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Modification of polarization through de-Gaussification
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We analyze the polarization of a quantum radiation field under a de-Gaussification process. Specifically, we
consider the addition of photons to a two-mode thermal state to get mixed non-Gaussian and nonclassical states
which are still diagonal in the Fock basis. Stokes-operator-based degrees of polarization and two distance-type
measures defined with Hilbert-Schmidt and Bures metrics are investigated. For a better insight we here introduce
a polarization degree based on the relative entropy. Polarization of the thermal states is fully investigated and
simple closed expressions are found for all the defined degrees. The evaluated degrees for photon-added states
are then compared to the corresponding ones for the two-mode thermal states they originate from. We present
interesting findings which tell us that some popular degrees of polarization are not fully consistent. However,
the most solidly defined degrees, which are based on the Bures metric and relative entropy, clearly indicate
an enhancement of polarization through de-Gaussification. This conclusion is supported by the behavior of the
degrees of polarization of the Fock states, which are finally discussed as a limit case.
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I. INTRODUCTION

An important concept for classical optics, polarization
of light has quite recently become of interest in quantum
information processing as well. Its usefulness in this area
arises especially from the robustness of light as an information
carrier. This allows easy manipulation and transmission of
polarization-encoded information with negligible losses, thus
providing an appreciated experimental convenience. Indeed,
polarization encoding was considered to be the optimal choice
in many recent experiments: the quantum key distribution
required in cryptography [1,2], polarization entanglement [3],
superdense coding [4], quantum teleportation of polarization
[5], entanglement swapping [6], quantum tomography [7], and
quantum computation [8]. Due to the relevance of polarization
in such a large number of quantum processes, one needs to
find proper measures for description of polarization in the
quantum realm.

Classically, the definition of the degree of polarization
is obtained by using the Stokes parameters [9,10]. In the
quantum domain, the standard degree of polarization was
defined by replacing the Stokes variables by the expectation
values of the Stokes operators [11–14]. This definition based
on first-order moments cannot give a complete description for
all quantum fields, since it assigns the zero value in some
cases of pure polarized states. Therefore, the idea of con-
struction of the polarization measures by using second-order
moments of the Stokes operators occurred [15,16]. Moreover,
a provisionally improved characterization of polarization has
recently been obtained with the help of higher-order mo-
ments [17–22]. Collaterally, it was recently proved that the
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Stokes-operator measurements have great importance for the
estimation of the covariance matrix of macroscopic quantum
states [23].

Taking inspiration from the quantum information toolbox,
the degree of polarization was quantified as the distance
between the given quantum field state and the set of all
unpolarized states. These definitions have considered sev-
eral metrics: Hilbert-Schmidt, Bures [24,25], and Chernoff
[26–30].

Two recent reviews by Chirkin and Luis present possible
definitions of the degree of polarization of a quantum field
and applications of the polarized states [31,32]. An overview
of the difficulties encountered in using various types of polar-
ization degrees was recently given in Ref. [33].

A lot of attention has been devoted in recent years to
the study of polarization of Gaussian states of light fields
[34–37]. On the other hand, one would find little investigation
of polarization for non-Gaussian field states. See, however, the
interesting findings on the polarization of pure Schrödinger
cat or catlike states and entangled bimodal coherent states in
Ref. [38]. Since the non-Gaussian states were proven to be
more efficient resources in some quantum information pro-
cesses [39–43], we felt the need to analyze their polarization
more deeply using some degrees originating from both the
classical and the quantum perspectives. Our aim here is thus
twofold. First, we are interested in observing the behavior of
polarization under de-Gaussification as an interesting process
in its own right. Second, we want to figure out the consistency
of the results given by differently defined degrees of polar-
ization and eventually draw a conclusion on their usefulness.
Specifically, we use a description of the polarization for a
product of mixed states which are Fock diagonal. With the
unique exception of the thermal states, these are definitely
non-Gaussian.

The paper is organized as follows. In Sec. II we review
the traditional Stokes definitions based on the first- and
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second-order moments. We further consider two distance-type
measures based on the Hilbert-Schmidt and Bures metrics. In
Sec. III, we introduce a new definition of the quantum degree
of polarization which is based on the relative entropy. The
above-mentioned quantum degrees of polarization are applied
to a tensor product of Fock-diagonal states in Sec. IV. The
obtained closed expressions are state-dependent expansions
on N -photon manifolds. In Sec. V we give our exact findings
on the degrees of polarization of two-mode thermal states.
These are important results because we then compare them
to the degrees of polarization of some non-Gaussian states
resulting from the addition of photons to thermal states in Sec.
VI. Our conclusions are drawn in Sec. VII.

