonable photon number can be achieved by choosing
a specific probe field detuning indicated by the vertical dashed
pink line. For example, at the detuning �p/κ = −10.8, one
obtains g(2)

ss (0) ≈ 0.04 and ncav ≈ 0.006 with �L/κ = 4.5.

V. THE CASE OF �L = −g

Now, we consider the case of �L = −g, where the control
field is tuned resonant with the �

(1)
− state shown in Fig. 2(b). In

this case, the �
(1)
− state is split into two separate states labeled

�
(1)
1 and �

(1)
2 , respectively. Because of this large detuning �L,

the coupling between the control field and other states in the
cavity-QED system can be safely neglected. Therefore, there
exist three resonant peaks in the cavity excitation spectrum
as shown in Fig. 5(a), corresponding to the |�0〉 ↔ |� (1)

1 〉,
|�0〉 ↔ |� (1)

2 〉, and |�0〉 ↔ |� (1)
3 〉 transitions, respectively.

Here, the control field is taken as �L/κ = 9.0 (solid red
curve), and other system parameters are the same as those
used in Fig. 3. It is noted that the mean photon number in
the cavity is significantly enhanced compared with the case
of �L = 0. In Fig. 5(b), we plot the steady-state second-order
field correlation function g(2)

ss (0) as a function of the normal-
ized detuning �p/κ with the control field Rabi frequencies
�L/κ = 0 and 9, respectively. Clearly, in the presence of
the control field, superbunching behavior [i.e., g(2)

ss (0) 
 1]
can be observed at �p = −g, where g(2)

ss (0) < 1 if the con-
trol field is turned off. In addition, the second-order field
correlation function drops quickly at a frequency near the
middle peak in the cavity excitation spectrum, which provides
the possibility of achieving a significant improvement in the
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FIG. 5. (a) Mean photon number 〈a†a〉 and (b) steady-state
second-order field correlation function log10 [g(2)

ss (0)]. Here, we
choose �L = −g and the control field Rabi frequencies are chosen
as �L/κ = 0 (dashed blue curves) and 9.0 (solid red curve), respec-
tively. Other system parameters are the same as those used in Fig. 3.
The dash-dotted line in (b) corresponds to log10 [g(2)

ss (0)] = 0 [i.e.,
g(2)

ss (0) = 1].

two-photon blockade phenomenon.Figures 6(a) and 6(b) show
the mean photon number ncav and the steady-state second-
order field correlation function log10 [g(2)

ss (0)] as functions
of the normalized control field Rabi frequency �L/κ and
detuning �p/κ , which is chosen near the middle peak. As
shown in Fig. 6(a), the width of the energy splitting caused by
the control field is almost proportional to the control field Rabi
frequency. In particular, we can obtain a magic control field
intensity indicated by the horizontal dashed pink line, where
the two-photon blockade phenomenon can be significantly
improved when a specific probe field detuning is chosen
(indicated by the vertical line). According to our numeri-
cal calculation, the mean photon number ncav ≈ 0.004 and
the second-order field correlation function g(2)

ss (0) ≈ 0.004 at
�p/κ = −4.8. Therefore, a nonclassical field with antibunch-
ing behavior is generated in this three-level atom-cavity QED
system. In Figs. 6(c) and 6(d), we choose the detuning �p near
the right peak in the cavity excitation spectrum. As shown in

FIG. 6. (a), (c) Mean photon number ncav and (b), (d) steady-state
second-order field correlation function log10 [g(2)

ss (0)]. The horizontal
dashed pink line in (a) and (b) indicates the magic control field Rabi
frequency, where a specific probe field detuning (indicated by the
vertical dashed pink line) can be chosen to achieve a significantly
improved two-photon blockade phenomenon. The white areas in (b)
denote the regime of g(2)

ss (0) > 1. The black curve in (d) indicates the
equal attitude line of log10 [g(2)

ss (0)] = 0 [i.e., g(2)
ss (0) = 1].

FIG. 7. The mean photon number 〈a†a〉 (solid red curve) and
steady-state second-order field correlation function log10 [g(2)

ss (0)]
(dashed green curve) are plotted as a function of the normalized
detuning �p/κ with (a), (b) η = 0.5κ and (c), (d) η = 1.0κ . In (a)
and (c) we choose �L = 0; in (b) and (d), �L = −g. Other system
parameters are the same as those used in Fig. 3, and the dash-dotted
line corresponds to log10 [g(2)

ss (0)] = 0 [i.e., g(2)
ss (0) = 1].

Fig. 6(d), the statistical feature of the cavity field changes from
antibunching to superbunching with an increasing control
field intensity. Correspondingly, the property of the photons
leaking from the cavity can be controlled from quantum to
classic by adjusting the control field.

VI. DISCUSSION AND CONCLUSION

Before closing, we consider the influence of the probe field
intensity on the mean photon number and the field correlation
function. In Fig. 7, we plot the mean photon number 〈a†a〉 and
the steady-state second-order field correlation function g(2)

ss (0)
as a function of the normalized detuning �p/κ with η = 0.5κ

[Figs. 7(a) and 7(b)] and η = 1.0κ [Figs. 7(c) and 7(d)].
In Figs. 7(a) and 7(c) we choose �L = 0, but �L = −g in
Figs. 7(b) and 7(d). Obviously, the mean photon number can
be significantly enhanced by increasing the probe field inten-
sity so that photons leaking from the cavity can be detected in
experiments. As shown in Figs. 7(a) and 7(c), the mean photon
number can be increased to 0.16, but the value of the second-
order field correlation function changes slightly. For example,
we can obtain g(2)

ss (0) ≈ 0.1 for η = 0.5κ and g(2)
ss (0) ≈ 0.16

for η = 1.0κ . Furthermore, the photon blockade phenomenon
can also be improved in the case of �L = −g, even if a
strong probe field intensity is used [see Figs. 7(b) and 7(d)].
It is found that the mean photon number can reach up to
0.15, and the second-order correlation function is about 0.012,
which can be recognized as a complete photon blockade in
experiments.

In conclusion, we have shown that the quantum properties
of the cavity field in a strongly coupled three-level atom-
cavity QED system can be actively controlled by using an
electromagnetic field. This arises from the change in the
dressed-state structure of the system formed by the interacting
fields and atom. We show that the dressed-state structure
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and allowed transitions strongly depend on the control field
intensity and frequency. We also show that, in the case of
�L = 0, the two-photon blockade phenomenon can be en-
hanced and the superbunching behavior of the cavity field
can be measured in this atom-cavity QED system. In the
case of �L = −g, we show that the significantly improved
two-photon blockade phenomenon can be observed if a magic
control field intensity is chosen. We further show that the
property of the cavity field can be controlled from quantum
to classic by increasing the control field intensity. Compared
with the traditional cavity-EIT scheme (i.e., �L = 0), our
scheme presented here (i.e., �L = −g) is a good candidate
for the realization of nonclassical light generation, optical

controlled quantum gate operation, and exotic quantum-state
preparation.
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