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Applying a variational approach and numerical analysis to the system of Gross-Pitaevskii equations, we find
three-dimensional (3D) stable solitons in binary atomic Bose-Einstein condensates with spin-orbit coupling
(SOC) and out-of-phase linear and nonlinear Bessel optical lattices. We discuss the stability of 3D solitons
by utilizing their norm and energy. The introduction of Bessel potentials makes the evolution and collisions
of solitons more stable and improves their resistance to collapse. Depending on the strength of the intra- and
intercomponent spatial modulation of the nonlinearity and SOC, we find stable solitons of the semivortex
and mixed-mode structures. Furthermore, we show that the solitons are stable against small perturbations in
propagation and collisions.
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I. INTRODUCTION

Spatiotemporal localization of waves is a subject which
attracts broad interest in physics, spanning such diverse fields
as plasma physics, hydrodynamics, nonlinear optics, and
Bose-Einstein condensates (BECs). It has been a hot topic in
research over the past 20 years, not only theoretically but also
experimentally, for example, in various applications of BECs
[1–3].

The generation of two-dimensional (2D) and three-
dimensional (3D) bright solitons is a significantly more chal-
lenging problem than the generation of one-dimensional (1D)
solitons. Apart from the obvious advantage that 1D solitons
can be treated by the inverse scattering theory, and 2D and
3D solitons cannot, another fundamental difficulty is that
the cubic nonlinearity causes the wave collapse in higher-
dimensional geometries [4,5]. A number of settings where
their stabilization is possible have been proposed. Thus, stable
3D solitons may form in materials with saturable or competing
nonlinearities [6,7], nonlocal nonlinearity [8,9], special non-
linear interactions [10,11], optical tandem geometries [12,13],
waveguide arrays and optical lattices imprinted in different
materials [14–16], and binary BECs subject to the action of
spin-orbit coupling (SOC) [17].

The introduction of optical lattices into nonlinear media
significantly promoted the stability of localized wave struc-
tures in BECs [18,19]. An important concentric axisymmetric
optical lattice, the Bessel lattice (BL), has attracted a lot
of attention these days. Such a lattice can be induced by
the nondiffracting Bessel beams, which can be created in
experiments by computer-generated holograms [20] or coni-
cal prisms (axicons) [21]. The complex lattices can also be
created in photorefractive crystals by the phase-imprinting
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technique [22,23]. Various types of solitons have been pre-
dicted theoretically and observed experimentally in modu-
lated BLs [24,25]. The unique cylindrical symmetry of such
a lattice allows for the existence of stable ring-profiled vortex
[26], multipole [27], and necklace solitons [28], as well as 2D
or 3D spatiotemporal solitons [16,29], provided the lattice is
modulated deeply enough.

On the other hand, spin-orbit coupled BECs [30,31], ex-
perimentally realized in [32], attracted particular attention
not only for allowing one to study phenomena related to the
artificial vector gauge potentials [33] but also for giving rise
to a number of remarkable structures, such as vortices [34],
monopoles [35], multidomain patterns [36], solitons [37,38],
and others. In recent years, diverse vortex patterns have been
found in BECs with SOC and attractive nonlinearity, trapped
in external potentials [17,39,40], which apparently is different
from the ones mentioned above. Sakaguchi et al. displayed
several types of self-trapped vortex-soliton complexes in a
2D model of the binary BEC, with the SOC of Rashba
type between the two components and an attractive intrinsic
nonlinearity [39]. Kartashov et al. introduced SOC in a BEC
as a gauge potential, acting only in a localized spatial do-
main, and discussed the properties of soliton complexes and
spinor dynamics [40]. Zhang et al. revealed in [17] that the
self-attractive binary SOC condensate can support stable 3D
solitons in free space, in spite of the fact that the setting has
no ground state at any value of the norm. It is shown that
the SOC-induced modification of the dispersion of the 3D
condensate may balance the attractive nonlinearity, creating
metastable solitons.