II. QUANTUM DEGREES OF POLARIZATION

In any discussion of the polarization of the quantum radi-
ation field, a quasimonochromatic light beam is decomposed
into two orthogonal transverse oscillating modes which are
described by a definite two-mode state ρ̂. The quantum treat-
ment of polarization starts from the Stokes operators built with
the amplitude operators of the conventional horizontally (H )
and vertically (V ) oscillating modes:

Ŝ1 := â
†
H âV + âH â

†
V , Ŝ2 := 1

i
(â†

H âV − âH â
†
V ),

Ŝ3 := â
†
H âH − â

†
V âV , Ŝ0 := â

†
H âH + â

†
V âV . (2.1)

Their expectation values correspond to the classical Stokes
parameters:

〈Ŝ0〉 = Tr(ρ̂Ŝ0), 〈Ŝj 〉 = Tr(ρ̂Ŝj ) (j = 1, 2, 3). (2.2)

A. Previously defined measures

The first proposal for defining a quantum degree of polar-
ization based on Stokes variables was a direct generalization
of the classical measure [11–14]:

P1(ρ̂) :=
√

〈 Ŝ1 〉2 + 〈 Ŝ2 〉2 + 〈 Ŝ3 〉2

〈 Ŝ0 〉 . (2.3)

The index 1 emphasizes that this definition considers only
first-order moments of the Stokes operators. Accordingly, all
the product-states | ψ 〉H | 0 〉V have a degree of polarization
equal to unity. For the two-mode state close to the vacuum,
i.e., | ψ 〉H → | 0 〉H , one obtains also P1 = 1, which is an
unphysical result [16].

Since P1 cannot be regarded as a proper definition of the
quantum degree of polarization, proposals based on higher-
order moments have to be considered. A second-order quan-
tum degree of polarization was introduced in Ref. [15]:

P2(ρ̂ ) :=
√

1 − (�Ŝ)2

〈 Ŝ2 〉 . (2.4)

Here Ŝ is the Stokes vector whose components are written in
Eqs. (2.1) and

(�Ŝ)2 := (�Ŝ1)2 + (�Ŝ2)2 + (�Ŝ3)2

is the total variance of the Stokes operators. We get, further,

P2(ρ̂ ) =
√

〈 Ŝ1 〉2 + 〈 Ŝ2 〉2 + 〈 Ŝ3 〉2

〈 Ŝ2 〉 . (2.5)

This definition gives the correct answer for the state close to
the vacuum: P2(| ψ 〉H | 0 〉V ) → 0 when | ψ 〉H → | 0 〉H .

More recently, various distance-type degrees of polariza-
tion have also been investigated [24,27]. Recall that, in gen-
eral, the distance of a given state having a specific property
to a reference set of states not having it has been recognized
as a measure of that property. The essence of defining a reli-
able distance-type measure consists in choosing a convenient
metric and identifying an appropriate reference set of states.
Application of this recipe to the polarization issues is greatly
facilitated by precise knowledge of the set U of unpolarized
states. Indeed, any unpolarized two-mode state σ̂ has a block-
diagonal sector σ̂b [26] which is SU(2) invariant [44,45]:

σ̂b =
∞∑

N=0

πN

1

N + 1
P̂N . (2.6)

In Eq. (2.6),

P̂N :=
N∑

n=0

|n,N − n〉〈n,N − n| (2.7)

is the projection operator onto the vector subspace of the N -
photon states, called the N th excitation manifold. We have
denoted |n,N − n〉 := |n〉H ⊗ |N − n〉V . Further, πN are the
photon-number probabilities in the SU(2)-invariant state σ̂b

and they satisfy the normalization condition
∞∑

N=0

πN = 1. (2.8)

Note that any SU(2)-invariant state (2.6) is Fock diagonal and,
except for the vacuum, is mixed. We recall two distance-type
measures for the quantum degree of polarization based on
Hilbert-Schmidt and Bures metrics, which were defined in
Ref. [24]:

PHS(ρ̂) = inf
σ̂∈U

Tr[(ρ̂ − σ̂ )2], (2.9)

PB(ρ̂ ) = 1 − sup
σ̂∈U

√
F (ρ̂, σ̂ ), (2.10)

where U represents the set of all unpolarized two-mode states,
while F stands for the fidelity between two states [46],

F (ρ̂1, ρ̂2) :=
[

Tr
√

ρ̂
1/2
1 ρ̂2 ρ̂

1/2
1

]2

. (2.11)

In Refs. [26] and [27] a quite different approach to defining
quantum degrees of polarization was proposed. The polar-
ization properties of the given state ρ̂ were delegated to its
block-diagonal sector,

ρ̂b :=
∞∑

N=0

P̂N ρ̂P̂N . (2.12)

The polarization-relevant state (2.12) is the result of an ideal
nonselective measurement of the observable N̂ := N̂H + N̂V
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which preserves the photon-number distribution of the given
two-mode state ρ̂ [26]. In particular, the quantum degree of
polarization is defined as

P(ρ̂) := P(ρ̂b ), (2.13)

so that in Eqs. (2.9) and (2.10) one should replace ρ̂ with ρ̂b

and σ̂ with σ̂b.
Let us denote μN,n, (n = 0, 1, · · · , N ), the eigenvalues

of the positive operator P̂N ρ̂P̂N . Their sum is precisely the
probability of the N th excitation manifold:

pN = Tr(ρ̂P̂N ) =
N∑

n=0

μN,n. (2.14)

The N -photon state ρ̂N := 1
pN

P̂N ρ̂P̂N , (pN > 0), commutes
with any SU(2)-invariant state σ̂b, Eq. (2.6), and so does the
polarization state ρ̂b:

[ρ̂b, σ̂b] = 0̂. (2.15)

Extremization of expressions (2.9) and (2.10) of the
Hilbert-Schmidt and Bures measures was previously carried
out [24,26,27] by applying the method of Lagrange multi-
pliers. An important and helpful property for the ongoing
evaluations is the commutation relation (2.15). We write here
the following general expressions in terms of the photon-
number probabilities pN and the eigenvalues μN,n:

PHS(ρ̂) =
∞∑

N=0

N∑
n=0

μ2
N,n −

∞∑
N=0

p2
N

N + 1
, (2.16)

PB(ρ̂) = 1 −
√√√√ ∞∑

N=0

1

N + 1

( N∑
n=0

√
μN,n

)2

. (2.17)

An interesting case to examine is the polarization of an
arbitrary pure state conveniently written as an expansion in
pure N -photon states

|�〉 =
∞∑

N=0

cN |�N 〉. (2.18)

We have pN = |cN |2 and
∑∞

N=0 pN = 1. Accordingly, the
associated state ρ̂b is the mixture

ρ̂b =
∞∑

N=0

|cN |2|�N 〉〈�N |. (2.19)

Equations (2.16) and (2.17) greatly simplify to

PHS(|�〉〈�|) =
∞∑

N=0

|cN |4 N

N + 1
, (2.20)

PB(|�〉〈�|) = 1 −
√√√√ ∞∑

N=0

|cN |2
N + 1

. (2.21)

III. RELATIVE ENTROPY AS A MEASURE OF QUANTUM
POLARIZATION

Despite not being a true metric, the relative entropy is
acceptable as a measure of polarization due to its outstanding

distinguishability properties as discussed in Ref. [47]. Recall
that the relative entropy between state σ̂ ′ and state σ̂ ′′ is
defined as the difference [48]

S (σ̂ ′|σ̂ ′′) := Tr[σ̂ ′ ln(σ̂ ′)] − Tr[σ̂ ′ ln(σ̂ ′′)]. (3.1)

The relative entropy was successfully used as a measure of
entanglement for pure bipartite states providing one of the
few exact and general evaluations [49]. A more recent general
result [50] finds the relative entropy to be an exact measure of
non-Gaussianity.