Despite the above progress, 3D vortex solitons created
in such binary condensates by attractive nonlinear interac-
tions and SOC are still inadequately understood, especially
when BLs are added. The aim of the present paper is to
construct 3D stable solitons in binary atomic condensates
with SOC, in combination with out-of-phase linear and
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nonlinear BLs, by means of a variational approach (VA)
and a systematic numerical analysis. The existence of 3D
stable solitons featuring a semivortex (SV) or a mixed-
mode (MM) structure is demonstrated [17]. Furthermore,

it is shown that the solitons are stable in propagation and
collisions, depending on the relative strength of SOC and
the intra- and intercomponent spatial modulation of the
nonlinearity.

II. MODEL AND NUMERICAL METHOD

The system of scaled 3D Gross-Pitaevskii equations for the spinor wave function � = (�+,�−) of the binary BEC with
attractive contact interactions and the SOC of Rashba type, which is trapped in a BL, can be written as
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where λ is the strength of the self-spin coupling in the isotropic form of SOC [38,39], g is the strength of the nonlinear interaction,
η is the relative cross-nonlinearity strength, and p and δ describe modulation depths of the linear and nonlinear BLs, respectively.
The stationary wave function is of the form �± = e−iμtψ±, where μ is the chemical potential. For the lattice, we pick R = Jn(kr )
where n is the order of BL. We fix the radial scale to 2 (k = 2) and the interaction strength to g = 1.

Let N = ∫
d r (|ψ+|2 + |ψ−|2) be the norm; the corresponding energy E is
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where σ = (σx, σy, σz) is the Pauli matrix. On account of the BL being an infinite series, we cannot simply use the dimensional
analysis. So, we use the variational method to treat the problem [39,40], in parallel with numerical analysis. In cylindrical
coordinates (r, φ, z), we choose the following ansatz for the SV and MM structures of the stationary wave function, and we only
analyze the state the energy of which is always the lowest, with the integer vorticity zero. The forms of SV and MM are chosen
as follows:

SV:ψSV+ = (A1 + iB1z)e−α1r
2−β1z

2
, ψSV− = (iA2 + B2z)re−α2r

2−β2z
2+iφ (3a)

MM:ψMM+ = cosθψSV+ − sinθ ψSV−∗, ψMM− = cosθψSV− + sinθ ψSV+∗. (3b)

Now, the relation between the energies of SV and MM can be obtained:

EMM = ESV + c

2

{
(1 − η)

∫
d r[�E × (1 − δR)]

}
(4)

where c = 2sin2θ cos2θ, �E = |ψSV+|4 + |ψSV−|4 − 4|ψSV+ψSV−|2. Substituting Eq. (3b) into Eq. (2) and taking the derivative
of c, one gets sin4θ = 1; thus it is required that θ = 0.25π, 0.5π, 0.75π, π . As the energy of MM is different from SV when
η �= 1, we can fix θ = 0.25π and c = 0.5. From Eq. (4) one can infer whether the energy of SV or the energy of MM is lower,
depending on δ and η; this can be verified by numerical calculation (see Fig. 2). We use Eq. (3) as the initial guess wave in the
accelerated imaginary time evolution method (AITEM) [41], to get numerical results. One can take N = ∫

d r (|ψ+|2 + |ψ−|2) or
A = |ψ+|max + |ψ−|max as the normalization after every imaginary time evolution step. The original AITEM method is doomed
to fail when calculating the left branch in Fig. 1. However, an improved AITEM method invented later is very efficient and could
be applied. Comparing AITEM and VA, we find VA to be inaccurate when the Bessel potential is introduced, especially in the
cases of higher order (n > 1). This is presented in Fig. 1, which depicts the norm of stable solitons as a function of the chemical
potential. Hence, our main conclusions come from the full numerical method. As mentioned, in this procedure Eqs. (3) are used
as initial guesses.

In order to check the stability of solutions, we perform direct numerical simulation using the split-step Fourier method in real
time [42]. We separate the linear operator L in Eq. (5a) and the nonlinear operator N1 in Eq. (5b) below:
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FIG. 1. Three-dimensional stable solitons predicted numerically (dash-dotted lines) and variationally (solid lines) for the MMs when
g = λ = 1. (a) n = 0, 1, 2. (b) n = 1, and p = 1, 2. (c) n = 1, and δ = 0.2, 0.4. The stable solitons are the ones with dμ/dN<0, according to
the VK criterion.