In view of the preceding discussion on the appropriateness
of the associate block-diagonal density operator ρ̂b in describ-
ing polarization, we define a degree of polarization based on
the relative entropy as

PRE(ρ̂) := inf
σ̂∈U

S(ρ̂b|σ̂b )

1 + S(ρ̂b|σ̂b )
. (3.2)

The relative entropy between the commuting states ρ̂b and σ̂b,
Eq. (2.6), is

S(ρ̂b|σ̂b ) = −S(ρ̂b ) −
∞∑

N=0

pN ln

(
πN

N + 1

)
. (3.3)

In Eq. (3.3), S(ρ̂ ) = −Tr[ρ̂ ln(ρ̂)] is the von Neumann en-
tropy of state ρ̂ and pN is given by Eq. (2.14). Our task is
to evaluate the parameters π̃N of the unpolarized state ˆ̃σb

for which the infimum in Eq. (3.2) is realized. As far as we
know at this moment, the present work is the first to look
for the closest unpolarized two-mode state through relative
entropy. We have to minimize function (3.3) with respect
to the probabilities πN under constraint (2.8). Similarly to
what was previously discussed regarding other distance-type
measures [24,26,27], the extremization is easily performed by
applying the method of Lagrange multipliers. We easily get
the conditions of minimum

π̃N = pN, (N = 0, 1, 2, 3, . . . ). (3.4)

Interestingly, the closest unpolarized state is the same as
for the Hilbert-Schmidt polarization measure first written in
Ref. [24]. It has the same photon-number distribution as the
given state,

ˆ̃σb =
∞∑

N=0

pN

1

N + 1
P̂N , (3.5)

and leads to the final formula

S(ρ̂b| ˆ̃σb ) = −S(ρ̂b ) −
∞∑

N=0

pN ln

(
pN

N + 1

)
. (3.6)

For the pure state (2.18), the minimal relative entropy (3.6)
simplifies to

S(ρ̂b| ˆ̃σb ) =
∞∑

N=0

|cN |2 ln(N + 1). (3.7)

IV. POLARIZATION OF FOCK-DIAGONAL STATES

Obviously, any Fock-diagonal state ρ̂ coincides with its
polarization sector, namely, ρ̂b = ρ̂. For the sake of simplicity,
in this paper we deal with a mixed Fock-diagonal product
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state,

ρ̂ = ρ̂H ⊗ ρ̂V , (4.1)

where

ρ̂H =
∞∑

m=0

ξm | m 〉〈m |, ρ̂V =
∞∑

n=0

ηn | n 〉〈 n |. (4.2)

The photon-number distributions ξm and ηm satisfy the nor-
malization conditions

∞∑
m=0

ξm = 1,

∞∑
m=0

ηm = 1.

Our first aim here is to write the quantum degrees of
polarization reviewed in the previous section for this type
of Fock-diagonal state. With the notable exception of the
thermal states, we thus deal with non-Gaussian density op-
erators which are known to be important in several protocols
of quantum information. To begin, let us recall the photon-
number operators in the two modes, i.e., N̂H = â

†
H âH and

N̂V = â
†
V âV . The expectation values of the Stokes operators,

Eq. (2.1), are found to be

〈 Ŝ1 〉 = 〈 Ŝ2 〉 = 0, 〈 Ŝ3 〉 = 〈 N̂H 〉 − 〈 N̂V 〉,
and further,

〈 Ŝ2 〉 = 2(〈 N̂H 〉〈 N̂V 〉 + 〈 N̂H 〉 + 〈 N̂V 〉) + 〈
N̂2

H

〉 + 〈
N̂2

V

〉
.

In general we simply find

〈
N̂

j

H

〉 =
∞∑

m=0

ξm mj ,
〈
N̂

j

V

〉 =
∞∑

m=0

ηm mj (j = 1, 2, . . . ).

By using Eq. (2.3) we get the first-order Stokes degree of
polarization

P1(ρ̂) = |〈 N̂H 〉 − 〈 N̂V 〉|
〈 N̂H 〉 + 〈 N̂V 〉 . (4.3)

Further, Eq. (2.4) becomes in this case

P2(ρ̂) = |〈 N̂H 〉 − 〈 N̂V 〉|√
〈 Ŝ2 〉

. (4.4)

As regards the distance-type measures, they are simply written
by setting μN,n = ξn ηN−n into Eqs. (2.16), (2.17), and (3.6).

As an example, the entropic degree of polarization is given
by Eq. (3.2) after inserting the explicit relative entropy of
polarization for state (4.1):

S(ρ̂| ˆ̃σb )=
∞∑

m=0

[ξm ln(ξm) + ηm ln(ηm)] −
∞∑

N=0

pN ln

(
pN

N + 1

)
.

(4.5)
In the following we specialize the above final expressions of
the quantum degrees of polarization to two interesting Fock-
diagonal states: the unique Gaussian case, which is a two-
mode thermal state, and a non-Gaussian example prepared by
adding photons to a thermal state.

V. POLARIZATION OF TWO-MODE THERMAL STATES

We here compute the quantum degrees of polarization
for the relevant class of two-mode thermal states, whose

density operators depend only on the mean occupancies n̄1 :=
〈N̂H 〉, n̄2 := 〈N̂V 〉 of the modes,

ρ̂th(n1, n2) := ρ̂th(n1) ⊗ ρ̂th(n2), (5.1)

with

ρ̂th(nj ) = 1

nj + 1

∞∑
n=0

(
nj

nj + 1

)n

| n 〉〈 n | (j = 1, 2).

It is convenient to rewrite the thermal state (5.1) as follows:

ρ̂th(n1, n2) = (1 − q1)(1 − q2)

×
∞∑

N=0

N∑
n=0

qn
1 qN−n

2 | n,N−n 〉〈n,N−n |, (5.2)

where the notation qj := nj/(nj + 1) has been introduced.
Before proceeding with the evaluation of various polarization
degrees we have to note an important property. At thermal
equilibrium (q1 = q2 := q), the density operator (5.2) simpli-
fies to

ρ̂th(n̄, n̄) = (1 − q )2
∞∑

N=0

qNP̂N . (5.3)

According to Eq. (2.6), the thermal state at equilibrium,
Eq. (5.3), is unpolarized and therefore its degree of polariza-
tion should be equal to 0, regardless of the type of measure we
use. In the following we take the thermal equilibrium limit as
a useful test of our results.

A. Degrees of polarization based on the Stokes operators

We insert the thermal mean occupancies and the expecta-
tion values〈

N̂2
H

〉 = n̄1(2n̄1 + 1),
〈
N̂2

V

〉 = n̄2(2n̄2 + 1)

in Eqs.(4.3) and (4.4) to easily get

P1(ρ̂th(n1, n2)) = |n1 − n2|
n1 + n2

, (5.4)

P2(ρ̂th(n1, n2)) = |n1 − n2|√
2 n2

1 + 2 n2
2 + 2 n1 n2 + 3 n1 + 3 n2

.

(5.5)

Both expressions were first written in Ref. [36]. They obvi-
ously meet the requirement of being equal to 0 at thermal
equilibrium.

B. Distance-type degrees of polarization

Two distance-type measures of polarization can be eval-
uated analytically for a thermal state, Eq. (5.2), due to the
privilege of getting a closed form for the probability of an
N -photon state:

pN = (1 − q1)(1 − q2)
N∑

n=0

qn
1 qN−n

2

= (1 − q1)(1 − q2)
qN+1

1 − qN+1
2

q1 − q2
. (5.6)
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Above we have simply used the geometric sequence

N∑
n=0

qn = 1 − qN+1

1 − q
.

For 0 � q < 1 and N → ∞, we get the well-known geomet-
ric series

∞∑
n=0

qn = 1

1 − q
, (0 � q < 1), (5.7)

whose term-by-term integration yields another useful power
series:

∞∑
n=0

1

n + 1
qn+1 = − ln(1 − q ), (0 � q < 1). (5.8)

Evaluation of the Hilbert-Schmidt polarization degree,
Eq. (2.16), is routinely performed via Eqs. (5.6) and (5.8). In
terms of thermal mean occupancies we nicely get

PHS(ρ̂th(n1, n2)) = 1

(2n1 + 1)(2n2 + 1)

− 1

(n1 − n2)2 ln

[
(n1 + n2 + 1)2

(2n1 + 1)(2n2 + 1)

]
.

(5.9)

In the symmetric case n̄1 = n̄2 the obtained degree goes to 0 as
it should. However, Eq. (5.9) reveals a nonmonotonic behavior
of the Hilbert-Schmidt degree which has the limit 0 when the
difference between the two thermal mean occupancies is very
large. This suggests that the Hilbert-Schmidt metric is not a
reliable measure of polarization.

According to Eq. (2.17), in order to obtain the Bures degree
of polarization for a two-mode thermal state we need to use
once more the geometric sequence to write

N∑
n=0

√
μN,n = [(1 − q1)(1 − q2)]1/2 q

N+1
2

2 − q
N+1

2
1

q
1/2
2 − q

1/2
1

.