The propagators eN1 and eL are formed by formally solving these partial equations with an initial condition u0 and v0 in the
frequency domain (see the Appendix). We let them evolve for �t in time for every step. After taking the Fourier transform, one
gets

u = C1e
iq1�t + C2e

iq2�t , v = C3e
iq1�t + C4e

iq2�t (6)

where q1,2 = −w2±2λw
2 , C1,2 = u0w∓v0(wx−iwy )∓wzu0

2w
, C3,4 = v0w∓u0(wx+iwy )±wzv0

2w
, and w =

√
w2

x + w2
y + w2

z is the Fourier fre-

quency. The results are discussed in the following sections.

III. SOLITARY MODES OF SV AND MM

First, in Fig. 1 the stable 3D solitons are predicted for MMs
with different orders n, the modulation depths of the linear p,
and the nonlinear δ of BL, by both VA and AITEM. One can
see that the norm N reaches the maximum value at a certain μ,
which is defined as Nmax. For smaller μ, the positive slope of
the dependence dμ/dN>0 can be observed. It does not satisfy
the Vakhitov-Kolokolov (VK) criterion [6], thus the solitons
there are unstable. In contrast, when μ becomes larger, the
stable solitons can be seen in Fig. 1, as well as in Figs. 4
and 6. Further, it is seen that Nmax is bigger at n = 1 than
at n = 0 or 2. We also numerically calculate the energy for
n = 0, 1, 2, 3 with n = 7, δ = 0.2, p = 1. It is found that the
energies for n = 0, 1 are similar and lower than for n = 2, 3
(the energies are −6.1823, −6.1806, −5.6575, −5.4304 for
n = 0, 1, 2, 3, respectively). In Figs. 1(b) and 1(c), one can
see that N decreases as the linear modulation depth of the
BL p increases. Otherwise, N increases as δ increases. For
fixed λ, η, δ, and p, the stable solitons always exist in a finite
interval of the norm 0 < N < Nmax. There is no minimum
norm for the appearance of the solitons—they exist all the
way up to Nmax; this conclusion is similar to [17], but there it
is obtained in free space. In addition, from Fig. 1 one can see
that AITEM is in better agreement with the prediction of the
VA at bigger μ. The unstable branch from the VA, however,
can be produced by AITEM, which is different from [17].

In Figs. 2(a) and 2(b), we calculate energy for varying
η. One can see that the energy of n = 0 is bigger than that
of n = 1 at the same η, and the higher-order BLs are more
likely to form stable patterns than the lower-order ones. In
addition, there exists a critical value ηcr = 0.82, 0.92, at which
the energies of SV and MM become equal. In Fig. 2(c), we
calculate ηcr for different δ; obviously, δ strongly affects this
value. The energy of MM when δ>(1-η)/0.4 is lower than that

of the SV, and vice versa for δ<(1-η)/0.4. In Figs. 2(d)–2(f),
we display the energy for different parameters δ, p, and N.
In Fig. 2(d), one can see that increasing the depth of the
nonlinearity modulation δ results in a significant growth of
the maximum energy that solitons can carry, where the energy
of SV is bigger than that of MM, whereas, as p increases,
the energy decreases, as can be seen in Fig. 2(e). In Fig. 2(f),
the corresponding norm-energy diagram exhibits a single
cusp, connecting the branches where the derivative dμ/dN is
negative [the lower curve on the N(μ) diagram] or positive
[the upper curve on the N(μ) diagram]. It is a well-established
fact that in BLs with uniform or anisotropic nonlinearity the
branches with dμ/dN<0 correspond to stable solutions, in
accordance with the VK stability criterion.