By replacing the above result in Eq. (2.17) and again taking
advantage of the series (5.8), we write the Bures degree of
polarization:

PB(ρ̂th(n1, n2)) = 1 −
√

2 ln
[√

(n1 + 1)(n2 + 1) −√
n1n2

]
|√n1(n2 + 1) − √

n2(n1 + 1)| .

(5.10)

The Bures degree (5.10) appears to be monotonic and is 0 in
the symmetric case.

The last degree of polarization we have to examine is the
entropic one, Eq. (4.5). With the von Neumann entropy of a
one-mode thermal state,

S(ρ̂th(n)) = (n + 1) ln(n + 1) − n ln(n), (5.11)

and the explicit expression of the probability of an N -photon
state, Eq. (5.6), we are left with the numerical evaluation of
the sum appearing in the expression of the minimal relative
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FIG. 1. Different degrees of polarization of the two-mode ther-
mal state in terms of ε = |n1 − n2|: Stokes degrees P1 (solid black
curve) and P2 (dashed red curve), relative entropy (dotted green line),
Bures (dot-dashed blue line). Inset: Nonmonotonic behavior of the
Hilbert-Schmidt measure. We have considered n2 = 1.

entropy:

S(ρ̂| ˆ̃σb ) = −S(ρ̂th(n1)) − S(ρ̂th(n2)) −
∞∑

N=0

pN ln

(
pN

N + 1

)
.

(5.12)
Figure 1 shows a monotonic aspect of either Stokes-

operator-based degrees or Bures and entropic ones versus the
relative mean occupancy ε := |n1 − n2| of the two modes.
These degrees are consistent, having a similar behavior with
respect to the same parameter. Quite the reverse, in the inset
we see the Hilbert-Schmidt degree of polarization, Eq. (5.9),
displaying a flat maximum and then slowly decreasing to 0.
The results obtained in this section on the polarization of the
thermal states are compared in the following to the similar
degrees for a class of non-Gaussian ones prepared by adding
photons to thermal states.

VI. POLARIZATION OF NON-GAUSSIAN STATES

It is well known that various excitations on a single-mode
thermal state of the type ρ̂ ∼ (â†)kâl ρ̂th(â†)l âk are diagonal
in the Fock basis. Here â and â† are the amplitude oper-
ators of the field mode. In general, states with added pho-
tons are nonclassical and non-Gaussian. We choose to apply
now both Stokes-operator-based and distance-type degrees of
polarization to a class of states of this type, that is, their
density operator is the tensor product shown in Eqs. (4.1)
and (4.2). Specifically, we work here with a tensor product
of multi-photon-added thermal states. Single-mode photon-
added thermal states (PATSs) were introduced in Ref. [51],
where their nonclassicality expressed by the negativity of
the P function was studied. Quite recently, thermal states
with one added photon were experimentally prepared and
their nonclassical properties were investigated [52–54]. The
present authors were interested in the nonclassicality of PATSs
and looked at their evolution during the interaction of the field
mode with a thermal reservoir. Basically we have investigated
two processes: loss of nonclassicality indicated by the time
development of the Wigner and P functions and loss of
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non-Gaussianity shown by some recently introduced distance-
type measures [55,56].

Adding M photons to a thermal state ρ̂th(n) results in the
density operator

ρ̂ (M )(n) = 1

M! (n̄ + 1)M
(â†)M ρ̂th(n) âM, (6.1)

which in the Fock basis is easily written as the mixture [55]

ρ̂ (M )(n) =
∞∑

l=M

(
l

M

)
n̄l−M

(n̄ + 1)l+1
| l 〉〈 l |. (6.2)

The purity of a PATS was found in Ref. [56] as a function of
the thermal ratio q := n̄/(n̄ + 1), which involves a Legendre
polynomial

Tr
{[

ρ̂ (M )(n̄)
]2} =

(
1 − q

1 + q

)M+1

PM

(
1 + q2

1 − q2

)
. (6.3)

Note that the above Legendre polynomial PM is strictly
positive because its argument is at least equal to 1.

For polarization issues we consider the tensor product of
two PATSs:

ρ̂ := ρ̂ (M )(n1) ⊗ ρ̂ (S)(n2). (6.4)

A. Degrees of polarization based on the Stokes operators

In order to evaluate the quantum degrees of polarization
based on the Stokes variables we only need the expectation
values of the operators N̂ and N̂2 of the PATS ρ̂ (M )(n).
These can be obtained with the photon-number distribution
of PATSs arising from Eq. (6.2). More elegantly, we can use
the generating function of PATSs written in Ref. [56] to get

〈 N̂ 〉 = M (n + 1) + n,

〈 N̂2 〉 = n(M + 1)[(M + 2)n + 2M + 1] + M2. (6.5)

In the following, all figures representing various polar-
ization degrees are plotted versus the relative thermal mean
occupancy ε = |n1 − n2| of the two modes. We used the same
values of the parameters of PATSs in order to facilitate the
comparison of their behaviors. Specifically, the black plots are
characterized by n̄2 = 0. That is, we deal with the particular
state

ρ̂ := ρ̂ (M )(n1) ⊗ |S〉〈S|, (6.6)

which is a tensor product of a PATS and a Fock state. The red
plots describe the polarization of a proper two-mode PATS,
Eq. (6.4), for a fixed value n̄2 = 1. For both sets of plots (black
and red), we examine both symmetric PATSs (M = S = 2)
and nonsymmetric ones (M = 1, S = 2). Also plotted (solid
lines) in all subsequent figures are the degrees of polarization
for the thermal states from which the corresponding PATSs
are prepared.

Inserting Eqs. (6.5) written for both the H and the V modes
into formulas (4.3) and (4.4), one obtains the expression of
the two Stokes degrees of polarization described in Sec. II.
In Fig. 2 we plot the degrees P1 and P2, respectively, under
the conditions and parameters described above. What can we
see in these plots? The degree P1 based on only first-order
moments of the Stokes operators indicates that by adding
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FIG. 2. Stokes degrees of polarization, (2.3) (top) and (2.5)
(bottom), in terms of ε = |n1 − n2| for two classes of states: the
two-mode thermal state (solid lines) and two-mode photon-added
thermal state (dashed and dot-dashed lines). We have considered
n2 = 0 (black curves) and n2 = 1 (red curves) and, in addition, two
cases of the two-mode photon-added thermal state: the symmetric
one M = S = 2 (dashed curves) and the nonsymmetric one M = 1,
S = 2 (dot-dashed curves).

photons to a thermal state we are decreasing its polarization.
This effect is stronger for nonsymmetric addition. However,
P1 appears to be monotonic and consistent for both fixed
values of n̄2. Unlike the aspect of P1, the degree P2 displays an
acute lack of consistency. The difference in the polarization of
thermal states vs PATSs described by P2 fluctuates with their
relative thermal mean occupancy.

B. Distance-type degrees of polarization

In order to calculate the distance-type polarization degrees
introduced in Sec. III for state (6.4) we first write the proba-
bility of its N th excitation manifold, Eq. (2.14):

pN =
N∑

l=0

(
l

M

)(
N − l

S

)
n̄l−M

1

(n̄1 + 1)l+1

n̄N−l−S
2

(n̄2 + 1)N−l+1
. (6.7)

This greatly simplifies for the particular state (6.6):

pN =
(

N − S

M

)
n̄N−S−M

1

(n̄1 + 1)N−S+1
. (6.8)

For evaluating the Hilbert-Schmidt degree of polarization we
use Eq. (2.16), as well as Eq. (6.3) for the degree of purity
of a PATS. The Hilbert-Schmidt measure in terms of thermal
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FIG. 3. Evaluation of the Hilbert-Schmidt degree of polarization
in terms of ε = |n1 − n2| for two classes of states: the two-mode
thermal state (solid lines) and two-mode photon-added thermal state
(dashed and dot-dashed lines). The parameters of two-mode PATSs
are the same as in Fig. 2.

mean occupancies n̄1 and n̄2 is then

PHS
(
ρ̂ (M )(n1) ⊗ ρ̂ (S)(n2)

) = 1

(2 n1 + 1)M+1

1

(2 n2 + 1)S+1

×PM

(
1 + 2 n2

1

2 n1 + 1

)
PS

(
1 + 2 n2

2

2 n2 + 1

)
−

∞∑
N=0

p2
N

N + 1
,

with PL(x) being the Legendre polynomial of degree L.
Figure 3 presents plots of the Hilbert-Schmidt degree of

polarization PHS for two-mode PATSs compared to the cor-
responding one for thermal states. We can see that adding
photons to a thermal state strongly modifies the aspect of this
polarization degree, in contrast with the evolution shown in
Fig. 2 for Stokes-operator-based degrees.