Figure 3 shows the maximum norm Nmax versus different
p, δ, and λ, for the MM. In Fig. 3(a), it is seen that Nmax
generally decreases as the strength p of BLs increases; thus,
the linear modulation depth p causes the stabilization of
solitons. However, increasing p does not always cause a
decrease in Nmax, and there might exist a pcr value where
Nmax reaches an extremum locally. It is certificated that if
p = δ = 0, that is, without BLs, the SOC can also protect 3D
solitons from collapse [17]. Increasing δ causes a significant
increase of Nmax. Figure 3(c) shows that there exists Nmax even
though λ = 0, which is the case of the sole BEC with BLs
and attractive contact interactions. As a result, the maximum
critical value Nmax = 14 can be obtained. Furthermore, one
can make a conclusion that Nmax decreases as the strength λ

of SOC increases, which is satisfied for 0�λ�1.
The prediction for the existence of stable 3D solitons in

free space calls for verification by direct numerical simulation
of Eq. (4). We display stationary states by simulating in
imaginary time. In Figs. 4(a)–4(d), we show the stable 3D
wave density distributions of SV and MM in BLs, for η = 1,
N = 7, λ = 1, p = 1, and δ = 0.2. This corresponds to two
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FIG. 2. (a) Energies vs the relative cross-nonlinearity strength η with N = 7, λ = 1, g = 1, p = 1, δ = 0.2, n = 0 for SV (the blue
dot-dashed line) and MM (the red dot-solid line). (b) Same as panel (a) but with n = 1. (c) ηcr vs δ when ESV = EMM. (d–f) Energy vs δ, p,
and N. (d) N = 7, λ = 1, g = 1, p = 1, n = 1. (e) N = 7, λ = 1, g = 1, δ = 0.2, n = 1. (f) λ = 1, g = 1, p = 1, δ = 0.2, n = 1.

solid dots D (red, MM) and F (blue, SV) in Fig. 4(f), which
depicts energy as a function of the width L, defined below.
The asymmetry of the MM solitary package originates from
the interaction of the nonlinear intra- and interspecies and the
vortex in an axisymmetric BL, which is different from [17].
Furthermore, one can infer that the density distributions of SV
are axisymmetric, while the two pseudospin wave functions
ψ+ and ψ− are mirror symmetric for MM.

After performing direct numerical propagation of the stable
stationary solutions, one can infer that the numerical solutions
generally retain input shapes and stay close to the stable
solutions, even under considerable perturbation. On the other
hand, the unstable solitons gradually lose axisymmetry or
mirror symmetry, and move away from the input shapes
without perturbation, but still are more likely not to collapse
than in the free space.

In order to look more closely into the stability when N is
considered, we define the characteristic size of the condensate

L = ∫
d r[(|ψ+|2 + |ψ−|2)|r|]/N , and then make the conver-

sion of variables ψ± = Aψ±, x = A−2/3x, y = A−2/3y, z =
A−2/3z. From numerical solutions in Figs. 4(a)–4(d), one can
calculate the corresponding sizes L = 1.41 (MM) and 1.60
(SV) in Fig. 4(f) (dots D and F). In Figs. 4(e) and 4(f), it is
shown that the bigger δ the bigger the characteristic size L and
the energy E of the numerical solution. On the other hand, the
bigger p makes them decrease (dots A–D, F). The dots are
located at the local minimum points of the curves, and the
characteristic size of the condensate L at p = 0 is longer than
that in the linear Bessel potential at p > 0. Hence, it is clear
that the solitons become more stable when p is nonzero.

IV. COLLISIONS OF VORTEX MODES

In the following, we consider the collision of soli-
tons. To construct solitons moving along the z axis
with velocity Vz, we introduce the traveling-wave variable

FIG. 3. Maximum norm Nmax vs different p, δ, and λ for MM. (a) δ = 0, 0.8. (b) p = 0, 1. (c) δ = 0.2, p = 1.
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FIG. 4. Soliton density profile for η = 1, N = 7, λ = 1, p = 1, δ = 0.2. (a, b) SV. (c, d) MM. Different colors represent constant-
magnitude surfaces (0.95, 0.5, 0.06) × |ψ±|max from the inner to the outer. (e, f) Energy vs the characteristic size of MM and SV. Solid
dots (A, B, C, D, F) of different colors are local minima of the curves for MM or SV. The purple solid line (A) is for p = 0, δ = 0.2; the green
dashed line (B) is for p = 0, δ = 0; the gray dotted line (C) is for p = 0.5, δ = 0. The red solid line (D) represents MM and the blue dotted
line (F) represents SV.