Using the probability of its N th excitation manifold written
in Eqs. (6.7) and (6.8), we have numerically calculated the
Bures measure, Eq. (2.17), and the entropic one, Eq. (4.5),
for the two-mode thermal state and two-mode PATSs. To
accomplish this task we have used the von Neumann entropy
of a PATS written in a simplified form,

S(ρ̂ (M )(n)) = (M + 1)S(ρ̂th(n))

−
∞∑

l=M

(
ρ̂ (M )(n)

)
ll

ln

[(
l

M

)]
, (6.9)

with S(ρ̂th(n)) being the von Neumann entropy of the thermal
state, Eq. (5.11).
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FIG. 4. Bures (top) and relative entropy (bottom) degrees of
polarization as defined in the text vs the relative thermal mean occu-
pancy ε = |n1 − n2| for the same states and parameters considered
in Figs. 1–3.

For proper comparison of all these degrees, when plotting
our final Fig. 4, we have considered the same states and
parameters as in Figs. 2 and 3. What can we say about the
plots in Fig. 4? They appear to be in agreement and manifest
an overall consistency. Unlike the Hilbert-Schmidt degree,
they show a monotonic behavior with respect to the relative
thermal mean occupancy. Consistency means here the same
ordering of the degrees for the same states in both cases.

C. A limit case: Polarization of a two-mode Fock state

When setting n1 = 0 in Eq. (6.6), we get the density
operator of a two-mode Fock state |M,S〉. The expressions of
the degrees of polarization for this pure state with N = M + S

photons easily emerge as follows. The series expansions on
the right-hand side of Eqs. (2.20), (2.21), and (3.7) reduce to
a single term:

PHS = N

N + 1
, PB = 1 −

√
1

N + 1
,

PRE = 1 − 1

1 + ln(N + 1)
. (6.10)

Note the obvious inequalities

PHS � PB, PHS � PRE. (6.11)

While the only N dependence is common to the above three
distance-type degrees, the Stokes-operator-based degrees de-
pend on the difference between the occupancies of the two
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modes, just as for classical light [10]. We get

P1 = |M − S|
N

, P2 = |M − S|√
N (N + 2)

,

P1 � P2. (6.12)

Comparing the above degrees to those for thermal light in
Sec. V, it appears that the Stokes-operator-based ones are not
quite sensitive to the statistical properties of the radiation.
The distance-type degrees are all monotonic for the highly
nonclassical Fock states, which is not the case for the thermal
states, as shown in Fig. 1.

VII. CONCLUSIONS

We have examined the polarization of two-mode photon-
added thermal states, which are known to be nonclassical,
non-Gaussian, and diagonal in the Fock basis, in comparison
to the thermal states from which they originate. The latter
are classical and the only Fock-diagonal Gaussian states. Use
was made of two types of degrees of polarization: one defined
with Stokes operators by analogy with a classical description,
the other being a bunch of distance-type measures based on
Hilbert-Schmidt and Bures metrics as well as on the relative
entropy. We have first given a more general treatment valid for

any Fock-diagonal state. Specializing it to the case of thermal
states, we have written for the first time closed and simple
expressions for their Bures and Hilbert-Schmidt degrees of
polarization.

Adding photons to thermal states is a de-Gaussification
process which is currently being investigated in experiments.
Modification of polarization due to this procedure is one
of our interests in the present paper. We have found that,
according to the Stokes-operator-based degrees, polarization
decreases upon adding photons to thermal states, as shown
in Fig. 2. On the contrary, when looking at the Bures and
entropic degrees in Fig. 4, polarization is larger for photon-
added states. The Hilbert-Schmidt degree is not reliable due to
its lack of consistency. So we are now in a dilemma regarding
the description of polarization with the two types of defined
degrees. How can we solve this? The agreement between
the Bures degree and the entropic one is quite remarkable.
However, the only solid conclusion that one can come to is
that a supplementary testing of polarization is, at this moment,
highly desirable. Work along these lines is in progress.
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