ψ± = ψ±(x, y, z − Vzt ); that is, we rewrite and solve Eq. (1)
in the moving frame of reference. In Figs. 5(a) and 5(b), we
plot the ratio of spin populations as functions of Vz. We choose
MM with η = 1, p = 1.5, σ = 0.8, N = 10, n = 1 at initial
positions z0 = ±10. In this form, the velocity term affects the
SOC strength and the BL strength along the z axis, breaking
the symmetry between the two components of the spinor. As a
result, the positive (negative) Vz tends to increase the popula-
tion of the spin-down (-up) component. Further increasing Vz

in the positive or negative direction could transform the state
of lower energy from MM to SV. In the negative direction, the
critical value of Vz is between −0.05 and −0.1, while in the
positive direction it is between 0.05 and 0.1. This could force
one component to vanish, so that Eq. (1) could be simplified
into the single BEC with an attractive contact interaction and

BL. When Vz is too large, we cannot find a soliton solution,
which means Vz can also affect Nmax.

Figures 5(c), 5(d), and 6 display the collision of SV
between two spin-up (down) solitons trapped in an additive
potential 0.5�2(x2 + y2 + z2), with the trapping frequency
� used to control the velocity in collision. In Figs. 5(c) and
5(d), the peak positions of soliton pairs are shown along the
z axis varying in time, and the detailed process of collision is
depicted in Fig. 6. It is seen that the slowly moving solitons
undergo a quasielastic collision in Figs. 6(a) and 6(b), while
in Figs. 6(c) and 6(d), after increasing the trapping frequency
to � = 1.5, the collision is a bit smeared. Unlike in the free
space [17], the collision does not lead to the destruction of
faster solitons (Vz = 1.4) under BLs, and the soliton collision
is more localized.

FIG. 5. (a, b) The ratio of spin populations as a function of velocity Vz for the moving SV with η = 1, λ = 1, p = 1.5, δ = 0.8, N = 10,
n = 1, and N± = ∫

dr (|ψ±|2). The red line represents MM, and the blue line represents SV, separated by the black dashed line. (c, d) Peak
positions of ψ+ (dashed blue) and ψ− (red) along the z axis varying in time, for � = 1 and 1.5.
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FIG. 6. Collisions of stable 3D SVs for � = 1. (a1) The initial (t = 0) 3D density profile of the spin-up components (ψ+). (a1–a5) The
process of collision seen through a cross-section at y = 0 and t = 0, 0.575, 0.9, 1.05, 1.5, respectively. (b1–b5) The spin-down components
(ψ−). (c1–c5, d1–d5) The same as panels (a1)–(a5), (b1)–b(5) but for � = 1.5, at t = 0, 0.4, 0.55, 0.675, 1.

V. CONCLUSION

We have studied the 3D solitons in BECs with spin-orbit
coupling and linear and nonlinear Bessel lattices. The combi-
nation of analytical and numerical methods reveals that stable
3D solitons can be supported in the binary atomic condensate
with attractive interactions, with properly engineered SOC
and with out-of-phase linear and nonlinear BLs. This is an
example of stable solitons in the 3D inhomogeneous environ-
ment with local cubic self-attraction and without a ground
state in the system. The introduction of Bessel potentials
makes the evolution and collisions of solitons more stable and
improves their resistance to collapse. In three dimensions, the
existence of stable solitons is controlled not only by the norm
but also by the energy, as the above analysis clearly shows.
In particular, the relative strength of the SOC and the intra-
and intercomponent spatial modulation of nonlinearity plays
an essential role for the stabilization of solitons in propagation
and collision.
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APPENDIX

After taking the Fourier transform, we can write Eq. (5a)
as follows:

i
∂u

∂t
− 1

2w2u + λ(−wxv + iwyv − wzu) = 0, (A1a)

i
∂v

∂t
− 1

2w2v + λ(−wxu − iwyu + wzv) = 0 (A1b)
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where wx, wy , and wz are the Fourier frequencies, and w =√
w2

x + w2
y + w2

z . Then one can easily find

v = i ∂u
∂t

− 1
2w2u − λwzu

λwx − iλwy

, u = i ∂v
∂t

− 1
2w2v + λwzv

λwx + iλwy

.

(A2)

We can choose the first of the above two equations,
Eq. (A2), to substitute into Eq. (A1b), or choose the second
one to substitute into Eq. (A1a); in both cases, one obtains
the same second-order linear differential equation for either u

or v:

∂2u

∂t2
+ iw2 ∂u

∂t
+

(
λ2w2 − 1

4
w4

)
u = 0. (A3)

This is a simple second-order ordinary differential equa-
tion. The corresponding characteristic equation is

q2 + iw2q + λ2w2 − 1
4w4 = 0. (A4)

The two solutions of Eq. (A4) are q1 =
(−w2 + 2λw)/2, q2 = (−w2 − 2λw)/2. Thus, the
general solution of Eq. (A3) is of the form u =
C1e

iq1�t + C2e
iq2�t , v = C3e

iq1�t + C4e
iq2�t . With an

initial condition u0 and v0 in the frequency domain, one can
substitute it into Eqs. (A1a) and (A1b); then C1, C2, C3, and
C4 as functions of u0, v0, wx , wy , wz, and w [Eq. (A5e)] can
be found from Eqs. (A5a)–(A5d):

C1 + C2 = u0, (A5a)

C3 + C4 = v0, (A5b)

−C1(w + wz) = (wx − iwy )C3, (A5c)

C2(w − wz) = (wx − iwy )C4, (A5d)

C1,2 = u0w ∓ v0(wx − iwy ) ∓ wzu0

2w
,

C3,4 = v0w ∓ u0(wx + iwy ) ± wzv0

2w
. (A5e)

To avoid dividing with w = 0 in Eq. (A5e), we replace
zero by a very small number. The analytical solution avoids
diagonalization of a matrix for numerical solution, which is a
difficult task for a computer, especially in three dimensions.
In this manner, we are able to utilize the split-step Fourier
method with higher accuracy and bigger �t .
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[42] S. L. Xu, M. R. Belić, G. Zhou, J. He, and L. Xue, Opt. Express
25, 9094 (2017).

033827-8

https://doi.org/10.1103/PhysRevLett.107.200401
https://doi.org/10.1103/PhysRevLett.107.200401
https://doi.org/10.1103/PhysRevLett.107.200401
https://doi.org/10.1103/PhysRevLett.107.200401
https://doi.org/10.1103/PhysRevA.86.021605
https://doi.org/10.1103/PhysRevA.86.021605
https://doi.org/10.1103/PhysRevA.86.021605
https://doi.org/10.1103/PhysRevA.86.021605
https://doi.org/10.1103/PhysRevLett.105.160403
https://doi.org/10.1103/PhysRevLett.105.160403
https://doi.org/10.1103/PhysRevLett.105.160403
https://doi.org/10.1103/PhysRevLett.105.160403
https://doi.org/10.1103/PhysRevLett.110.264101
https://doi.org/10.1103/PhysRevLett.110.264101
https://doi.org/10.1103/PhysRevLett.110.264101
https://doi.org/10.1103/PhysRevLett.110.264101
https://doi.org/10.1103/PhysRevA.87.013614
https://doi.org/10.1103/PhysRevA.87.013614
https://doi.org/10.1103/PhysRevA.87.013614
https://doi.org/10.1103/PhysRevA.87.013614
https://doi.org/10.1103/PhysRevE.89.032920
https://doi.org/10.1103/PhysRevE.89.032920
https://doi.org/10.1103/PhysRevE.89.032920
https://doi.org/10.1103/PhysRevE.89.032920
https://doi.org/10.1103/PhysRevA.90.063621
https://doi.org/10.1103/PhysRevA.90.063621
https://doi.org/10.1103/PhysRevA.90.063621
https://doi.org/10.1103/PhysRevA.90.063621
https://doi.org/10.1111/j.1467-9590.2008.00398.x
https://doi.org/10.1111/j.1467-9590.2008.00398.x
https://doi.org/10.1111/j.1467-9590.2008.00398.x
https://doi.org/10.1111/j.1467-9590.2008.00398.x
https://doi.org/10.1364/OE.25.009094
https://doi.org/10.1364/OE.25.009094
https://doi.org/10.1364/OE.25.009094
https://doi.org/10.1364/OE.25.009094



